]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/include/asm/eeh.h
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / include / asm / eeh.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation.
4 * Copyright 2001-2012 IBM Corporation.
5 */
6
7 #ifndef _POWERPC_EEH_H
8 #define _POWERPC_EEH_H
9 #ifdef __KERNEL__
10
11 #include <linux/init.h>
12 #include <linux/list.h>
13 #include <linux/string.h>
14 #include <linux/time.h>
15 #include <linux/atomic.h>
16
17 #include <uapi/asm/eeh.h>
18
19 struct pci_dev;
20 struct pci_bus;
21 struct pci_dn;
22
23 #ifdef CONFIG_EEH
24
25 /* EEH subsystem flags */
26 #define EEH_ENABLED 0x01 /* EEH enabled */
27 #define EEH_FORCE_DISABLED 0x02 /* EEH disabled */
28 #define EEH_PROBE_MODE_DEV 0x04 /* From PCI device */
29 #define EEH_PROBE_MODE_DEVTREE 0x08 /* From device tree */
30 #define EEH_VALID_PE_ZERO 0x10 /* PE#0 is valid */
31 #define EEH_ENABLE_IO_FOR_LOG 0x20 /* Enable IO for log */
32 #define EEH_EARLY_DUMP_LOG 0x40 /* Dump log immediately */
33
34 /*
35 * Delay for PE reset, all in ms
36 *
37 * PCI specification has reset hold time of 100 milliseconds.
38 * We have 250 milliseconds here. The PCI bus settlement time
39 * is specified as 1.5 seconds and we have 1.8 seconds.
40 */
41 #define EEH_PE_RST_HOLD_TIME 250
42 #define EEH_PE_RST_SETTLE_TIME 1800
43
44 /*
45 * The struct is used to trace PE related EEH functionality.
46 * In theory, there will have one instance of the struct to
47 * be created against particular PE. In nature, PEs correlate
48 * to each other. the struct has to reflect that hierarchy in
49 * order to easily pick up those affected PEs when one particular
50 * PE has EEH errors.
51 *
52 * Also, one particular PE might be composed of PCI device, PCI
53 * bus and its subordinate components. The struct also need ship
54 * the information. Further more, one particular PE is only meaingful
55 * in the corresponding PHB. Therefore, the root PEs should be created
56 * against existing PHBs in on-to-one fashion.
57 */
58 #define EEH_PE_INVALID (1 << 0) /* Invalid */
59 #define EEH_PE_PHB (1 << 1) /* PHB PE */
60 #define EEH_PE_DEVICE (1 << 2) /* Device PE */
61 #define EEH_PE_BUS (1 << 3) /* Bus PE */
62 #define EEH_PE_VF (1 << 4) /* VF PE */
63
64 #define EEH_PE_ISOLATED (1 << 0) /* Isolated PE */
65 #define EEH_PE_RECOVERING (1 << 1) /* Recovering PE */
66 #define EEH_PE_CFG_BLOCKED (1 << 2) /* Block config access */
67 #define EEH_PE_RESET (1 << 3) /* PE reset in progress */
68
69 #define EEH_PE_KEEP (1 << 8) /* Keep PE on hotplug */
70 #define EEH_PE_CFG_RESTRICTED (1 << 9) /* Block config on error */
71 #define EEH_PE_REMOVED (1 << 10) /* Removed permanently */
72 #define EEH_PE_PRI_BUS (1 << 11) /* Cached primary bus */
73
74 struct eeh_pe {
75 int type; /* PE type: PHB/Bus/Device */
76 int state; /* PE EEH dependent mode */
77 int config_addr; /* Traditional PCI address */
78 int addr; /* PE configuration address */
79 struct pci_controller *phb; /* Associated PHB */
80 struct pci_bus *bus; /* Top PCI bus for bus PE */
81 int check_count; /* Times of ignored error */
82 int freeze_count; /* Times of froze up */
83 time64_t tstamp; /* Time on first-time freeze */
