]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/include/asm/pgtable-ppc64.h
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13 #include <asm/barrier.h>
14
15 #define FIRST_USER_ADDRESS 0UL
16
17 /*
18 * Size of EA range mapped by our pagetables.
19 */
20 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23
24 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
25 #define PMD_CACHE_INDEX (PMD_INDEX_SIZE + 1)
26 #else
27 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
28 #endif
29 /*
30 * Define the address range of the kernel non-linear virtual area
31 */
32
33 #ifdef CONFIG_PPC_BOOK3E
34 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35 #else
36 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37 #endif
38 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
39
40 /*
41 * The vmalloc space starts at the beginning of that region, and
42 * occupies half of it on hash CPUs and a quarter of it on Book3E
43 * (we keep a quarter for the virtual memmap)
44 */
45 #define VMALLOC_START KERN_VIRT_START
46 #ifdef CONFIG_PPC_BOOK3E
47 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
48 #else
49 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
50 #endif
51 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
52
53 /*
54 * The second half of the kernel virtual space is used for IO mappings,
55 * it's itself carved into the PIO region (ISA and PHB IO space) and
56 * the ioremap space
57 *
58 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61 */
62 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63 #define FULL_IO_SIZE 0x80000000ul
64 #define ISA_IO_BASE (KERN_IO_START)
65 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
66 #define PHB_IO_BASE (ISA_IO_END)
67 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
68 #define IOREMAP_BASE (PHB_IO_END)
69 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
70
71
72 /*
73 * Region IDs
74 */
75 #define REGION_SHIFT 60UL
76 #define REGION_MASK (0xfUL << REGION_SHIFT)
77 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
78
79 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
80 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
81 #define VMEMMAP_REGION_ID (0xfUL) /* Server only */
82 #define USER_REGION_ID (0UL)
83
84 /*
85 * Defines the address of the vmemap area, in its own region on
86 * hash table CPUs and after the vmalloc space on Book3E
87 */
88 #ifdef CONFIG_PPC_BOOK3E
89 #define VMEMMAP_BASE VMALLOC_END
90 #define VMEMMAP_END KERN_IO_START
91 #else
92 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
93 #endif
94 #define vmemmap ((struct page *)VMEMMAP_BASE)
95
96
97 /*
98 * Include the PTE bits definitions
99 */
100 #ifdef CONFIG_PPC_BOOK3S
101 #include <asm/pte-hash64.h>
102 #else
103 #include <asm/pte-book3e.h>
104 #endif
105 #include <asm/pte-common.h>
106
107 #ifdef CONFIG_PPC_MM_SLICES
108 #define HAVE_ARCH_UNMAPPED_AREA
109 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110 #endif /* CONFIG_PPC_MM_SLICES */
111
112 #ifndef __ASSEMBLY__
113
114 /*
115 * This is the default implementation of various PTE accessors, it's
116 * used in all cases except Book3S with 64K pages where we have a
117 * concept of sub-pages
118 */
119 #ifndef __real_pte
120
121 #ifdef STRICT_MM_TYPECHECKS
122 #define __real_pte(e,p) ((real_pte_t){(e)})
123 #define __rpte_to_pte(r) ((r).pte)
124 #else
125 #define __real_pte(e,p) (e)
126 #define __rpte_to_pte(r) (__pte(r))
127 #endif
128 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
129
130 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
131 do { \
132 index = 0; \
133 shift = mmu_psize_defs[psize].shift; \
134
135 #define pte_iterate_hashed_end() } while(0)
136
137 #ifdef CONFIG_PPC_HAS_HASH_64K
138 #define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
139 #else
140 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
141 #endif
142
143 #endif /* __real_pte */
144
145
146 /* pte_clear moved to later in this file */
147
148 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
149 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
150
151 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
152 #define pmd_none(pmd) (!pmd_val(pmd))
153 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
154 || (pmd_val(pmd) & PMD_BAD_BITS))
155 #define pmd_present(pmd) (!pmd_none(pmd))
156 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
157 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
158 extern struct page *pmd_page(pmd_t pmd);
159
160 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
161 #define pud_none(pud) (!pud_val(pud))
162 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
163 || (pud_val(pud) & PUD_BAD_BITS))
164 #define pud_present(pud) (pud_val(pud) != 0)
165 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
166 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
167
168 extern struct page *pud_page(pud_t pud);
169
170 static inline pte_t pud_pte(pud_t pud)
171 {
172 return __pte(pud_val(pud));
173 }
174
175 static inline pud_t pte_pud(pte_t pte)
176 {
177 return __pud(pte_val(pte));
178 }
179 #define pud_write(pud) pte_write(pud_pte(pud))
180 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
181 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
182
183 /*
184 * Find an entry in a page-table-directory. We combine the address region
185 * (the high order N bits) and the pgd portion of the address.
