]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/include/asm/pgtable-ppc64.h
e3d55f6f24fe1828ae3ce7603770fcbd6c7470f1
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / include / asm / pgtable-ppc64.h
1 #ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2 #define _ASM_POWERPC_PGTABLE_PPC64_H_
3 /*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8 #ifdef CONFIG_PPC_64K_PAGES
9 #include <asm/pgtable-ppc64-64k.h>
10 #else
11 #include <asm/pgtable-ppc64-4k.h>
12 #endif
13
14 #define FIRST_USER_ADDRESS 0
15
16 /*
17 * Size of EA range mapped by our pagetables.
18 */
19 #define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
20 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
21 #define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
22
23
24 /*
25 * Define the address range of the kernel non-linear virtual area
26 */
27
28 #ifdef CONFIG_PPC_BOOK3E
29 #define KERN_VIRT_START ASM_CONST(0x8000000000000000)
30 #else
31 #define KERN_VIRT_START ASM_CONST(0xD000000000000000)
32 #endif
33 #define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000)
34
35 /*
36 * The vmalloc space starts at the beginning of that region, and
37 * occupies half of it on hash CPUs and a quarter of it on Book3E
38 * (we keep a quarter for the virtual memmap)
39 */
40 #define VMALLOC_START KERN_VIRT_START
41 #ifdef CONFIG_PPC_BOOK3E
42 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2)
43 #else
44 #define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
45 #endif
46 #define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
47
48 /*
49 * The second half of the kernel virtual space is used for IO mappings,
50 * it's itself carved into the PIO region (ISA and PHB IO space) and
51 * the ioremap space
52 *
53 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
54 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
55 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
56 */
57 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
58 #define FULL_IO_SIZE 0x80000000ul
59 #define ISA_IO_BASE (KERN_IO_START)
60 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
61 #define PHB_IO_BASE (ISA_IO_END)
62 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
63 #define IOREMAP_BASE (PHB_IO_END)
64 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
65
66
67 /*
68 * Region IDs
69 */
70 #define REGION_SHIFT 60UL
71 #define REGION_MASK (0xfUL << REGION_SHIFT)
72 #define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
73
74 #define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
75 #define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
76 #define VMEMMAP_REGION_ID (0xfUL) /* Server only */
77 #define USER_REGION_ID (0UL)
78
79 /*
80 * Defines the address of the vmemap area, in its own region on
81 * hash table CPUs and after the vmalloc space on Book3E
82 */
83 #ifdef CONFIG_PPC_BOOK3E
84 #define VMEMMAP_BASE VMALLOC_END
85 #define VMEMMAP_END KERN_IO_START
86 #else
87 #define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
88 #endif
89 #define vmemmap ((struct page *)VMEMMAP_BASE)
90
91
92 /*
93 * Include the PTE bits definitions
94 */
95 #ifdef CONFIG_PPC_BOOK3S
96 #include <asm/pte-hash64.h>
97 #else
98 #include <asm/pte-book3e.h>
99 #endif
100 #include <asm/pte-common.h>
101
102 #ifdef CONFIG_PPC_MM_SLICES
103 #define HAVE_ARCH_UNMAPPED_AREA
104 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
105 #endif /* CONFIG_PPC_MM_SLICES */
106
107 #ifndef __ASSEMBLY__
108
109 /*
110 * This is the default implementation of various PTE accessors, it's
111 * used in all cases except Book3S with 64K pages where we have a
112 * concept of sub-pages
113 */
114 #ifndef __real_pte
115
116 #ifdef STRICT_MM_TYPECHECKS
117 #define __real_pte(e,p) ((real_pte_t){(e)})
118 #define __rpte_to_pte(r) ((r).pte)
119 #else
120 #define __real_pte(e,p) (e)
121 #define __rpte_to_pte(r) (__pte(r))
122 #endif
123 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
124
125 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
126 do { \
127 index = 0; \
128 shift = mmu_psize_defs[psize].shift; \
129
130 #define pte_iterate_hashed_end() } while(0)
131
132 #ifdef CONFIG_PPC_HAS_HASH_64K
133 #define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
134 #else
135 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
136 #endif
137
138 #endif /* __real_pte */
139
140
141 /* pte_clear moved to later in this file */
142
143 #define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
144 #define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
145
146 #define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
147 #define pmd_none(pmd) (!pmd_val(pmd))
148 #define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
149 || (pmd_val(pmd) & PMD_BAD_BITS))
150 #define pmd_present(pmd) (pmd_val(pmd) != 0)
151 #define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
152 #define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
153 #define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
154
155 #define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
156 #define pud_none(pud) (!pud_val(pud))
157 #define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
158 || (pud_val(pud) & PUD_BAD_BITS))
159 #define pud_present(pud) (pud_val(pud) != 0)
160 #define pud_clear(pudp) (pud_val(*(pudp)) = 0)
161 #define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
162 #define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
163
164 #define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
165
166 /*
167 * Find an entry in a page-table-directory. We combine the address region
168 * (the high order N bits) and the pgd portion of the address.
169 */
170 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
171
172 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
173
174 #define pmd_offset(pudp,addr) \
175 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
176
177 #define pte_offset_kernel(dir,addr) \
178 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
179
180 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
181 #define pte_unmap(pte) do { } while(0)
182
183 /* to find an entry in a kernel page-table-directory */
184 /* This now only contains the vmalloc pages */
185 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
186 extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
187 pte_t *ptep, unsigned long pte, int huge);
188
189 /* Atomic PTE updates */
190 static inline unsigned long pte_update(struct mm_struct *mm,
191 unsigned long addr,
192 pte_t *ptep, unsigned long clr,
193 int huge)
194 {
195 #ifdef PTE_ATOMIC_UPDATES
196 unsigned long old, tmp;
197
198 __asm__ __volatile__(
199 "1: ldarx %0,0,%3 # pte_update\n\
200 andi. %1,%0,%6\n\
201 bne- 1b \n\
202 andc %1,%0,%4 \n\
203 stdcx. %1,0,%3 \n\
204 bne- 1b"
205 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
206 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
207 : "cc" );
208 #else
209 unsigned long old = pte_val(*ptep);
210 *ptep = __pte(old & ~clr);
211 #endif
212 /* huge pages use the old page table lock */
213 if (!huge)
214 assert_pte_locked(mm, addr);
215
216 #ifdef CONFIG_PPC_STD_MMU_64
217 if (old & _PAGE_HASHPTE)
218 hpte_need_flush(mm, addr, ptep, old, huge);
219 #endif
220
221 return old;
222 }
223
224 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
225 unsigned long addr, pte_t *ptep)
226 {
227 unsigned long old;
228
229 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
230 return 0;
231 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
232 return (old & _PAGE_ACCESSED) != 0;
233 }
234 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
235 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
236 ({ \
237 int __r; \
238 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
239 __r; \
240 })
241
242 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
243 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
244 pte_t *ptep)
245 {
246
247 if ((pte_val(*ptep) & _PAGE_RW) == 0)
248 return;
249
250 pte_update(mm, addr, ptep, _PAGE_RW, 0);
251 }
252
253 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
254 unsigned long addr, pte_t *ptep)
255 {
256 if ((pte_val(*ptep) & _PAGE_RW) == 0)
257 return;
258
259 pte_update(mm, addr, ptep, _PAGE_RW, 1);
260 }
261
262 /*
263 * We currently remove entries from the hashtable regardless of whether
264 * the entry was young or dirty. The generic routines only flush if the
265 * entry was young or dirty which is not good enough.
266 *
267 * We should be more intelligent about this but for the moment we override
268 * these functions and force a tlb flush unconditionally
269 */
270 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
271 #define ptep_clear_flush_young(__vma, __address, __ptep) \
272 ({ \
273 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
274 __ptep); \
275 __young; \
276 })
277
278 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
279 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
280 unsigned long addr, pte_t *ptep)
281 {
282 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
283 return __pte(old);
284 }
285
286 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
287 pte_t * ptep)
288 {
289 pte_update(mm, addr, ptep, ~0UL, 0);
290 }
291
292
293 /* Set the dirty and/or accessed bits atomically in a linux PTE, this
294 * function doesn't need to flush the hash entry
295 */
296 static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
297 {
298 unsigned long bits = pte_val(entry) &
299 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
300
301 #ifdef PTE_ATOMIC_UPDATES
302 unsigned long old, tmp;
303
304 __asm__ __volatile__(
305 "1: ldarx %0,0,%4\n\
306 andi. %1,%0,%6\n\
307 bne- 1b \n\
308 or %0,%3,%0\n\
309 stdcx. %0,0,%4\n\
310 bne- 1b"
311 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
312 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
313 :"cc");
314 #else
315 unsigned long old = pte_val(*ptep);
316 *ptep = __pte(old | bits);
317 #endif
318 }
319
320 #define __HAVE_ARCH_PTE_SAME
321 #define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
322
323 #define pte_ERROR(e) \
324 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
325 #define pmd_ERROR(e) \
326 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
327 #define pgd_ERROR(e) \
328 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
329
330 /* Encode and de-code a swap entry */
331 #define __swp_type(entry) (((entry).val >> 1) & 0x3f)
332 #define __swp_offset(entry) ((entry).val >> 8)
333 #define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
334 #define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
335 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
336 #define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
337 #define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
338 #define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
339
340 void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
341 void pgtable_cache_init(void);
342
343 /*
344 * find_linux_pte returns the address of a linux pte for a given
345 * effective address and directory. If not found, it returns zero.
346 */
347 static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
348 {
349 pgd_t *pg;
350 pud_t *pu;
351 pmd_t *pm;
352 pte_t *pt = NULL;
353
354 pg = pgdir + pgd_index(ea);
355 if (!pgd_none(*pg)) {
356 pu = pud_offset(pg, ea);
357 if (!pud_none(*pu)) {
358 pm = pmd_offset(pu, ea);
359 if (pmd_present(*pm))
360 pt = pte_offset_kernel(pm, ea);
361 }
362 }
363 return pt;
364 }
365
366 #ifdef CONFIG_HUGETLB_PAGE
367 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
368 unsigned *shift);
369 #else
370 static inline pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
371 unsigned *shift)
372 {
373 if (shift)
374 *shift = 0;
375 return find_linux_pte(pgdir, ea);
376 }
377 #endif /* !CONFIG_HUGETLB_PAGE */
378
379 #endif /* __ASSEMBLY__ */
380
381 #endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */