]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/align.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / align.c
1 /* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <linux/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
28 #include <asm/disassemble.h>
29 #include <asm/cpu_has_feature.h>
30
31 struct aligninfo {
32 unsigned char len;
33 unsigned char flags;
34 };
35
36
37 #define INVALID { 0, 0 }
38
39 /* Bits in the flags field */
40 #define LD 0 /* load */
41 #define ST 1 /* store */
42 #define SE 2 /* sign-extend value, or FP ld/st as word */
43 #define F 4 /* to/from fp regs */
44 #define U 8 /* update index register */
45 #define M 0x10 /* multiple load/store */
46 #define SW 0x20 /* byte swap */
47 #define S 0x40 /* single-precision fp or... */
48 #define SX 0x40 /* ... byte count in XER */
49 #define HARD 0x80 /* string, stwcx. */
50 #define E4 0x40 /* SPE endianness is word */
51 #define E8 0x80 /* SPE endianness is double word */
52 #define SPLT 0x80 /* VSX SPLAT load */
53
54 /* DSISR bits reported for a DCBZ instruction: */
55 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
56
57 /*
58 * The PowerPC stores certain bits of the instruction that caused the
59 * alignment exception in the DSISR register. This array maps those
60 * bits to information about the operand length and what the
61 * instruction would do.
62 */
63 static struct aligninfo aligninfo[128] = {
64 { 4, LD }, /* 00 0 0000: lwz / lwarx */
65 INVALID, /* 00 0 0001 */
66 { 4, ST }, /* 00 0 0010: stw */
67 INVALID, /* 00 0 0011 */
68 { 2, LD }, /* 00 0 0100: lhz */
69 { 2, LD+SE }, /* 00 0 0101: lha */
70 { 2, ST }, /* 00 0 0110: sth */
71 { 4, LD+M }, /* 00 0 0111: lmw */
72 { 4, LD+F+S }, /* 00 0 1000: lfs */
73 { 8, LD+F }, /* 00 0 1001: lfd */
74 { 4, ST+F+S }, /* 00 0 1010: stfs */
75 { 8, ST+F }, /* 00 0 1011: stfd */
76 { 16, LD }, /* 00 0 1100: lq */
77 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
78 INVALID, /* 00 0 1110 */
79 { 8, ST }, /* 00 0 1111: std/stdu */
80 { 4, LD+U }, /* 00 1 0000: lwzu */
81 INVALID, /* 00 1 0001 */
82 { 4, ST+U }, /* 00 1 0010: stwu */
83 INVALID, /* 00 1 0011 */
84 { 2, LD+U }, /* 00 1 0100: lhzu */
85 { 2, LD+SE+U }, /* 00 1 0101: lhau */
86 { 2, ST+U }, /* 00 1 0110: sthu */
87 { 4, ST+M }, /* 00 1 0111: stmw */
88 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
89 { 8, LD+F+U }, /* 00 1 1001: lfdu */
90 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
91 { 8, ST+F+U }, /* 00 1 1011: stfdu */
92 { 16, LD+F }, /* 00 1 1100: lfdp */
93 INVALID, /* 00 1 1101 */
94 { 16, ST+F }, /* 00 1 1110: stfdp */
95 INVALID, /* 00 1 1111 */
96 { 8, LD }, /* 01 0 0000: ldx */
97 INVALID, /* 01 0 0001 */
98 { 8, ST }, /* 01 0 0010: stdx */
99 INVALID, /* 01 0 0011 */
100 INVALID, /* 01 0 0100 */
101 { 4, LD+SE }, /* 01 0 0101: lwax */
102 INVALID, /* 01 0 0110 */
103 INVALID, /* 01 0 0111 */
104 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
105 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
106 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
107 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
108 INVALID, /* 01 0 1100 */
109 { 8, LD+U }, /* 01 0 1101: ldu */
110 INVALID, /* 01 0 1110 */
111 { 8, ST+U }, /* 01 0 1111: stdu */
112 { 8, LD+U }, /* 01 1 0000: ldux */
113 INVALID, /* 01 1 0001 */
114 { 8, ST+U }, /* 01 1 0010: stdux */
115 INVALID, /* 01 1 0011 */
116 INVALID, /* 01 1 0100 */
117 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
118 INVALID, /* 01 1 0110 */
119 INVALID, /* 01 1 0111 */
120 INVALID, /* 01 1 1000 */
121 INVALID, /* 01 1 1001 */
122 INVALID, /* 01 1 1010 */
123 INVALID, /* 01 1 1011 */
124 INVALID, /* 01 1 1100 */
125 INVALID, /* 01 1 1101 */
126 INVALID, /* 01 1 1110 */
127 INVALID, /* 01 1 1111 */
128 INVALID, /* 10 0 0000 */
129 INVALID, /* 10 0 0001 */
130 INVALID, /* 10 0 0010: stwcx. */
131 INVALID, /* 10 0 0011 */
132 INVALID, /* 10 0 0100 */
133 INVALID, /* 10 0 0101 */
134 INVALID, /* 10 0 0110 */
135 INVALID, /* 10 0 0111 */
136 { 4, LD+SW }, /* 10 0 1000: lwbrx */
137 INVALID, /* 10 0 1001 */
138 { 4, ST+SW }, /* 10 0 1010: stwbrx */
139 INVALID, /* 10 0 1011 */
140 { 2, LD+SW }, /* 10 0 1100: lhbrx */
141 { 4, LD+SE }, /* 10 0 1101 lwa */
142 { 2, ST+SW }, /* 10 0 1110: sthbrx */
143 { 16, ST }, /* 10 0 1111: stq */
144 INVALID, /* 10 1 0000 */
145 INVALID, /* 10 1 0001 */
146 INVALID, /* 10 1 0010 */
147 INVALID, /* 10 1 0011 */
148 INVALID, /* 10 1 0100 */
149 INVALID, /* 10 1 0101 */
150 INVALID, /* 10 1 0110 */
151 INVALID, /* 10 1 0111 */
152 INVALID, /* 10 1 1000 */
153 INVALID, /* 10 1 1001 */
154 INVALID, /* 10 1 1010 */
155 INVALID, /* 10 1 1011 */
156 INVALID, /* 10 1 1100 */
157 INVALID, /* 10 1 1101 */
158 INVALID, /* 10 1 1110 */
159 { 0, ST+HARD }, /* 10 1 1111: dcbz */
160 { 4, LD }, /* 11 0 0000: lwzx */
161 INVALID, /* 11 0 0001 */
162 { 4, ST }, /* 11 0 0010: stwx */
163 INVALID, /* 11 0 0011 */
164 { 2, LD }, /* 11 0 0100: lhzx */
165 { 2, LD+SE }, /* 11 0 0101: lhax */
166 { 2, ST }, /* 11 0 0110: sthx */
167 INVALID, /* 11 0 0111 */
168 { 4, LD+F+S }, /* 11 0 1000: lfsx */
169 { 8, LD+F }, /* 11 0 1001: lfdx */
170 { 4, ST+F+S }, /* 11 0 1010: stfsx */
171 { 8, ST+F }, /* 11 0 1011: stfdx */
172 { 16, LD+F }, /* 11 0 1100: lfdpx */
173 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
174 { 16, ST+F }, /* 11 0 1110: stfdpx */
175 { 4, ST+F }, /* 11 0 1111: stfiwx */
176 { 4, LD+U }, /* 11 1 0000: lwzux */
177 INVALID, /* 11 1 0001 */
178 { 4, ST+U }, /* 11 1 0010: stwux */
179 INVALID, /* 11 1 0011 */
180 { 2, LD+U }, /* 11 1 0100: lhzux */
181 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
182 { 2, ST+U }, /* 11 1 0110: sthux */
183 INVALID, /* 11 1 0111 */
184 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
185 { 8, LD+F+U }, /* 11 1 1001: lfdux */
186 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
187 { 8, ST+F+U }, /* 11 1 1011: stfdux */
188 INVALID, /* 11 1 1100 */
189 { 4, LD+F }, /* 11 1 1101: lfiwzx */
190 INVALID, /* 11 1 1110 */
191 INVALID, /* 11 1 1111 */
192 };
193
194 /*
195 * The dcbz (data cache block zero) instruction
196 * gives an alignment fault if used on non-cacheable
197 * memory. We handle the fault mainly for the
198 * case when we are running with the cache disabled
199 * for debugging.
200 */
201 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
202 {
203 long __user *p;
204 int i, size;
205
206 #ifdef __powerpc64__
207 size = ppc64_caches.l1d.block_size;
208 #else
209 size = L1_CACHE_BYTES;
210 #endif
211 p = (long __user *) (regs->dar & -size);
212 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
213 return -EFAULT;
214 for (i = 0; i < size / sizeof(long); ++i)
215 if (__put_user_inatomic(0, p+i))
216 return -EFAULT;
217 return 1;
218 }
219
220 /*
221 * Emulate load & store multiple instructions
222 * On 64-bit machines, these instructions only affect/use the
223 * bottom 4 bytes of each register, and the loads clear the
224 * top 4 bytes of the affected register.
225 */
226 #ifdef __BIG_ENDIAN__
227 #ifdef CONFIG_PPC64
228 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
229 #else
230 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
231 #endif
232 #else
233 #define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
234 #endif
235
236 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
237
238 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
239 unsigned int reg, unsigned int nb,
240 unsigned int flags, unsigned int instr,
241 unsigned long swiz)
242 {
243 unsigned long *rptr;
244 unsigned int nb0, i, bswiz;
245 unsigned long p;
246
247 /*
248 * We do not try to emulate 8 bytes multiple as they aren't really
249 * available in our operating environments and we don't try to
250 * emulate multiples operations in kernel land as they should never
251 * be used/generated there at least not on unaligned boundaries
252 */
253 if (unlikely((nb > 4) || !user_mode(regs)))
254 return 0;
255
256 /* lmw, stmw, lswi/x, stswi/x */
257 nb0 = 0;
258 if (flags & HARD) {
259 if (flags & SX) {
260 nb = regs->xer & 127;
261 if (nb == 0)
262 return 1;
263 } else {
264 unsigned long pc = regs->nip ^ (swiz & 4);
265
266 if (__get_user_inatomic(instr,
267 (unsigned int __user *)pc))
268 return -EFAULT;
269 if (swiz == 0 && (flags & SW))
270 instr = cpu_to_le32(instr);
271 nb = (instr >> 11) & 0x1f;
272 if (nb == 0)
273 nb = 32;
274 }
275 if (nb + reg * 4 > 128) {
276 nb0 = nb + reg * 4 - 128;
277 nb = 128 - reg * 4;
278 }
279 #ifdef __LITTLE_ENDIAN__
280 /*
281 * String instructions are endian neutral but the code
282 * below is not. Force byte swapping on so that the
283 * effects of swizzling are undone in the load/store
284 * loops below.
285 */
286 flags ^= SW;
287 #endif
288 } else {
289 /* lwm, stmw */
290 nb = (32 - reg) * 4;
291 }
292
293 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
294 return -EFAULT; /* bad address */
295
296 rptr = &regs->gpr[reg];
297 p = (unsigned long) addr;
298 bswiz = (flags & SW)? 3: 0;
299
300 if (!(flags & ST)) {
301 /*
302 * This zeroes the top 4 bytes of the affected registers
303 * in 64-bit mode, and also zeroes out any remaining
304 * bytes of the last register for lsw*.
305 */
306 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
307 if (nb0 > 0)
308 memset(&regs->gpr[0], 0,
309 ((nb0 + 3) / 4) * sizeof(unsigned long));
310
311 for (i = 0; i < nb; ++i, ++p)
312 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
313 SWIZ_PTR(p)))
314 return -EFAULT;
315 if (nb0 > 0) {
316 rptr = &regs->gpr[0];
317 addr += nb;
318 for (i = 0; i < nb0; ++i, ++p)
319 if (__get_user_inatomic(REG_BYTE(rptr,
320 i ^ bswiz),
321 SWIZ_PTR(p)))
322 return -EFAULT;
323 }
324
325 } else {
326 for (i = 0; i < nb; ++i, ++p)
327 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
328 SWIZ_PTR(p)))
329 return -EFAULT;
330 if (nb0 > 0) {
331 rptr = &regs->gpr[0];
332 addr += nb;
333 for (i = 0; i < nb0; ++i, ++p)
334 if (__put_user_inatomic(REG_BYTE(rptr,
335 i ^ bswiz),
336 SWIZ_PTR(p)))
337 return -EFAULT;
338 }
339 }
340 return 1;
341 }
342
343 /*
344 * Emulate floating-point pair loads and stores.
345 * Only POWER6 has these instructions, and it does true little-endian,
346 * so we don't need the address swizzling.
