]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/include/asm/io.h
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac802...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / include / asm / io.h
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
4
5 #define ARCH_HAS_IOREMAP_WC
6
7 /*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14 /* Check of existence of legacy devices */
15 extern int check_legacy_ioport(unsigned long base_port);
16 #define I8042_DATA_REG 0x60
17 #define FDC_BASE 0x3f0
18
19 #if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20 extern struct pci_dev *isa_bridge_pcidev;
21 /*
22 * has legacy ISA devices ?
23 */
24 #define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25 #endif
26
27 #include <linux/device.h>
28 #include <linux/io.h>
29
30 #include <linux/compiler.h>
31 #include <asm/page.h>
32 #include <asm/byteorder.h>
33 #include <asm/synch.h>
34 #include <asm/delay.h>
35 #include <asm/mmu.h>
36
37 #include <asm-generic/iomap.h>
38
39 #ifdef CONFIG_PPC64
40 #include <asm/paca.h>
41 #endif
42
43 #define SIO_CONFIG_RA 0x398
44 #define SIO_CONFIG_RD 0x399
45
46 #define SLOW_DOWN_IO
47
48 /* 32 bits uses slightly different variables for the various IO
49 * bases. Most of this file only uses _IO_BASE though which we
50 * define properly based on the platform
51 */
52 #ifndef CONFIG_PCI
53 #define _IO_BASE 0
54 #define _ISA_MEM_BASE 0
55 #define PCI_DRAM_OFFSET 0
56 #elif defined(CONFIG_PPC32)
57 #define _IO_BASE isa_io_base
58 #define _ISA_MEM_BASE isa_mem_base
59 #define PCI_DRAM_OFFSET pci_dram_offset
60 #else
61 #define _IO_BASE pci_io_base
62 #define _ISA_MEM_BASE isa_mem_base
63 #define PCI_DRAM_OFFSET 0
64 #endif
65
66 extern unsigned long isa_io_base;
67 extern unsigned long pci_io_base;
68 extern unsigned long pci_dram_offset;
69
70 extern resource_size_t isa_mem_base;
71
72 /* Boolean set by platform if PIO accesses are suppored while _IO_BASE
73 * is not set or addresses cannot be translated to MMIO. This is typically
74 * set when the platform supports "special" PIO accesses via a non memory
75 * mapped mechanism, and allows things like the early udbg UART code to
76 * function.
77 */
78 extern bool isa_io_special;
79
80 #ifdef CONFIG_PPC32
81 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
82 #error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
83 #endif
84 #endif
85
86 /*
87 *
88 * Low level MMIO accessors
89 *
90 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
91 * specific and thus shouldn't be used in generic code. The accessors
92 * provided here are:
93 *
94 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
95 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
96 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
97 *
98 * Those operate directly on a kernel virtual address. Note that the prototype
99 * for the out_* accessors has the arguments in opposite order from the usual
100 * linux PCI accessors. Unlike those, they take the address first and the value
101 * next.
102 *
103 * Note: I might drop the _ns suffix on the stream operations soon as it is
104 * simply normal for stream operations to not swap in the first place.