84 int false_positives; /* Times of reported #ff's */
85 atomic_t pass_dev_cnt; /* Count of passed through devs */
86 struct eeh_pe *parent; /* Parent PE */
87 void *data; /* PE auxillary data */
88 struct list_head child_list; /* List of PEs below this PE */
89 struct list_head child; /* Memb. child_list/eeh_phb_pe */
90 struct list_head edevs; /* List of eeh_dev in this PE */
91 };
92
93 #define eeh_pe_for_each_dev(pe, edev, tmp) \
94 list_for_each_entry_safe(edev, tmp, &pe->edevs, entry)
95
96 #define eeh_for_each_pe(root, pe) \
97 for (pe = root; pe; pe = eeh_pe_next(pe, root))
98
99 static inline bool eeh_pe_passed(struct eeh_pe *pe)
100 {
101 return pe ? !!atomic_read(&pe->pass_dev_cnt) : false;
102 }
103
104 /*
105 * The struct is used to trace EEH state for the associated
106 * PCI device node or PCI device. In future, it might
107 * represent PE as well so that the EEH device to form
108 * another tree except the currently existing tree of PCI
109 * buses and PCI devices
110 */
111 #define EEH_DEV_BRIDGE (1 << 0) /* PCI bridge */
112 #define EEH_DEV_ROOT_PORT (1 << 1) /* PCIe root port */
113 #define EEH_DEV_DS_PORT (1 << 2) /* Downstream port */
114 #define EEH_DEV_IRQ_DISABLED (1 << 3) /* Interrupt disabled */
115 #define EEH_DEV_DISCONNECTED (1 << 4) /* Removing from PE */
116
117 #define EEH_DEV_NO_HANDLER (1 << 8) /* No error handler */
118 #define EEH_DEV_SYSFS (1 << 9) /* Sysfs created */
119 #define EEH_DEV_REMOVED (1 << 10) /* Removed permanently */
120
121 struct eeh_dev {
122 int mode; /* EEH mode */
123 int class_code; /* Class code of the device */
124 int pe_config_addr; /* PE config address */
125 u32 config_space[16]; /* Saved PCI config space */
126 int pcix_cap; /* Saved PCIx capability */
127 int pcie_cap; /* Saved PCIe capability */
128 int aer_cap; /* Saved AER capability */
129 int af_cap; /* Saved AF capability */
130 struct eeh_pe *pe; /* Associated PE */
131 struct list_head entry; /* Membership in eeh_pe.edevs */
132 struct list_head rmv_entry; /* Membership in rmv_list */
133 struct pci_dn *pdn; /* Associated PCI device node */
134 struct pci_dev *pdev; /* Associated PCI device */
135 bool in_error; /* Error flag for edev */
136 struct pci_dev *physfn; /* Associated SRIOV PF */
137 };
138
139 static inline struct pci_dn *eeh_dev_to_pdn(struct eeh_dev *edev)
140 {
141 return edev ? edev->pdn : NULL;
142 }
143
144 static inline struct pci_dev *eeh_dev_to_pci_dev(struct eeh_dev *edev)
145 {
146 return edev ? edev->pdev : NULL;
147 }
148
149 static inline struct eeh_pe *eeh_dev_to_pe(struct eeh_dev* edev)
150 {
151 return edev ? edev->pe : NULL;
152 }
153
154 /* Return values from eeh_ops::next_error */
155 enum {
156 EEH_NEXT_ERR_NONE = 0,
157 EEH_NEXT_ERR_INF,
158 EEH_NEXT_ERR_FROZEN_PE,
159 EEH_NEXT_ERR_FENCED_PHB,
160 EEH_NEXT_ERR_DEAD_PHB,
161 EEH_NEXT_ERR_DEAD_IOC
162 };
163
164 /*
165 * The struct is used to trace the registered EEH operation
166 * callback functions. Actually, those operation callback
167 * functions are heavily platform dependent. That means the
168 * platform should register its own EEH operation callback
169 * functions before any EEH further operations.