347 */
348 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
349 unsigned int flags)
350 {
351 char *ptr0 = (char *) &current->thread.TS_FPR(reg);
352 char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
353 int i, ret, sw = 0;
354
355 if (reg & 1)
356 return 0; /* invalid form: FRS/FRT must be even */
357 if (flags & SW)
358 sw = 7;
359 ret = 0;
360 for (i = 0; i < 8; ++i) {
361 if (!(flags & ST)) {
362 ret |= __get_user(ptr0[i^sw], addr + i);
363 ret |= __get_user(ptr1[i^sw], addr + i + 8);
364 } else {
365 ret |= __put_user(ptr0[i^sw], addr + i);
366 ret |= __put_user(ptr1[i^sw], addr + i + 8);
367 }
368 }
369 if (ret)
370 return -EFAULT;
371 return 1; /* exception handled and fixed up */
372 }
373
374 #ifdef CONFIG_PPC64
375 static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
376 unsigned int reg, unsigned int flags)
377 {
378 char *ptr0 = (char *)&regs->gpr[reg];
379 char *ptr1 = (char *)&regs->gpr[reg+1];
380 int i, ret, sw = 0;
381
382 if (reg & 1)
383 return 0; /* invalid form: GPR must be even */
384 if (flags & SW)
385 sw = 7;
386 ret = 0;
387 for (i = 0; i < 8; ++i) {
388 if (!(flags & ST)) {
389 ret |= __get_user(ptr0[i^sw], addr + i);
390 ret |= __get_user(ptr1[i^sw], addr + i + 8);
391 } else {
392 ret |= __put_user(ptr0[i^sw], addr + i);
393 ret |= __put_user(ptr1[i^sw], addr + i + 8);
394 }
395 }
396 if (ret)
397 return -EFAULT;
398 return 1; /* exception handled and fixed up */
399 }
400 #endif /* CONFIG_PPC64 */
401
402 #ifdef CONFIG_SPE
403
404 static struct aligninfo spe_aligninfo[32] = {
405 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
406 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
407 { 8, LD }, /* 0 00 10: evldh[x] */
408 INVALID, /* 0 00 11 */
409 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
410 INVALID, /* 0 01 01 */
411 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
412 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
413 { 4, LD }, /* 0 10 00: evlwhe[x] */
414 INVALID, /* 0 10 01 */
415 { 4, LD }, /* 0 10 10: evlwhou[x] */
416 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
417 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
418 INVALID, /* 0 11 01 */
419 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
420 INVALID, /* 0 11 11 */
421
422 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
423 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
424 { 8, ST }, /* 1 00 10: evstdh[x] */
425 INVALID, /* 1 00 11 */
426 INVALID, /* 1 01 00 */
427 INVALID, /* 1 01 01 */
428 INVALID, /* 1 01 10 */
429 INVALID, /* 1 01 11 */
430 { 4, ST }, /* 1 10 00: evstwhe[x] */
431 INVALID, /* 1 10 01 */
432 { 4, ST }, /* 1 10 10: evstwho[x] */
433 INVALID, /* 1 10 11 */
434 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
435 INVALID, /* 1 11 01 */
436 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
437 INVALID, /* 1 11 11 */
438 };
439
440 #define EVLDD 0x00
441 #define EVLDW 0x01
442 #define EVLDH 0x02
443 #define EVLHHESPLAT 0x04
444 #define EVLHHOUSPLAT 0x06
445 #define EVLHHOSSPLAT 0x07
446 #define EVLWHE 0x08
447 #define EVLWHOU 0x0A
448 #define EVLWHOS 0x0B
449 #define EVLWWSPLAT 0x0C
450 #define EVLWHSPLAT 0x0E
451 #define EVSTDD 0x10
452 #define EVSTDW 0x11
453 #define EVSTDH 0x12
454 #define EVSTWHE 0x18
455 #define EVSTWHO 0x1A
456 #define EVSTWWE 0x1C
457 #define EVSTWWO 0x1E
458
459 /*
460 * Emulate SPE loads and stores.
461 * Only Book-E has these instructions, and it does true little-endian,
462 * so we don't need the address swizzling.
463 */
464 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
465 unsigned int instr)
466 {
467 int ret;
468 union {
469 u64 ll;
470 u32 w[2];
471 u16 h[4];
472 u8 v[8];
473 } data, temp;
474 unsigned char __user *p, *addr;
475 unsigned long *evr = &current->thread.evr[reg];
476 unsigned int nb, flags;
477
478 instr = (instr >> 1) & 0x1f;
479
480 /* DAR has the operand effective address */
481 addr = (unsigned char __user *)regs->dar;
482
483 nb = spe_aligninfo[instr].len;
484 flags = spe_aligninfo[instr].flags;
485
486 /* Verify the address of the operand */
487 if (unlikely(user_mode(regs) &&
488 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
489 addr, nb)))
490 return -EFAULT;
491
492 /* userland only */
493 if (unlikely(!user_mode(regs)))
494 return 0;
495
496 flush_spe_to_thread(current);
497
498 /* If we are loading, get the data from user space, else
499 * get it from register values
500 */
501 if (flags & ST) {
502 data.ll = 0;
503 switch (instr) {
504 case EVSTDD:
505 case EVSTDW:
506 case EVSTDH:
507 data.w[0] = *evr;
508 data.w[1] = regs->gpr[reg];
509 break;
510 case EVSTWHE:
511 data.h[2] = *evr >> 16;
512 data.h[3] = regs->gpr[reg] >> 16;
513 break;
514 case EVSTWHO:
515 data.h[2] = *evr & 0xffff;
516 data.h[3] = regs->gpr[reg] & 0xffff;
517 break;
518 case EVSTWWE:
519 data.w[1] = *evr;
520 break;
521 case EVSTWWO:
522 data.w[1] = regs->gpr[reg];
523 break;
524 default:
525 return -EINVAL;
526 }
527 } else {
528 temp.ll = data.ll = 0;
529 ret = 0;
530 p = addr;
531
532 switch (nb) {
533 case 8:
534 ret |= __get_user_inatomic(temp.v[0], p++);
535 ret |= __get_user_inatomic(temp.v[1], p++);
536 ret |= __get_user_inatomic(temp.v[2], p++);
537 ret |= __get_user_inatomic(temp.v[3], p++);
538 case 4:
539 ret |= __get_user_inatomic(temp.v[4], p++);
540 ret |= __get_user_inatomic(temp.v[5], p++);
541 case 2:
542 ret |= __get_user_inatomic(temp.v[6], p++);
543 ret |= __get_user_inatomic(temp.v[7], p++);
544 if (unlikely(ret))
545 return -EFAULT;
546 }
547
548 switch (instr) {
549 case EVLDD:
550 case EVLDW:
551 case EVLDH:
552 data.ll = temp.ll;
553 break;
554 case EVLHHESPLAT:
555 data.h[0] = temp.h[3];
556 data.h[2] = temp.h[3];
557 break;
558 case EVLHHOUSPLAT:
559 case EVLHHOSSPLAT:
560 data.h[1] = temp.h[3];
561 data.h[3] = temp.h[3];
562 break;
563 case EVLWHE:
564 data.h[0] = temp.h[2];
565 data.h[2] = temp.h[3];
566 break;
567 case EVLWHOU:
568 case EVLWHOS:
569 data.h[1] = temp.h[2];
570 data.h[3] = temp.h[3];
571 break;
572 case EVLWWSPLAT:
573 data.w[0] = temp.w[1];
574 data.w[1] = temp.w[1];
575 break;
576 case EVLWHSPLAT:
577 data.h[0] = temp.h[2];
578 data.h[1] = temp.h[2];
579 data.h[2] = temp.h[3];
580 data.h[3] = temp.h[3];
581 break;
582 default:
583 return -EINVAL;
584 }
585 }
586
587 if (flags & SW) {
588 switch (flags & 0xf0) {
589 case E8:
590 data.ll = swab64(data.ll);
591 break;
592 case E4:
593 data.w[0] = swab32(data.w[0]);
594 data.w[1] = swab32(data.w[1]);
595 break;
596 /* Its half word endian */
597 default:
598 data.h[0] = swab16(data.h[0]);
599 data.h[1] = swab16(data.h[1]);
600 data.h[2] = swab16(data.h[2]);
601 data.h[3] = swab16(data.h[3]);
602 break;
603 }
604 }
605
606 if (flags & SE) {
607 data.w[0] = (s16)data.h[1];
608 data.w[1] = (s16)data.h[3];
609 }
610
611 /* Store result to memory or update registers */
612 if (flags & ST) {
613 ret = 0;
614 p = addr;
615 switch (nb) {
616 case 8:
617 ret |= __put_user_inatomic(data.v[0], p++);
618 ret |= __put_user_inatomic(data.v[1], p++);
619 ret |= __put_user_inatomic(data.v[2], p++);
620 ret |= __put_user_inatomic(data.v[3], p++);
621 case 4:
622 ret |= __put_user_inatomic(data.v[4], p++);
623 ret |= __put_user_inatomic(data.v[5], p++);
624 case 2:
625 ret |= __put_user_inatomic(data.v[6], p++);
626 ret |= __put_user_inatomic(data.v[7], p++);
627 }
628 if (unlikely(ret))
629 return -EFAULT;
630 } else {
631 *evr = data.w[0];
632 regs->gpr[reg] = data.w[1];
633 }
634
635 return 1;
636 }
637 #endif /* CONFIG_SPE */
638
639 #ifdef CONFIG_VSX
640 /*
641 * Emulate VSX instructions...
642 */
643 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
644 unsigned int areg, struct pt_regs *regs,
645 unsigned int flags, unsigned int length,
646 unsigned int elsize)
647 {
648 char *ptr;
649 unsigned long *lptr;
650 int ret = 0;
651 int sw = 0;
652 int i, j;
653
654 /* userland only */
655 if (unlikely(!user_mode(regs)))
656 return 0;
657
658 flush_vsx_to_thread(current);
659
660 if (reg < 32)
661 ptr = (char *) &current->thread.fp_state.fpr[reg][0];
662 else
663 ptr = (char *) &current->thread.vr_state.vr[reg - 32];
664
665 lptr = (unsigned long *) ptr;
666
667 #ifdef __LITTLE_ENDIAN__
668 if (flags & SW) {
669 elsize = length;
670 sw = length-1;
671 } else {
672 /*
673 * The elements are BE ordered, even in LE mode, so process
674 * them in reverse order.
675 */
676 addr += length - elsize;
677
678 /* 8 byte memory accesses go in the top 8 bytes of the VR */
679 if (length == 8)
680 ptr += 8;
681 }
682 #else
683 if (flags & SW)
684 sw = elsize-1;
685 #endif
686
687 for (j = 0; j < length; j += elsize) {
688 for (i = 0; i < elsize; ++i) {
689 if (flags & ST)
690 ret |= __put_user(ptr[i^sw], addr + i);
691 else
692 ret |= __get_user(ptr[i^sw], addr + i);
693 }
694 ptr += elsize;
695 #ifdef __LITTLE_ENDIAN__
696 addr -= elsize;
697 #else
698 addr += elsize;
699 #endif
700 }
701
702 #ifdef __BIG_ENDIAN__
703 #define VSX_HI 0
704 #define VSX_LO 1
705 #else
706 #define VSX_HI 1
707 #define VSX_LO 0
708 #endif
709
710 if (!ret) {
711 if (flags & U)
712 regs->gpr[areg] = regs->dar;
713
714 /* Splat load copies the same data to top and bottom 8 bytes */
715 if (flags & SPLT)
716 lptr[VSX_LO] = lptr[VSX_HI];
717 /* For 8 byte loads, zero the low 8 bytes */
718 else if (!(flags & ST) && (8 == length))
719 lptr[VSX_LO] = 0;
720 } else
721 return -EFAULT;
722
723 return 1;
724 }
725 #endif
726
727 /*
728 * Called on alignment exception. Attempts to fixup
729 *
730 * Return 1 on success
731 * Return 0 if unable to handle the interrupt
732 * Return -EFAULT if data address is bad
733 */
734
735 int fix_alignment(struct pt_regs *regs)
736 {
737 unsigned int instr, nb, flags, instruction = 0;
738 unsigned int reg, areg;
739 unsigned int dsisr;
740 unsigned char __user *addr;
741 unsigned long p, swiz;
742 int ret, i;
743 union data {
744 u64 ll;
745 double dd;
746 unsigned char v[8];
747 struct {
748 #ifdef __LITTLE_ENDIAN__
749 int low32;
750 unsigned hi32;
751 #else
752 unsigned hi32;
753 int low32;
754 #endif
755 } x32;
756 struct {
757 #ifdef __LITTLE_ENDIAN__
758 short low16;
759 unsigned char hi48[6];
760 #else
761 unsigned char hi48[6];
762 short low16;
763 #endif
764 } x16;
765 } data;
766
767 /*
768 * We require a complete register set, if not, then our assembly
769 * is broken
770 */
771 CHECK_FULL_REGS(regs);
772
773 dsisr = regs->dsisr;
774
775 /* Some processors don't provide us with a DSISR we can use here,
776 * let's make one up from the instruction
777 */
778 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
779 unsigned long pc = regs->nip;
780
781 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
782 pc ^= 4;
783 if (unlikely(__get_user_inatomic(instr,
784 (unsigned int __user *)pc)))
785 return -EFAULT;
786 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
787 instr = cpu_to_le32(instr);
788 dsisr = make_dsisr(instr);
789 instruction = instr;
790 }
791
792 /* extract the operation and registers from the dsisr */
793 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
794 areg = dsisr & 0x1f; /* register to update */
795
796 #ifdef CONFIG_SPE
797 if ((instr >> 26) == 0x4) {
798 PPC_WARN_ALIGNMENT(spe, regs);
799 return emulate_spe(regs, reg, instr);
800 }
801 #endif
802
803 instr = (dsisr >> 10) & 0x7f;
804 instr |= (dsisr >> 13) & 0x60;
805
806 /* Lookup the operation in our table */
807 nb = aligninfo[instr].len;
808 flags = aligninfo[instr].flags;
809
810 /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
811 if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
812 nb = 8;
813 flags = LD+SW;
814 } else if (IS_XFORM(instruction) &&
815 ((instruction >> 1) & 0x3ff) == 660) {
816 nb = 8;
817 flags = ST+SW;
818 }
819
820 /* Byteswap little endian loads and stores */
821 swiz = 0;
822 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
823 flags ^= SW;
824 #ifdef __BIG_ENDIAN__
825 /*
826 * So-called "PowerPC little endian" mode works by
827 * swizzling addresses rather than by actually doing
828 * any byte-swapping. To emulate this, we XOR each
829 * byte address with 7. We also byte-swap, because
830 * the processor's address swizzling depends on the
831 * operand size (it xors the address with 7 for bytes,
832 * 6 for halfwords, 4 for words, 0 for doublewords) but
833 * we will xor with 7 and load/store each byte separately.
834 */
835 if (cpu_has_feature(CPU_FTR_PPC_LE))
836 swiz = 7;
837 #endif
838 }
839
840 /* DAR has the operand effective address */
841 addr = (unsigned char __user *)regs->dar;
842
843 #ifdef CONFIG_VSX
844 if ((instruction & 0xfc00003e) == 0x7c000018) {
845 unsigned int elsize;
846
847 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
848 reg |= (instruction & 0x1) << 5;
849 /* Simple inline decoder instead of a table */
850 /* VSX has only 8 and 16 byte memory accesses */
851 nb = 8;
852 if (instruction & 0x200)
853 nb = 16;
854
855 /* Vector stores in little-endian mode swap individual
856 elements, so process them separately */
857 elsize = 4;
858 if (instruction & 0x80)
859 elsize = 8;
860
861 flags = 0;
862 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
863 flags |= SW;
864 if (instruction & 0x100)
865 flags |= ST;
866 if (instruction & 0x040)
867 flags |= U;
868 /* splat load needs a special decoder */
869 if ((instruction & 0x400) == 0){
870 flags |= SPLT;
871 nb = 8;
872 }
873 PPC_WARN_ALIGNMENT(vsx, regs);
874 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
875 }
876 #endif
877
878 /*
879 * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
880 * check.
881 *
882 * Send a SIGBUS to the process that caused the fault.
883 *
884 * We do not emulate these because paste may contain additional metadata
885 * when pasting to a co-processor. Furthermore, paste_last is the
886 * synchronisation point for preceding copy/paste sequences.