105 *
106 */
107
108 #ifdef CONFIG_PPC64
109 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
110 #else
111 #define IO_SET_SYNC_FLAG()
112 #endif
113
114 /* gcc 4.0 and older doesn't have 'Z' constraint */
115 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
116 #define DEF_MMIO_IN_X(name, size, insn) \
117 static inline u##size name(const volatile u##size __iomem *addr) \
118 { \
119 u##size ret; \
120 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
121 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
122 return ret; \
123 }
124
125 #define DEF_MMIO_OUT_X(name, size, insn) \
126 static inline void name(volatile u##size __iomem *addr, u##size val) \
127 { \
128 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
129 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
130 IO_SET_SYNC_FLAG(); \
131 }
132 #else /* newer gcc */
133 #define DEF_MMIO_IN_X(name, size, insn) \
134 static inline u##size name(const volatile u##size __iomem *addr) \
135 { \
136 u##size ret; \
137 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
138 : "=r" (ret) : "Z" (*addr) : "memory"); \
139 return ret; \
140 }
141
142 #define DEF_MMIO_OUT_X(name, size, insn) \
143 static inline void name(volatile u##size __iomem *addr, u##size val) \
144 { \
145 __asm__ __volatile__("sync;"#insn" %1,%y0" \
146 : "=Z" (*addr) : "r" (val) : "memory"); \
147 IO_SET_SYNC_FLAG(); \
148 }
149 #endif
150
151 #define DEF_MMIO_IN_D(name, size, insn) \
152 static inline u##size name(const volatile u##size __iomem *addr) \
153 { \
154 u##size ret; \
155 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
156 : "=r" (ret) : "m" (*addr) : "memory"); \
157 return ret; \
158 }
159
160 #define DEF_MMIO_OUT_D(name, size, insn) \
161 static inline void name(volatile u##size __iomem *addr, u##size val) \
162 { \
163 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
164 : "=m" (*addr) : "r" (val) : "memory"); \
165 IO_SET_SYNC_FLAG(); \
166 }
167
168 DEF_MMIO_IN_D(in_8, 8, lbz);
169 DEF_MMIO_OUT_D(out_8, 8, stb);
170
171 #ifdef __BIG_ENDIAN__
172 DEF_MMIO_IN_D(in_be16, 16, lhz);
173 DEF_MMIO_IN_D(in_be32, 32, lwz);
174 DEF_MMIO_IN_X(in_le16, 16, lhbrx);
175 DEF_MMIO_IN_X(in_le32, 32, lwbrx);
176
177 DEF_MMIO_OUT_D(out_be16, 16, sth);
178 DEF_MMIO_OUT_D(out_be32, 32, stw);
179 DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
180 DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
181 #else
182 DEF_MMIO_IN_X(in_be16, 16, lhbrx);
183 DEF_MMIO_IN_X(in_be32, 32, lwbrx);
184 DEF_MMIO_IN_D(in_le16, 16, lhz);
185 DEF_MMIO_IN_D(in_le32, 32, lwz);
186
187 DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
188 DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
189 DEF_MMIO_OUT_D(out_le16, 16, sth);
190 DEF_MMIO_OUT_D(out_le32, 32, stw);
191
192 #endif /* __BIG_ENDIAN */
193
194 /*
195 * Cache inhibitied accessors for use in real mode, you don't want to use these
196 * unless you know what you're doing.
197 *
198 * NB. These use the cpu byte ordering.
199 */
200 DEF_MMIO_OUT_X(out_rm8, 8, stbcix);
201 DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
202 DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
203 DEF_MMIO_IN_X(in_rm8, 8, lbzcix);
204 DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
205 DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
206
207 #ifdef __powerpc64__
208
209 DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
210 DEF_MMIO_IN_X(in_rm64, 64, ldcix);
211
212 #ifdef __BIG_ENDIAN__
213 DEF_MMIO_OUT_D(out_be64, 64, std);
214 DEF_MMIO_IN_D(in_be64, 64, ld);
215
216 /* There is no asm instructions for 64 bits reverse loads and stores */
217 static inline u64 in_le64(const volatile u64 __iomem *addr)
218 {
219 return swab64(in_be64(addr));
220 }
221
222 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
223 {
224 out_be64(addr, swab64(val));
225 }
226 #else
227 DEF_MMIO_OUT_D(out_le64, 64, std);
228 DEF_MMIO_IN_D(in_le64, 64, ld);
229
230 /* There is no asm instructions for 64 bits reverse loads and stores */
231 static inline u64 in_be64(const volatile u64 __iomem *addr)
232 {
233 return swab64(in_le64(addr));
234 }
235
236 static inline void out_be64(volatile u64 __iomem *addr, u64 val)
237 {
238 out_le64(addr, swab64(val));
239 }
240
241 #endif
242 #endif /* __powerpc64__ */
243
244 /*
245 * Low level IO stream instructions are defined out of line for now
246 */
247 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
248 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
249 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
250 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
251 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
252 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
253
254 /* The _ns naming is historical and will be removed. For now, just #define
255 * the non _ns equivalent names
256 */
257 #define _insw _insw_ns
258 #define _insl _insl_ns
259 #define _outsw _outsw_ns
260 #define _outsl _outsl_ns
261
262
263 /*
264 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
265 */
266
267 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
268 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
269 unsigned long n);
270 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
271 unsigned long n);
272
273 /*
274 *
275 * PCI and standard ISA accessors
276 *
277 * Those are globally defined linux accessors for devices on PCI or ISA
278 * busses. They follow the Linux defined semantics. The current implementation
279 * for PowerPC is as close as possible to the x86 version of these, and thus
280 * provides fairly heavy weight barriers for the non-raw versions
281 *
282 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
283 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
284 * own implementation of some or all of the accessors.
285 */
286
287 /*
288 * Include the EEH definitions when EEH is enabled only so they don't get
289 * in the way when building for 32 bits
290 */
291 #ifdef CONFIG_EEH
292 #include <asm/eeh.h>
293 #endif
294
295 /* Shortcut to the MMIO argument pointer */
296 #define PCI_IO_ADDR volatile void __iomem *
297
298 /* Indirect IO address tokens:
299 *
300 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
301 * on all MMIOs. (Note that this is all 64 bits only for now)
302 *
303 * To help platforms who may need to differenciate MMIO addresses in
304 * their hooks, a bitfield is reserved for use by the platform near the
305 * top of MMIO addresses (not PIO, those have to cope the hard way).
306 *
307 * This bit field is 12 bits and is at the top of the IO virtual
308 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
309 *
310 * The kernel virtual space is thus:
311 *
312 * 0xD000000000000000 : vmalloc
313 * 0xD000080000000000 : PCI PHB IO space
314 * 0xD000080080000000 : ioremap
315 * 0xD0000fffffffffff : end of ioremap region
316 *
317 * Since the top 4 bits are reserved as the region ID, we use thus
318 * the next 12 bits and keep 4 bits available for the future if the
319 * virtual address space is ever to be extended.
320 *
321 * The direct IO mapping operations will then mask off those bits
322 * before doing the actual access, though that only happen when
323 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
324 * mechanism
325 *
326 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
327 * all PIO functions call through a hook.
328 */
329
330 #ifdef CONFIG_PPC_INDIRECT_MMIO
331 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
332 #define PCI_IO_IND_TOKEN_SHIFT 48
333 #define PCI_FIX_ADDR(addr) \
334 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
335 #define PCI_GET_ADDR_TOKEN(addr) \
336 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
337 PCI_IO_IND_TOKEN_SHIFT)
338 #define PCI_SET_ADDR_TOKEN(addr, token) \
339 do { \
340 unsigned long __a = (unsigned long)(addr); \
341 __a &= ~PCI_IO_IND_TOKEN_MASK; \
342 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
343 (addr) = (void __iomem *)__a; \
344 } while(0)
345 #else
346 #define PCI_FIX_ADDR(addr) (addr)
347 #endif
348
349
350 /*
351 * Non ordered and non-swapping "raw" accessors
352 */
353
354 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
355 {
356 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
357 }
358 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
359 {
360 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
361 }
362 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
363 {
364 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
365 }
366 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
367 {
368 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
369 }
370 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
371 {
372 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
373 }
374 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
375 {
376 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
377 }
378
379 #ifdef __powerpc64__
380 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
381 {
382 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
383 }
384 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
385 {
386 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
387 }
388 #endif /* __powerpc64__ */
389
390 /*
391 *
392 * PCI PIO and MMIO accessors.
393 *
394 *
395 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
396 * machine checks (which they occasionally do when probing non existing
397 * IO ports on some platforms, like PowerMac and 8xx).