186 */
187 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
188
189 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
190
191 #define pmd_offset(pudp,addr) \
192 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
193
194 #define pte_offset_kernel(dir,addr) \
195 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
196
197 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
198 #define pte_unmap(pte) do { } while(0)
199
200 /* to find an entry in a kernel page-table-directory */
201 /* This now only contains the vmalloc pages */
202 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
203 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
204 pte_t *ptep, unsigned long pte, int huge);
205
206 /* Atomic PTE updates */
207 static inline unsigned long pte_update(struct mm_struct *mm,
208 unsigned long addr,
209 pte_t *ptep, unsigned long clr,
210 unsigned long set,
211 int huge)
212 {
213 #ifdef PTE_ATOMIC_UPDATES
214 unsigned long old, tmp;
215
216 __asm__ __volatile__(
217 "1: ldarx %0,0,%3 # pte_update\n\
218 andi. %1,%0,%6\n\
219 bne- 1b \n\
220 andc %1,%0,%4 \n\
221 or %1,%1,%7\n\
222 stdcx. %1,0,%3 \n\
223 bne- 1b"
224 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
225 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
226 : "cc" );
227 #else
228 unsigned long old = pte_val(*ptep);
229 *ptep = __pte((old & ~clr) | set);
230 #endif
231 /* huge pages use the old page table lock */
232 if (!huge)
233 assert_pte_locked(mm, addr);
234
235 #ifdef CONFIG_PPC_STD_MMU_64
236 if (old & _PAGE_HASHPTE)
237 hpte_need_flush(mm, addr, ptep, old, huge);
238 #endif
239
240 return old;
241 }
242
243 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
244 unsigned long addr, pte_t *ptep)
245 {
246 unsigned long old;
247
248 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
249 return 0;
250 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
251 return (old & _PAGE_ACCESSED) != 0;
252 }
253 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
254 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
255 ({ \
256 int __r; \
257 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
258 __r; \
259 })
260
261 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
262 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
263 pte_t *ptep)
264 {
265
266 if ((pte_val(*ptep) & _PAGE_RW) == 0)
267 return;
268
269 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
270 }
271
272 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
273 unsigned long addr, pte_t *ptep)
274 {
275 if ((pte_val(*ptep) & _PAGE_RW) == 0)
276 return;
277
278 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
279 }
280
281 /*
282 * We currently remove entries from the hashtable regardless of whether
283 * the entry was young or dirty. The generic routines only flush if the
284 * entry was young or dirty which is not good enough.
285 *
286 * We should be more intelligent about this but for the moment we override
287 * these functions and force a tlb flush unconditionally
288 */
289 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
290 #define ptep_clear_flush_young(__vma, __address, __ptep) \
291 ({ \
292 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
293 __ptep); \
294 __young; \
295 })
296
297 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
298 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
299 unsigned long addr, pte_t *ptep)
300 {
301 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
302 return __pte(old);
303 }
304
305 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
306 pte_t * ptep)
307 {
308 pte_update(mm, addr, ptep, ~0UL, 0, 0);
309 }
310
311
312 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
313 * function doesn't need to flush the hash entry
314 */
315 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
316 {
317 unsigned long bits = pte_val(entry) &
318 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
319
320 #ifdef PTE_ATOMIC_UPDATES
321 unsigned long old, tmp;
322
323 __asm__ __volatile__(
324 "1: ldarx %0,0,%4\n\
325 andi. %1,%0,%6\n\
326 bne- 1b \n\
327 or %0,%3,%0\n\
328 stdcx. %0,0,%4\n\
329 bne- 1b"
330 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
331 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
332 :"cc");
333 #else
334 unsigned long old = pte_val(*ptep);
335 *ptep = __pte(old | bits);
336 #endif
337 }
338
339 #define __HAVE_ARCH_PTE_SAME
340 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
341
342 #define pte_ERROR(e) \
343 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
344 #define pmd_ERROR(e) \
345 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
346 #define pgd_ERROR(e) \
347 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
348
349 /* Encode and de-code a swap entry */
350 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
351 #define __swp_offset(entry) ((entry).val >> 8)
352 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
353 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
354 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
355
356 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
357 void pgtable_cache_init(void);
358 #endif /* __ASSEMBLY__ */
359
360 /*
361 * THP pages can't be special. So use the _PAGE_SPECIAL
362 */
363 #define _PAGE_SPLITTING _PAGE_SPECIAL
364
365 /*
366 * We need to differentiate between explicit huge page and THP huge
367 * page, since THP huge page also need to track real subpage details
368 */
369 #define _PAGE_THP_HUGE _PAGE_4K_PFN
370
371 /*
372 * set of bits not changed in pmd_modify.