887 */
888 if ((instruction & 0xfc0006fe) == PPC_INST_COPY)
889 return -EIO;
890
891 /* A size of 0 indicates an instruction we don't support, with
892 * the exception of DCBZ which is handled as a special case here
893 */
894 if (instr == DCBZ) {
895 PPC_WARN_ALIGNMENT(dcbz, regs);
896 return emulate_dcbz(regs, addr);
897 }
898 if (unlikely(nb == 0))
899 return 0;
900
901 /* Load/Store Multiple instructions are handled in their own
902 * function
903 */
904 if (flags & M) {
905 PPC_WARN_ALIGNMENT(multiple, regs);
906 return emulate_multiple(regs, addr, reg, nb,
907 flags, instr, swiz);
908 }
909
910 /* Verify the address of the operand */
911 if (unlikely(user_mode(regs) &&
912 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
913 addr, nb)))
914 return -EFAULT;
915
916 /* Force the fprs into the save area so we can reference them */
917 if (flags & F) {
918 /* userland only */
919 if (unlikely(!user_mode(regs)))
920 return 0;
921 flush_fp_to_thread(current);
922 }
923
924 if (nb == 16) {
925 if (flags & F) {
926 /* Special case for 16-byte FP loads and stores */
927 PPC_WARN_ALIGNMENT(fp_pair, regs);
928 return emulate_fp_pair(addr, reg, flags);
929 } else {
930 #ifdef CONFIG_PPC64
931 /* Special case for 16-byte loads and stores */
932 PPC_WARN_ALIGNMENT(lq_stq, regs);
933 return emulate_lq_stq(regs, addr, reg, flags);
934 #else
935 return 0;
936 #endif
937 }
938 }
939
940 PPC_WARN_ALIGNMENT(unaligned, regs);
941
942 /* If we are loading, get the data from user space, else
943 * get it from register values
944 */
945 if (!(flags & ST)) {
946 unsigned int start = 0;
947
948 switch (nb) {
949 case 4:
950 start = offsetof(union data, x32.low32);
951 break;
952 case 2:
953 start = offsetof(union data, x16.low16);
954 break;
955 }
956
957 data.ll = 0;
958 ret = 0;
959 p = (unsigned long)addr;
960
961 for (i = 0; i < nb; i++)
962 ret |= __get_user_inatomic(data.v[start + i],
963 SWIZ_PTR(p++));
964
965 if (unlikely(ret))
966 return -EFAULT;
967
968 } else if (flags & F) {
969 data.ll = current->thread.TS_FPR(reg);
970 if (flags & S) {
971 /* Single-precision FP store requires conversion... */
972 #ifdef CONFIG_PPC_FPU
973 preempt_disable();
974 enable_kernel_fp();
975 cvt_df(&data.dd, (float *)&data.x32.low32);
976 disable_kernel_fp();
977 preempt_enable();
978 #else
979 return 0;
980 #endif
981 }
982 } else
983 data.ll = regs->gpr[reg];
984
985 if (flags & SW) {
986 switch (nb) {
987 case 8:
988 data.ll = swab64(data.ll);
989 break;
990 case 4:
991 data.x32.low32 = swab32(data.x32.low32);
992 break;
993 case 2:
994 data.x16.low16 = swab16(data.x16.low16);
995 break;
996 }
997 }
998
999 /* Perform other misc operations like sign extension
1000 * or floating point single precision conversion
1001 */
1002 switch (flags & ~(U|SW)) {
1003 case LD+SE: /* sign extending integer loads */
1004 case LD+F+SE: /* sign extend for lfiwax */
1005 if ( nb == 2 )
1006 data.ll = data.x16.low16;
1007 else /* nb must be 4 */
1008 data.ll = data.x32.low32;
1009 break;
1010
1011 /* Single-precision FP load requires conversion... */
1012 case LD+F+S:
1013 #ifdef CONFIG_PPC_FPU
1014 preempt_disable();
1015 enable_kernel_fp();
1016 cvt_fd((float *)&data.x32.low32, &data.dd);
1017 disable_kernel_fp();
1018 preempt_enable();
1019 #else
1020 return 0;
1021 #endif
1022 break;
1023 }
1024
1025 /* Store result to memory or update registers */
1026 if (flags & ST) {
1027 unsigned int start = 0;
1028
1029 switch (nb) {
1030 case 4:
1031 start = offsetof(union data, x32.low32);
1032 break;
1033 case 2:
1034 start = offsetof(union data, x16.low16);
1035 break;
1036 }
1037
1038 ret = 0;
1039 p = (unsigned long)addr;
1040
1041 for (i = 0; i < nb; i++)
1042 ret |= __put_user_inatomic(data.v[start + i],
1043 SWIZ_PTR(p++));
1044
1045 if (unlikely(ret))
1046 return -EFAULT;
1047 } else if (flags & F)
1048 current->thread.TS_FPR(reg) = data.ll;
1049 else
1050 regs->gpr[reg] = data.ll;
1051
1052 /* Update RA as needed */
1053 if (flags & U)
1054 regs->gpr[areg] = regs->dar;
1055
1056 return 1;
1057 }