398 * I always found it to be of dubious reliability and I am tempted to get
399 * rid of it one of these days. So if you think it's important to keep it,
400 * please voice up asap. We never had it for 64 bits and I do not intend
401 * to port it over
402 */
403
404 #ifdef CONFIG_PPC32
405
406 #define __do_in_asm(name, op) \
407 static inline unsigned int name(unsigned int port) \
408 { \
409 unsigned int x; \
410 __asm__ __volatile__( \
411 "sync\n" \
412 "0:" op " %0,0,%1\n" \
413 "1: twi 0,%0,0\n" \
414 "2: isync\n" \
415 "3: nop\n" \
416 "4:\n" \
417 ".section .fixup,\"ax\"\n" \
418 "5: li %0,-1\n" \
419 " b 4b\n" \
420 ".previous\n" \
421 ".section __ex_table,\"a\"\n" \
422 " .align 2\n" \
423 " .long 0b,5b\n" \
424 " .long 1b,5b\n" \
425 " .long 2b,5b\n" \
426 " .long 3b,5b\n" \
427 ".previous" \
428 : "=&r" (x) \
429 : "r" (port + _IO_BASE) \
430 : "memory"); \
431 return x; \
432 }
433
434 #define __do_out_asm(name, op) \
435 static inline void name(unsigned int val, unsigned int port) \
436 { \
437 __asm__ __volatile__( \
438 "sync\n" \
439 "0:" op " %0,0,%1\n" \
440 "1: sync\n" \
441 "2:\n" \
442 ".section __ex_table,\"a\"\n" \
443 " .align 2\n" \
444 " .long 0b,2b\n" \
445 " .long 1b,2b\n" \
446 ".previous" \
447 : : "r" (val), "r" (port + _IO_BASE) \
448 : "memory"); \
449 }
450
451 __do_in_asm(_rec_inb, "lbzx")
452 __do_in_asm(_rec_inw, "lhbrx")
453 __do_in_asm(_rec_inl, "lwbrx")
454 __do_out_asm(_rec_outb, "stbx")
455 __do_out_asm(_rec_outw, "sthbrx")
456 __do_out_asm(_rec_outl, "stwbrx")
457
458 #endif /* CONFIG_PPC32 */
459
460 /* The "__do_*" operations below provide the actual "base" implementation
461 * for each of the defined accessors. Some of them use the out_* functions
462 * directly, some of them still use EEH, though we might change that in the
463 * future. Those macros below provide the necessary argument swapping and
464 * handling of the IO base for PIO.
465 *
466 * They are themselves used by the macros that define the actual accessors
467 * and can be used by the hooks if any.
468 *
469 * Note that PIO operations are always defined in terms of their corresonding
470 * MMIO operations. That allows platforms like iSeries who want to modify the
471 * behaviour of both to only hook on the MMIO version and get both. It's also
472 * possible to hook directly at the toplevel PIO operation if they have to
473 * be handled differently
474 */
475 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
476 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
477 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
478 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
479 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
480 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
481 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
482
483 #ifdef CONFIG_EEH
484 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
485 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
486 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
487 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
488 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
489 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
490 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
491 #else /* CONFIG_EEH */
492 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
493 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
494 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
495 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
496 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
497 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
498 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
499 #endif /* !defined(CONFIG_EEH) */
500
501 #ifdef CONFIG_PPC32
502 #define __do_outb(val, port) _rec_outb(val, port)
503 #define __do_outw(val, port) _rec_outw(val, port)
504 #define __do_outl(val, port) _rec_outl(val, port)
505 #define __do_inb(port) _rec_inb(port)
506 #define __do_inw(port) _rec_inw(port)
507 #define __do_inl(port) _rec_inl(port)
508 #else /* CONFIG_PPC32 */
509 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
510 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
511 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
512 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
513 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
514 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
515 #endif /* !CONFIG_PPC32 */
516
517 #ifdef CONFIG_EEH
518 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
519 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
520 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
521 #else /* CONFIG_EEH */
522 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
523 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
524 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
525 #endif /* !CONFIG_EEH */
526 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
527 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
528 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
529
530 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
531 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
532 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
533 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
534 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
535 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
536
537 #define __do_memset_io(addr, c, n) \
538 _memset_io(PCI_FIX_ADDR(addr), c, n)
539 #define __do_memcpy_toio(dst, src, n) \
540 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
541
542 #ifdef CONFIG_EEH
543 #define __do_memcpy_fromio(dst, src, n) \
544 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
545 #else /* CONFIG_EEH */
546 #define __do_memcpy_fromio(dst, src, n) \
547 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
548 #endif /* !CONFIG_EEH */
549
550 #ifdef CONFIG_PPC_INDIRECT_PIO
551 #define DEF_PCI_HOOK_pio(x) x
552 #else
553 #define DEF_PCI_HOOK_pio(x) NULL
554 #endif
555
556 #ifdef CONFIG_PPC_INDIRECT_MMIO
557 #define DEF_PCI_HOOK_mem(x) x
558 #else
559 #define DEF_PCI_HOOK_mem(x) NULL
560 #endif
561
562 /* Structure containing all the hooks */
563 extern struct ppc_pci_io {
564
565 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
566 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
567
568 #include <asm/io-defs.h>
569
570 #undef DEF_PCI_AC_RET
571 #undef DEF_PCI_AC_NORET
572
573 } ppc_pci_io;
574
575 /* The inline wrappers */
576 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
577 static inline ret name at \
578 { \
579 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
580 return ppc_pci_io.name al; \
581 return __do_##name al; \
582 }
583
584 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
585 static inline void name at \
586 { \
587 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
588 ppc_pci_io.name al; \
589 else \
590 __do_##name al; \
591 }
592
593 #include <asm/io-defs.h>
594
595 #undef DEF_PCI_AC_RET
596 #undef DEF_PCI_AC_NORET
597
598 /* Some drivers check for the presence of readq & writeq with
599 * a #ifdef, so we make them happy here.
600 */
601 #ifdef __powerpc64__
602 #define readq readq
603 #define writeq writeq
604 #endif
605
606 /*
607 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
608 * access
609 */
610 #define xlate_dev_mem_ptr(p) __va(p)
611
612 /*
613 * Convert a virtual cached pointer to an uncached pointer
614 */
615 #define xlate_dev_kmem_ptr(p) p
616
617 /*
618 * We don't do relaxed operations yet, at least not with this semantic
619 */
620 #define readb_relaxed(addr) readb(addr)
621 #define readw_relaxed(addr) readw(addr)
622 #define readl_relaxed(addr) readl(addr)
623 #define readq_relaxed(addr) readq(addr)
624
625 #ifdef CONFIG_PPC32
626 #define mmiowb()
627 #else
628 /*
629 * Enforce synchronisation of stores vs. spin_unlock
630 * (this does it explicitly, though our implementation of spin_unlock
631 * does it implicitely too)
632 */
633 static inline void mmiowb(void)
634 {
635 unsigned long tmp;
636
637 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
638 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
639 : "memory");
640 }
641 #endif /* !CONFIG_PPC32 */
642
643 static inline void iosync(void)
644 {
645 __asm__ __volatile__ ("sync" : : : "memory");
646 }
647
648 /* Enforce in-order execution of data I/O.
649 * No distinction between read/write on PPC; use eieio for all three.
650 * Those are fairly week though. They don't provide a barrier between
651 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
652 * they only provide barriers between 2 __raw MMIO operations and
653 * possibly break write combining.
654 */
655 #define iobarrier_rw() eieio()
656 #define iobarrier_r() eieio()
657 #define iobarrier_w() eieio()
658
659
660 /*
661 * output pause versions need a delay at least for the
662 * w83c105 ide controller in a p610.
663 */
664 #define inb_p(port) inb(port)
665 #define outb_p(val, port) (udelay(1), outb((val), (port)))
666 #define inw_p(port) inw(port)
667 #define outw_p(val, port) (udelay(1), outw((val), (port)))
668 #define inl_p(port) inl(port)
669 #define outl_p(val, port) (udelay(1), outl((val), (port)))
670
671
672 #define IO_SPACE_LIMIT ~(0UL)
673
674
675 /**
676 * ioremap - map bus memory into CPU space
677 * @address: bus address of the memory
678 * @size: size of the resource to map
679 *
680 * ioremap performs a platform specific sequence of operations to
681 * make bus memory CPU accessible via the readb/readw/readl/writeb/
682 * writew/writel functions and the other mmio helpers. The returned
683 * address is not guaranteed to be usable directly as a virtual
684 * address.
685 *
686 * We provide a few variations of it:
687 *
688 * * ioremap is the standard one and provides non-cacheable guarded mappings
689 * and can be hooked by the platform via ppc_md
690 *
691 * * ioremap_prot allows to specify the page flags as an argument and can
692 * also be hooked by the platform via ppc_md.
693 *
694 * * ioremap_nocache is identical to ioremap
695 *
696 * * ioremap_wc enables write combining
697 *
698 * * iounmap undoes such a mapping and can be hooked
699 *
700 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
701 * create hand-made mappings for use only by the PCI code and cannot
702 * currently be hooked. Must be page aligned.
703 *
704 * * __ioremap is the low level implementation used by ioremap and
705 * ioremap_prot and cannot be hooked (but can be used by a hook on one
706 * of the previous ones)
707 *
708 * * __ioremap_caller is the same as above but takes an explicit caller
709 * reference rather than using __builtin_return_address(0)
710 *
711 * * __iounmap, is the low level implementation used by iounmap and cannot
712 * be hooked (but can be used by a hook on iounmap)
713 *
714 */
715 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
716 extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
717 unsigned long flags);
718 extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
719 #define ioremap_nocache(addr, size) ioremap((addr), (size))
720
721 extern void iounmap(volatile void __iomem *addr);
722
723 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
724 unsigned long flags);
725 extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
726 unsigned long flags, void *caller);
727
728 extern void __iounmap(volatile void __iomem *addr);
729
730 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
731 unsigned long size, unsigned long flags);
732 extern void __iounmap_at(void *ea, unsigned long size);
733
734 /*
735 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
736 * which needs some additional definitions here. They basically allow PIO
737 * space overall to be 1GB. This will work as long as we never try to use
738 * iomap to map MMIO below 1GB which should be fine on ppc64
739 */
740 #define HAVE_ARCH_PIO_SIZE 1
741 #define PIO_OFFSET 0x00000000UL
742 #define PIO_MASK (FULL_IO_SIZE - 1)
743 #define PIO_RESERVED (FULL_IO_SIZE)
744
745 #define mmio_read16be(addr) readw_be(addr)
746 #define mmio_read32be(addr) readl_be(addr)
747 #define mmio_write16be(val, addr) writew_be(val, addr)
748 #define mmio_write32be(val, addr) writel_be(val, addr)
749 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
750 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
751 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
752 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
753 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
754 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
755
756 /**
757 * virt_to_phys - map virtual addresses to physical
758 * @address: address to remap
759 *
760 * The returned physical address is the physical (CPU) mapping for
761 * the memory address given. It is only valid to use this function on
762 * addresses directly mapped or allocated via kmalloc.
763 *
764 * This function does not give bus mappings for DMA transfers. In
765 * almost all conceivable cases a device driver should not be using
766 * this function
767 */
768 static inline unsigned long virt_to_phys(volatile void * address)
769 {
770 return __pa((unsigned long)address);
771 }
772
773 /**
774 * phys_to_virt - map physical address to virtual
775 * @address: address to remap
776 *
777 * The returned virtual address is a current CPU mapping for
778 * the memory address given. It is only valid to use this function on
779 * addresses that have a kernel mapping
780 *
781 * This function does not handle bus mappings for DMA transfers. In
782 * almost all conceivable cases a device driver should not be using
783 * this function
784 */
785 static inline void * phys_to_virt(unsigned long address)
786 {
787 return (void *)__va(address);
788 }
789
790 /*
791 * Change "struct page" to physical address.
792 */
793 #define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
794
795 /*
796 * 32 bits still uses virt_to_bus() for it's implementation of DMA
797 * mappings se we have to keep it defined here. We also have some old
798 * drivers (shame shame shame) that use bus_to_virt() and haven't been
799 * fixed yet so I need to define it here.
800 */
801 #ifdef CONFIG_PPC32
802
803 static inline unsigned long virt_to_bus(volatile void * address)
804 {
805 if (address == NULL)
806 return 0;
807 return __pa(address) + PCI_DRAM_OFFSET;
808 }
809
810 static inline void * bus_to_virt(unsigned long address)
811 {
812 if (address == 0)
813 return NULL;
814 return __va(address - PCI_DRAM_OFFSET);
815 }
816
817 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
818
819 #endif /* CONFIG_PPC32 */
820
821 /* access ports */
822 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
823 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
824
825 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
826 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
827
828 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
829 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
830
831 /* Clear and set bits in one shot. These macros can be used to clear and
832 * set multiple bits in a register using a single read-modify-write. These
833 * macros can also be used to set a multiple-bit bit pattern using a mask,
834 * by specifying the mask in the 'clear' parameter and the new bit pattern
835 * in the 'set' parameter.
836 */
837
838 #define clrsetbits(type, addr, clear, set) \
839 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
840
841 #ifdef __powerpc64__
842 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
843 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
844 #endif
845
846 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
847 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
848
849 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
850 #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
851
852 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
853
854 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
855 size_t size, unsigned long flags);
856
857 #endif /* __KERNEL__ */
858
859 #endif /* _ASM_POWERPC_IO_H */