170 */
171 #define EEH_OPT_DISABLE 0 /* EEH disable */
172 #define EEH_OPT_ENABLE 1 /* EEH enable */
173 #define EEH_OPT_THAW_MMIO 2 /* MMIO enable */
174 #define EEH_OPT_THAW_DMA 3 /* DMA enable */
175 #define EEH_OPT_FREEZE_PE 4 /* Freeze PE */
176 #define EEH_STATE_UNAVAILABLE (1 << 0) /* State unavailable */
177 #define EEH_STATE_NOT_SUPPORT (1 << 1) /* EEH not supported */
178 #define EEH_STATE_RESET_ACTIVE (1 << 2) /* Active reset */
179 #define EEH_STATE_MMIO_ACTIVE (1 << 3) /* Active MMIO */
180 #define EEH_STATE_DMA_ACTIVE (1 << 4) /* Active DMA */
181 #define EEH_STATE_MMIO_ENABLED (1 << 5) /* MMIO enabled */
182 #define EEH_STATE_DMA_ENABLED (1 << 6) /* DMA enabled */
183 #define EEH_RESET_DEACTIVATE 0 /* Deactivate the PE reset */
184 #define EEH_RESET_HOT 1 /* Hot reset */
185 #define EEH_RESET_FUNDAMENTAL 3 /* Fundamental reset */
186 #define EEH_LOG_TEMP 1 /* EEH temporary error log */
187 #define EEH_LOG_PERM 2 /* EEH permanent error log */
188
189 struct eeh_ops {
190 char *name;
191 int (*init)(void);
192 void* (*probe)(struct pci_dn *pdn, void *data);
193 int (*set_option)(struct eeh_pe *pe, int option);
194 int (*get_pe_addr)(struct eeh_pe *pe);
195 int (*get_state)(struct eeh_pe *pe, int *delay);
196 int (*reset)(struct eeh_pe *pe, int option);
197 int (*get_log)(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len);
198 int (*configure_bridge)(struct eeh_pe *pe);
199 int (*err_inject)(struct eeh_pe *pe, int type, int func,
200 unsigned long addr, unsigned long mask);
201 int (*read_config)(struct pci_dn *pdn, int where, int size, u32 *val);
202 int (*write_config)(struct pci_dn *pdn, int where, int size, u32 val);
203 int (*next_error)(struct eeh_pe **pe);
204 int (*restore_config)(struct pci_dn *pdn);
205 int (*notify_resume)(struct pci_dn *pdn);
206 };
207
208 extern int eeh_subsystem_flags;
209 extern u32 eeh_max_freezes;
210 extern bool eeh_debugfs_no_recover;
211 extern struct eeh_ops *eeh_ops;
212 extern raw_spinlock_t confirm_error_lock;
213
214 static inline void eeh_add_flag(int flag)
215 {
216 eeh_subsystem_flags |= flag;
217 }
218
219 static inline void eeh_clear_flag(int flag)
220 {
221 eeh_subsystem_flags &= ~flag;
222 }
223
224 static inline bool eeh_has_flag(int flag)
225 {
226 return !!(eeh_subsystem_flags & flag);
227 }
228
229 static inline bool eeh_enabled(void)
230 {
231 return eeh_has_flag(EEH_ENABLED) && !eeh_has_flag(EEH_FORCE_DISABLED);
232 }
233
234 static inline void eeh_serialize_lock(unsigned long *flags)
235 {
236 raw_spin_lock_irqsave(&confirm_error_lock, *flags);
237 }
238
239 static inline void eeh_serialize_unlock(unsigned long flags)
240 {
241 raw_spin_unlock_irqrestore(&confirm_error_lock, flags);
242 }
243
244 static inline bool eeh_state_active(int state)
245 {
246 return (state & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE))
247 == (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
248 }
249
250 typedef void *(*eeh_edev_traverse_func)(struct eeh_dev *edev, void *flag);
251 typedef void *(*eeh_pe_traverse_func)(struct eeh_pe *pe, void *flag);
252 void eeh_set_pe_aux_size(int size);
253 int eeh_phb_pe_create(struct pci_controller *phb);
254 int eeh_wait_state(struct eeh_pe *pe, int max_wait);
255 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb);
256 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root);
257 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
258 int pe_no, int config_addr);
259 int eeh_add_to_parent_pe(struct eeh_dev *edev);
260 int eeh_rmv_from_parent_pe(struct eeh_dev *edev);
261 void eeh_pe_update_time_stamp(struct eeh_pe *pe);
262 void *eeh_pe_traverse(struct eeh_pe *root,
263 eeh_pe_traverse_func fn, void *flag);
264 void *eeh_pe_dev_traverse(struct eeh_pe *root,
265 eeh_edev_traverse_func fn, void *flag);
266 void eeh_pe_restore_bars(struct eeh_pe *pe);
267 const char *eeh_pe_loc_get(struct eeh_pe *pe);
268 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe);
269
270 struct eeh_dev *eeh_dev_init(struct pci_dn *pdn);
271 void eeh_dev_phb_init_dynamic(struct pci_controller *phb);
272 void eeh_probe_devices(void);
273 int __init eeh_ops_register(struct eeh_ops *ops);
274 int __exit eeh_ops_unregister(const char *name);
275 int eeh_check_failure(const volatile void __iomem *token);
276 int eeh_dev_check_failure(struct eeh_dev *edev);
277 void eeh_addr_cache_build(void);
278 void eeh_add_device_early(struct pci_dn *);
279 void eeh_add_device_tree_early(struct pci_dn *);
280 void eeh_add_device_late(struct pci_dev *);
281 void eeh_add_device_tree_late(struct pci_bus *);
282 void eeh_add_sysfs_files(struct pci_bus *);
283 void eeh_remove_device(struct pci_dev *);
284 int eeh_unfreeze_pe(struct eeh_pe *pe);
285 int eeh_pe_reset_and_recover(struct eeh_pe *pe);
286 int eeh_dev_open(struct pci_dev *pdev);
287 void eeh_dev_release(struct pci_dev *pdev);
288 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group);
289 int eeh_pe_set_option(struct eeh_pe *pe, int option);
290 int eeh_pe_get_state(struct eeh_pe *pe);
291 int eeh_pe_reset(struct eeh_pe *pe, int option, bool include_passed);
292 int eeh_pe_configure(struct eeh_pe *pe);
293 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
294 unsigned long addr, unsigned long mask);
295 int eeh_restore_vf_config(struct pci_dn *pdn);
296
297 /**
298 * EEH_POSSIBLE_ERROR() -- test for possible MMIO failure.
299 *
300 * If this macro yields TRUE, the caller relays to eeh_check_failure()
301 * which does further tests out of line.
302 */
303 #define EEH_POSSIBLE_ERROR(val, type) ((val) == (type)~0 && eeh_enabled())
304
305 /*
306 * Reads from a device which has been isolated by EEH will return
307 * all 1s. This macro gives an all-1s value of the given size (in
308 * bytes: 1, 2, or 4) for comparing with the result of a read.
309 */
310 #define EEH_IO_ERROR_VALUE(size) (~0U >> ((4 - (size)) * 8))
311
312 #else /* !CONFIG_EEH */
313
314 static inline bool eeh_enabled(void)
315 {
316 return false;
317 }
318
319 static inline void eeh_probe_devices(void) { }
320
321 static inline void *eeh_dev_init(struct pci_dn *pdn, void *data)
322 {
323 return NULL;
324 }
325
326 static inline void eeh_dev_phb_init_dynamic(struct pci_controller *phb) { }
327
328 static inline int eeh_check_failure(const volatile void __iomem *token)
329 {
330 return 0;
331 }
332
333 #define eeh_dev_check_failure(x) (0)
334
335 static inline void eeh_addr_cache_build(void) { }
336
337 static inline void eeh_add_device_early(struct pci_dn *pdn) { }
338
339 static inline void eeh_add_device_tree_early(struct pci_dn *pdn) { }
340
341 static inline void eeh_add_device_late(struct pci_dev *dev) { }
342
343 static inline void eeh_add_device_tree_late(struct pci_bus *bus) { }
344
345 static inline void eeh_add_sysfs_files(struct pci_bus *bus) { }
346
347 static inline void eeh_remove_device(struct pci_dev *dev) { }
348
349 #define EEH_POSSIBLE_ERROR(val, type) (0)
350 #define EEH_IO_ERROR_VALUE(size) (-1UL)
351 #endif /* CONFIG_EEH */
352
353 #ifdef CONFIG_PPC64
354 /*
355 * MMIO read/write operations with EEH support.
356 */
357 static inline u8 eeh_readb(const volatile void __iomem *addr)
358 {
359 u8 val = in_8(addr);
360 if (EEH_POSSIBLE_ERROR(val, u8))
361 eeh_check_failure(addr);
362 return val;
363 }
364
365 static inline u16 eeh_readw(const volatile void __iomem *addr)
366 {
367 u16 val = in_le16(addr);
368 if (EEH_POSSIBLE_ERROR(val, u16))
369 eeh_check_failure(addr);
370 return val;
371 }
372
373 static inline u32 eeh_readl(const volatile void __iomem *addr)
374 {
375 u32 val = in_le32(addr);
376 if (EEH_POSSIBLE_ERROR(val, u32))
377 eeh_check_failure(addr);
378 return val;
379 }
380
381 static inline u64 eeh_readq(const volatile void __iomem *addr)
382 {
383 u64 val = in_le64(addr);
384 if (EEH_POSSIBLE_ERROR(val, u64))
385 eeh_check_failure(addr);
386 return val;
387 }
388
389 static inline u16 eeh_readw_be(const volatile void __iomem *addr)
390 {
391 u16 val = in_be16(addr);
392 if (EEH_POSSIBLE_ERROR(val, u16))
393 eeh_check_failure(addr);
394 return val;
395 }
396
397 static inline u32 eeh_readl_be(const volatile void __iomem *addr)
398 {
399 u32 val = in_be32(addr);
400 if (EEH_POSSIBLE_ERROR(val, u32))
401 eeh_check_failure(addr);
402 return val;
403 }
404
405 static inline u64 eeh_readq_be(const volatile void __iomem *addr)
406 {
407 u64 val = in_be64(addr);
408 if (EEH_POSSIBLE_ERROR(val, u64))
409 eeh_check_failure(addr);
410 return val;
411 }
412
413 static inline void eeh_memcpy_fromio(void *dest, const
414 volatile void __iomem *src,
415 unsigned long n)
416 {
417 _memcpy_fromio(dest, src, n);
418
419 /* Look for ffff's here at dest[n]. Assume that at least 4 bytes
420 * were copied. Check all four bytes.
421 */
422 if (n >= 4 && EEH_POSSIBLE_ERROR(*((u32 *)(dest + n - 4)), u32))
423 eeh_check_failure(src);
424 }
425
426 /* in-string eeh macros */
427 static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
428 int ns)
429 {
430 _insb(addr, buf, ns);
431 if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
432 eeh_check_failure(addr);
433 }
434
435 static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
436 int ns)
437 {
438 _insw(addr, buf, ns);
439 if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
440 eeh_check_failure(addr);
441 }
442
443 static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
444 int nl)
445 {
446 _insl(addr, buf, nl);
447 if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
448 eeh_check_failure(addr);
449 }
450
451
452 void eeh_cache_debugfs_init(void);
453
454 #endif /* CONFIG_PPC64 */
455 #endif /* __KERNEL__ */
456 #endif /* _POWERPC_EEH_H */