373 */
374 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | \
375 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
376 _PAGE_THP_HUGE)
377
378 #ifndef __ASSEMBLY__
379 /*
380 * The linux hugepage PMD now include the pmd entries followed by the address
381 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
382 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
383 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
384 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
385 *
386 * The last three bits are intentionally left to zero. This memory location
387 * are also used as normal page PTE pointers. So if we have any pointers
388 * left around while we collapse a hugepage, we need to make sure
389 * _PAGE_PRESENT bit of that is zero when we look at them
390 */
391 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
392 {
393 return (hpte_slot_array[index] >> 3) & 0x1;
394 }
395
396 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
397 int index)
398 {
399 return hpte_slot_array[index] >> 4;
400 }
401
402 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
403 unsigned int index, unsigned int hidx)
404 {
405 hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
406 }
407
408 struct page *realmode_pfn_to_page(unsigned long pfn);
409
410 static inline char *get_hpte_slot_array(pmd_t *pmdp)
411 {
412 /*
413 * The hpte hindex is stored in the pgtable whose address is in the
414 * second half of the PMD
415 *
416 * Order this load with the test for pmd_trans_huge in the caller
417 */
418 smp_rmb();
419 return *(char **)(pmdp + PTRS_PER_PMD);
420
421
422 }
423
424 extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
425 pmd_t *pmdp, unsigned long old_pmd);
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
428 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
429 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
430 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
431 pmd_t *pmdp, pmd_t pmd);
432 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
433 pmd_t *pmd);
434 /*
435 *
436 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
437 * page. The hugetlbfs page table walking and mangling paths are totally
438 * separated form the core VM paths and they're differentiated by
439 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
440 *
441 * pmd_trans_huge() is defined as false at build time if
442 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
443 * time in such case.
444 *
445 * For ppc64 we need to differntiate from explicit hugepages from THP, because
446 * for THP we also track the subpage details at the pmd level. We don't do
447 * that for explicit huge pages.
448 *
449 */
450 static inline int pmd_trans_huge(pmd_t pmd)
451 {
452 /*
453 * leaf pte for huge page, bottom two bits != 00
454 */
455 return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
456 }
457
458 static inline int pmd_trans_splitting(pmd_t pmd)
459 {
460 if (pmd_trans_huge(pmd))
461 return pmd_val(pmd) & _PAGE_SPLITTING;
462 return 0;
463 }
464
465 extern int has_transparent_hugepage(void);
466 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
467
468 static inline int pmd_large(pmd_t pmd)
469 {
470 /*
471 * leaf pte for huge page, bottom two bits != 00
472 */
473 return ((pmd_val(pmd) & 0x3) != 0x0);
474 }
475
476 static inline pte_t pmd_pte(pmd_t pmd)
477 {
478 return __pte(pmd_val(pmd));
479 }
480
481 static inline pmd_t pte_pmd(pte_t pte)
482 {
483 return __pmd(pte_val(pte));
484 }
485
486 static inline pte_t *pmdp_ptep(pmd_t *pmd)
487 {
488 return (pte_t *)pmd;
489 }
490
491 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
492 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
493 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
494 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
495 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
496 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
497 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
498 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
499
500 #define __HAVE_ARCH_PMD_WRITE
501 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
502
503 static inline pmd_t pmd_mkhuge(pmd_t pmd)
504 {
505 /* Do nothing, mk_pmd() does this part. */
506 return pmd;
507 }
508
509 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
510 {
511 pmd_val(pmd) &= ~_PAGE_PRESENT;
512 return pmd;
513 }
514
515 static inline pmd_t pmd_mksplitting(pmd_t pmd)
516 {
517 pmd_val(pmd) |= _PAGE_SPLITTING;
518 return pmd;
519 }
520
521 #define __HAVE_ARCH_PMD_SAME
522 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
523 {
524 return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
525 }
526
527 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
528 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
529 unsigned long address, pmd_t *pmdp,
530 pmd_t entry, int dirty);
531
532 extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
533 unsigned long addr,
534 pmd_t *pmdp,
535 unsigned long clr,
536 unsigned long set);
537
538 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
539 unsigned long addr, pmd_t *pmdp)
540 {
541 unsigned long old;
542
543 if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
544 return 0;
545 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
546 return ((old & _PAGE_ACCESSED) != 0);
547 }
548
549 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
550 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
551 unsigned long address, pmd_t *pmdp);
552 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
553 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
554 unsigned long address, pmd_t *pmdp);
555
556 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
557 extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
558 unsigned long addr, pmd_t *pmdp);
559
560 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
561 extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
562 pmd_t *pmdp);
563
564 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
565 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
566 pmd_t *pmdp)
567 {
568
569 if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
570 return;
571
572 pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
573 }
574
575 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
576 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
577 unsigned long address, pmd_t *pmdp);
578
579 #define __HAVE_ARCH_PGTABLE_DEPOSIT
580 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
581 pgtable_t pgtable);
582 #define __HAVE_ARCH_PGTABLE_WITHDRAW
583 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
584
585 #define __HAVE_ARCH_PMDP_INVALIDATE
586 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
587 pmd_t *pmdp);
588
589 #define pmd_move_must_withdraw pmd_move_must_withdraw
590 struct spinlock;
591 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
592 struct spinlock *old_pmd_ptl)
593 {
594 /*
595 * Archs like ppc64 use pgtable to store per pmd
596 * specific information. So when we switch the pmd,
597 * we should also withdraw and deposit the pgtable
598 */
599 return true;
600 }
601 #endif /* __ASSEMBLY__ */
602 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */