]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/align.c
Merge branch 'acpi-config'
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / align.c
1 /* align.c - handle alignment exceptions for the Power PC.
2 *
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/cache.h>
25 #include <asm/cputable.h>
26 #include <asm/emulated_ops.h>
27 #include <asm/switch_to.h>
28
29 struct aligninfo {
30 unsigned char len;
31 unsigned char flags;
32 };
33
34 #define IS_XFORM(inst) (((inst) >> 26) == 31)
35 #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
36
37 #define INVALID { 0, 0 }
38
39 /* Bits in the flags field */
40 #define LD 0 /* load */
41 #define ST 1 /* store */
42 #define SE 2 /* sign-extend value, or FP ld/st as word */
43 #define F 4 /* to/from fp regs */
44 #define U 8 /* update index register */
45 #define M 0x10 /* multiple load/store */
46 #define SW 0x20 /* byte swap */
47 #define S 0x40 /* single-precision fp or... */
48 #define SX 0x40 /* ... byte count in XER */
49 #define HARD 0x80 /* string, stwcx. */
50 #define E4 0x40 /* SPE endianness is word */
51 #define E8 0x80 /* SPE endianness is double word */
52 #define SPLT 0x80 /* VSX SPLAT load */
53
54 /* DSISR bits reported for a DCBZ instruction: */
55 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
56
57 /*
58 * The PowerPC stores certain bits of the instruction that caused the
59 * alignment exception in the DSISR register. This array maps those
60 * bits to information about the operand length and what the
61 * instruction would do.
62 */
63 static struct aligninfo aligninfo[128] = {
64 { 4, LD }, /* 00 0 0000: lwz / lwarx */
65 INVALID, /* 00 0 0001 */
66 { 4, ST }, /* 00 0 0010: stw */
67 INVALID, /* 00 0 0011 */
68 { 2, LD }, /* 00 0 0100: lhz */
69 { 2, LD+SE }, /* 00 0 0101: lha */
70 { 2, ST }, /* 00 0 0110: sth */
71 { 4, LD+M }, /* 00 0 0111: lmw */
72 { 4, LD+F+S }, /* 00 0 1000: lfs */
73 { 8, LD+F }, /* 00 0 1001: lfd */
74 { 4, ST+F+S }, /* 00 0 1010: stfs */
75 { 8, ST+F }, /* 00 0 1011: stfd */
76 INVALID, /* 00 0 1100 */
77 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
78 INVALID, /* 00 0 1110 */
79 { 8, ST }, /* 00 0 1111: std/stdu */
80 { 4, LD+U }, /* 00 1 0000: lwzu */
81 INVALID, /* 00 1 0001 */
82 { 4, ST+U }, /* 00 1 0010: stwu */
83 INVALID, /* 00 1 0011 */
84 { 2, LD+U }, /* 00 1 0100: lhzu */
85 { 2, LD+SE+U }, /* 00 1 0101: lhau */
86 { 2, ST+U }, /* 00 1 0110: sthu */
87 { 4, ST+M }, /* 00 1 0111: stmw */
88 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
89 { 8, LD+F+U }, /* 00 1 1001: lfdu */
90 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
91 { 8, ST+F+U }, /* 00 1 1011: stfdu */
92 { 16, LD+F }, /* 00 1 1100: lfdp */
93 INVALID, /* 00 1 1101 */
94 { 16, ST+F }, /* 00 1 1110: stfdp */
95 INVALID, /* 00 1 1111 */
96 { 8, LD }, /* 01 0 0000: ldx */
97 INVALID, /* 01 0 0001 */
98 { 8, ST }, /* 01 0 0010: stdx */
99 INVALID, /* 01 0 0011 */
100 INVALID, /* 01 0 0100 */
101 { 4, LD+SE }, /* 01 0 0101: lwax */
102 INVALID, /* 01 0 0110 */
103 INVALID, /* 01 0 0111 */
104 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
105 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
106 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
107 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
108 INVALID, /* 01 0 1100 */
109 { 8, LD+U }, /* 01 0 1101: ldu */
110 INVALID, /* 01 0 1110 */
111 { 8, ST+U }, /* 01 0 1111: stdu */
112 { 8, LD+U }, /* 01 1 0000: ldux */
113 INVALID, /* 01 1 0001 */
114 { 8, ST+U }, /* 01 1 0010: stdux */
115 INVALID, /* 01 1 0011 */
116 INVALID, /* 01 1 0100 */
117 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
118 INVALID, /* 01 1 0110 */
119 INVALID, /* 01 1 0111 */
120 INVALID, /* 01 1 1000 */
121 INVALID, /* 01 1 1001 */
122 INVALID, /* 01 1 1010 */
123 INVALID, /* 01 1 1011 */
124 INVALID, /* 01 1 1100 */
125 INVALID, /* 01 1 1101 */
126 INVALID, /* 01 1 1110 */
127 INVALID, /* 01 1 1111 */
128 INVALID, /* 10 0 0000 */
129 INVALID, /* 10 0 0001 */
130 INVALID, /* 10 0 0010: stwcx. */
131 INVALID, /* 10 0 0011 */
132 INVALID, /* 10 0 0100 */
133 INVALID, /* 10 0 0101 */
134 INVALID, /* 10 0 0110 */
135 INVALID, /* 10 0 0111 */
136 { 4, LD+SW }, /* 10 0 1000: lwbrx */
137 INVALID, /* 10 0 1001 */
138 { 4, ST+SW }, /* 10 0 1010: stwbrx */
139 INVALID, /* 10 0 1011 */
140 { 2, LD+SW }, /* 10 0 1100: lhbrx */
141 { 4, LD+SE }, /* 10 0 1101 lwa */
142 { 2, ST+SW }, /* 10 0 1110: sthbrx */
143 INVALID, /* 10 0 1111 */
144 INVALID, /* 10 1 0000 */
145 INVALID, /* 10 1 0001 */
146 INVALID, /* 10 1 0010 */
147 INVALID, /* 10 1 0011 */
148 INVALID, /* 10 1 0100 */
149 INVALID, /* 10 1 0101 */
150 INVALID, /* 10 1 0110 */
151 INVALID, /* 10 1 0111 */
152 INVALID, /* 10 1 1000 */
153 INVALID, /* 10 1 1001 */
154 INVALID, /* 10 1 1010 */
155 INVALID, /* 10 1 1011 */
156 INVALID, /* 10 1 1100 */
157 INVALID, /* 10 1 1101 */
158 INVALID, /* 10 1 1110 */
159 { 0, ST+HARD }, /* 10 1 1111: dcbz */
160 { 4, LD }, /* 11 0 0000: lwzx */
161 INVALID, /* 11 0 0001 */
162 { 4, ST }, /* 11 0 0010: stwx */
163 INVALID, /* 11 0 0011 */
164 { 2, LD }, /* 11 0 0100: lhzx */
165 { 2, LD+SE }, /* 11 0 0101: lhax */
166 { 2, ST }, /* 11 0 0110: sthx */
167 INVALID, /* 11 0 0111 */
168 { 4, LD+F+S }, /* 11 0 1000: lfsx */
169 { 8, LD+F }, /* 11 0 1001: lfdx */
170 { 4, ST+F+S }, /* 11 0 1010: stfsx */
171 { 8, ST+F }, /* 11 0 1011: stfdx */
172 { 16, LD+F }, /* 11 0 1100: lfdpx */
173 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
174 { 16, ST+F }, /* 11 0 1110: stfdpx */
175 { 4, ST+F }, /* 11 0 1111: stfiwx */
176 { 4, LD+U }, /* 11 1 0000: lwzux */
177 INVALID, /* 11 1 0001 */
178 { 4, ST+U }, /* 11 1 0010: stwux */
179 INVALID, /* 11 1 0011 */
180 { 2, LD+U }, /* 11 1 0100: lhzux */
181 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
182 { 2, ST+U }, /* 11 1 0110: sthux */
183 INVALID, /* 11 1 0111 */
184 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
185 { 8, LD+F+U }, /* 11 1 1001: lfdux */
186 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
187 { 8, ST+F+U }, /* 11 1 1011: stfdux */
188 INVALID, /* 11 1 1100 */
189 { 4, LD+F }, /* 11 1 1101: lfiwzx */
190 INVALID, /* 11 1 1110 */
191 INVALID, /* 11 1 1111 */
192 };
193
194 /*
195 * Create a DSISR value from the instruction
196 */
197 static inline unsigned make_dsisr(unsigned instr)
198 {
199 unsigned dsisr;
200
201
202 /* bits 6:15 --> 22:31 */
203 dsisr = (instr & 0x03ff0000) >> 16;
204
205 if (IS_XFORM(instr)) {
206 /* bits 29:30 --> 15:16 */
207 dsisr |= (instr & 0x00000006) << 14;
208 /* bit 25 --> 17 */
209 dsisr |= (instr & 0x00000040) << 8;
210 /* bits 21:24 --> 18:21 */
211 dsisr |= (instr & 0x00000780) << 3;
212 } else {
213 /* bit 5 --> 17 */
214 dsisr |= (instr & 0x04000000) >> 12;
215 /* bits 1: 4 --> 18:21 */
216 dsisr |= (instr & 0x78000000) >> 17;
217 /* bits 30:31 --> 12:13 */
218 if (IS_DSFORM(instr))
219 dsisr |= (instr & 0x00000003) << 18;
220 }
221
222 return dsisr;
223 }
224
225 /*
226 * The dcbz (data cache block zero) instruction
227 * gives an alignment fault if used on non-cacheable
228 * memory. We handle the fault mainly for the
229 * case when we are running with the cache disabled
230 * for debugging.
231 */
232 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
233 {
234 long __user *p;
235 int i, size;
236
237 #ifdef __powerpc64__
238 size = ppc64_caches.dline_size;
239 #else
240 size = L1_CACHE_BYTES;
241 #endif
242 p = (long __user *) (regs->dar & -size);
243 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
244 return -EFAULT;
245 for (i = 0; i < size / sizeof(long); ++i)
246 if (__put_user_inatomic(0, p+i))
247 return -EFAULT;
248 return 1;
249 }
250
251 /*
252 * Emulate load & store multiple instructions
253 * On 64-bit machines, these instructions only affect/use the
254 * bottom 4 bytes of each register, and the loads clear the
255 * top 4 bytes of the affected register.
256 */
257 #ifdef __BIG_ENDIAN__
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
262 #endif
263 #endif
264
265 #ifdef __LITTLE_ENDIAN__
266 #define REG_BYTE(rp, i) (*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
267 #endif
268
269 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
270
271 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
272 unsigned int reg, unsigned int nb,
273 unsigned int flags, unsigned int instr,
274 unsigned long swiz)
275 {
276 unsigned long *rptr;
277 unsigned int nb0, i, bswiz;
278 unsigned long p;
279
280 /*
281 * We do not try to emulate 8 bytes multiple as they aren't really
282 * available in our operating environments and we don't try to
283 * emulate multiples operations in kernel land as they should never
284 * be used/generated there at least not on unaligned boundaries
285 */
286 if (unlikely((nb > 4) || !user_mode(regs)))
287 return 0;
288
289 /* lmw, stmw, lswi/x, stswi/x */
290 nb0 = 0;
291 if (flags & HARD) {
292 if (flags & SX) {
293 nb = regs->xer & 127;
294 if (nb == 0)
295 return 1;
296 } else {
297 unsigned long pc = regs->nip ^ (swiz & 4);
298
299 if (__get_user_inatomic(instr,
300 (unsigned int __user *)pc))
301 return -EFAULT;
302 if (swiz == 0 && (flags & SW))
303 instr = cpu_to_le32(instr);
304 nb = (instr >> 11) & 0x1f;
305 if (nb == 0)
306 nb = 32;
307 }
308 if (nb + reg * 4 > 128) {
309 nb0 = nb + reg * 4 - 128;
310 nb = 128 - reg * 4;
311 }
312 #ifdef __LITTLE_ENDIAN__
313 /*
314 * String instructions are endian neutral but the code
315 * below is not. Force byte swapping on so that the
316 * effects of swizzling are undone in the load/store
317 * loops below.
318 */
319 flags ^= SW;
320 #endif
321 } else {
322 /* lwm, stmw */
323 nb = (32 - reg) * 4;
324 }
325
326 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
327 return -EFAULT; /* bad address */
328
329 rptr = &regs->gpr[reg];
330 p = (unsigned long) addr;
331 bswiz = (flags & SW)? 3: 0;
332
333 if (!(flags & ST)) {
334 /*
335 * This zeroes the top 4 bytes of the affected registers
336 * in 64-bit mode, and also zeroes out any remaining
337 * bytes of the last register for lsw*.
338 */
339 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
340 if (nb0 > 0)
341 memset(&regs->gpr[0], 0,
342 ((nb0 + 3) / 4) * sizeof(unsigned long));
343
344 for (i = 0; i < nb; ++i, ++p)
345 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
346 SWIZ_PTR(p)))
347 return -EFAULT;
348 if (nb0 > 0) {
349 rptr = &regs->gpr[0];
350 addr += nb;
351 for (i = 0; i < nb0; ++i, ++p)
352 if (__get_user_inatomic(REG_BYTE(rptr,
353 i ^ bswiz),
354 SWIZ_PTR(p)))
355 return -EFAULT;
356 }
357
358 } else {
359 for (i = 0; i < nb; ++i, ++p)
360 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
361 SWIZ_PTR(p)))
362 return -EFAULT;
363 if (nb0 > 0) {
364 rptr = &regs->gpr[0];
365 addr += nb;
366 for (i = 0; i < nb0; ++i, ++p)
367 if (__put_user_inatomic(REG_BYTE(rptr,
368 i ^ bswiz),
369 SWIZ_PTR(p)))
370 return -EFAULT;
371 }
372 }
373 return 1;
374 }
375
376 /*
377 * Emulate floating-point pair loads and stores.
378 * Only POWER6 has these instructions, and it does true little-endian,
379 * so we don't need the address swizzling.
380 */
381 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
382 unsigned int flags)
383 {
384 char *ptr0 = (char *) &current->thread.TS_FPR(reg);
385 char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
386 int i, ret, sw = 0;
387
388 if (!(flags & F))
389 return 0;
390 if (reg & 1)
391 return 0; /* invalid form: FRS/FRT must be even */
392 if (flags & SW)
393 sw = 7;
394 ret = 0;
395 for (i = 0; i < 8; ++i) {
396 if (!(flags & ST)) {
397 ret |= __get_user(ptr0[i^sw], addr + i);
398 ret |= __get_user(ptr1[i^sw], addr + i + 8);
399 } else {
400 ret |= __put_user(ptr0[i^sw], addr + i);
401 ret |= __put_user(ptr1[i^sw], addr + i + 8);
402 }
403 }
404 if (ret)
405 return -EFAULT;
406 return 1; /* exception handled and fixed up */
407 }
408
409 #ifdef CONFIG_SPE
410
411 static struct aligninfo spe_aligninfo[32] = {
412 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
413 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
414 { 8, LD }, /* 0 00 10: evldh[x] */
415 INVALID, /* 0 00 11 */
416 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
417 INVALID, /* 0 01 01 */
418 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
419 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
420 { 4, LD }, /* 0 10 00: evlwhe[x] */
421 INVALID, /* 0 10 01 */
422 { 4, LD }, /* 0 10 10: evlwhou[x] */
423 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
424 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
425 INVALID, /* 0 11 01 */
426 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
427 INVALID, /* 0 11 11 */
428
429 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
430 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
431 { 8, ST }, /* 1 00 10: evstdh[x] */
432 INVALID, /* 1 00 11 */
433 INVALID, /* 1 01 00 */
434 INVALID, /* 1 01 01 */
435 INVALID, /* 1 01 10 */
436 INVALID, /* 1 01 11 */
437 { 4, ST }, /* 1 10 00: evstwhe[x] */
438 INVALID, /* 1 10 01 */
439 { 4, ST }, /* 1 10 10: evstwho[x] */
440 INVALID, /* 1 10 11 */
441 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
442 INVALID, /* 1 11 01 */
443 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
444 INVALID, /* 1 11 11 */
445 };
446
447 #define EVLDD 0x00
448 #define EVLDW 0x01
449 #define EVLDH 0x02
450 #define EVLHHESPLAT 0x04
451 #define EVLHHOUSPLAT 0x06
452 #define EVLHHOSSPLAT 0x07
453 #define EVLWHE 0x08
454 #define EVLWHOU 0x0A
455 #define EVLWHOS 0x0B
456 #define EVLWWSPLAT 0x0C
457 #define EVLWHSPLAT 0x0E
458 #define EVSTDD 0x10
459 #define EVSTDW 0x11
460 #define EVSTDH 0x12
461 #define EVSTWHE 0x18
462 #define EVSTWHO 0x1A
463 #define EVSTWWE 0x1C
464 #define EVSTWWO 0x1E
465
466 /*
467 * Emulate SPE loads and stores.
468 * Only Book-E has these instructions, and it does true little-endian,
469 * so we don't need the address swizzling.
470 */
471 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
472 unsigned int instr)
473 {
474 int ret;
475 union {
476 u64 ll;
477 u32 w[2];
478 u16 h[4];
479 u8 v[8];
480 } data, temp;
481 unsigned char __user *p, *addr;
482 unsigned long *evr = &current->thread.evr[reg];
483 unsigned int nb, flags;
484
485 instr = (instr >> 1) & 0x1f;
486
487 /* DAR has the operand effective address */
488 addr = (unsigned char __user *)regs->dar;
489
490 nb = spe_aligninfo[instr].len;
491 flags = spe_aligninfo[instr].flags;
492
493 /* Verify the address of the operand */
494 if (unlikely(user_mode(regs) &&
495 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
496 addr, nb)))
497 return -EFAULT;
498
499 /* userland only */
500 if (unlikely(!user_mode(regs)))
501 return 0;
502
503 flush_spe_to_thread(current);
504
505 /* If we are loading, get the data from user space, else
506 * get it from register values
507 */
508 if (flags & ST) {
509 data.ll = 0;
510 switch (instr) {
511 case EVSTDD:
512 case EVSTDW:
513 case EVSTDH:
514 data.w[0] = *evr;
515 data.w[1] = regs->gpr[reg];
516 break;
517 case EVSTWHE:
518 data.h[2] = *evr >> 16;
519 data.h[3] = regs->gpr[reg] >> 16;
520 break;
521 case EVSTWHO:
522 data.h[2] = *evr & 0xffff;
523 data.h[3] = regs->gpr[reg] & 0xffff;
524 break;
525 case EVSTWWE:
526 data.w[1] = *evr;
527 break;
528 case EVSTWWO:
529 data.w[1] = regs->gpr[reg];
530 break;
531 default:
532 return -EINVAL;
533 }
534 } else {
535 temp.ll = data.ll = 0;
536 ret = 0;
537 p = addr;
538
539 switch (nb) {
540 case 8:
541 ret |= __get_user_inatomic(temp.v[0], p++);
542 ret |= __get_user_inatomic(temp.v[1], p++);
543 ret |= __get_user_inatomic(temp.v[2], p++);
544 ret |= __get_user_inatomic(temp.v[3], p++);
545 case 4:
546 ret |= __get_user_inatomic(temp.v[4], p++);
547 ret |= __get_user_inatomic(temp.v[5], p++);
548 case 2:
549 ret |= __get_user_inatomic(temp.v[6], p++);
550 ret |= __get_user_inatomic(temp.v[7], p++);
551 if (unlikely(ret))
552 return -EFAULT;
553 }
554
555 switch (instr) {
556 case EVLDD:
557 case EVLDW:
558 case EVLDH:
559 data.ll = temp.ll;
560 break;
561 case EVLHHESPLAT:
562 data.h[0] = temp.h[3];
563 data.h[2] = temp.h[3];
564 break;
565 case EVLHHOUSPLAT:
566 case EVLHHOSSPLAT:
567 data.h[1] = temp.h[3];
568 data.h[3] = temp.h[3];
569 break;
570 case EVLWHE:
571 data.h[0] = temp.h[2];
572 data.h[2] = temp.h[3];
573 break;
574 case EVLWHOU:
575 case EVLWHOS:
576 data.h[1] = temp.h[2];
577 data.h[3] = temp.h[3];
578 break;
579 case EVLWWSPLAT:
580 data.w[0] = temp.w[1];
581 data.w[1] = temp.w[1];
582 break;
583 case EVLWHSPLAT:
584 data.h[0] = temp.h[2];
585 data.h[1] = temp.h[2];
586 data.h[2] = temp.h[3];
587 data.h[3] = temp.h[3];
588 break;
589 default:
590 return -EINVAL;
591 }
592 }
593
594 if (flags & SW) {
595 switch (flags & 0xf0) {
596 case E8:
597 data.ll = swab64(data.ll);
598 break;
599 case E4:
600 data.w[0] = swab32(data.w[0]);
601 data.w[1] = swab32(data.w[1]);
602 break;
603 /* Its half word endian */
604 default:
605 data.h[0] = swab16(data.h[0]);
606 data.h[1] = swab16(data.h[1]);
607 data.h[2] = swab16(data.h[2]);
608 data.h[3] = swab16(data.h[3]);
609 break;
610 }
611 }
612
613 if (flags & SE) {
614 data.w[0] = (s16)data.h[1];
615 data.w[1] = (s16)data.h[3];
616 }
617
618 /* Store result to memory or update registers */
619 if (flags & ST) {
620 ret = 0;
621 p = addr;
622 switch (nb) {
623 case 8:
624 ret |= __put_user_inatomic(data.v[0], p++);
625 ret |= __put_user_inatomic(data.v[1], p++);
626 ret |= __put_user_inatomic(data.v[2], p++);
627 ret |= __put_user_inatomic(data.v[3], p++);
628 case 4:
629 ret |= __put_user_inatomic(data.v[4], p++);
630 ret |= __put_user_inatomic(data.v[5], p++);
631 case 2:
632 ret |= __put_user_inatomic(data.v[6], p++);
633 ret |= __put_user_inatomic(data.v[7], p++);
634 }
635 if (unlikely(ret))
636 return -EFAULT;
637 } else {
638 *evr = data.w[0];
639 regs->gpr[reg] = data.w[1];
640 }
641
642 return 1;
643 }
644 #endif /* CONFIG_SPE */
645
646 #ifdef CONFIG_VSX
647 /*
648 * Emulate VSX instructions...
649 */
650 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
651 unsigned int areg, struct pt_regs *regs,
652 unsigned int flags, unsigned int length,
653 unsigned int elsize)
654 {
655 char *ptr;
656 unsigned long *lptr;
657 int ret = 0;
658 int sw = 0;
659 int i, j;
660
661 /* userland only */
662 if (unlikely(!user_mode(regs)))
663 return 0;
664
665 flush_vsx_to_thread(current);
666
667 if (reg < 32)
668 ptr = (char *) &current->thread.fp_state.fpr[reg][0];
669 else
670 ptr = (char *) &current->thread.vr_state.vr[reg - 32];
671
672 lptr = (unsigned long *) ptr;
673
674 #ifdef __LITTLE_ENDIAN__
675 if (flags & SW) {
676 elsize = length;
677 sw = length-1;
678 } else {
679 /*
680 * The elements are BE ordered, even in LE mode, so process
681 * them in reverse order.
682 */
683 addr += length - elsize;
684
685 /* 8 byte memory accesses go in the top 8 bytes of the VR */
686 if (length == 8)
687 ptr += 8;
688 }
689 #else
690 if (flags & SW)
691 sw = elsize-1;
692 #endif
693
694 for (j = 0; j < length; j += elsize) {
695 for (i = 0; i < elsize; ++i) {
696 if (flags & ST)
697 ret |= __put_user(ptr[i^sw], addr + i);
698 else
699 ret |= __get_user(ptr[i^sw], addr + i);
700 }
701 ptr += elsize;
702 #ifdef __LITTLE_ENDIAN__
703 addr -= elsize;
704 #else
705 addr += elsize;
706 #endif
707 }
708
709 #ifdef __BIG_ENDIAN__
710 #define VSX_HI 0
711 #define VSX_LO 1
712 #else
713 #define VSX_HI 1
714 #define VSX_LO 0
715 #endif
716
717 if (!ret) {
718 if (flags & U)
719 regs->gpr[areg] = regs->dar;
720
721 /* Splat load copies the same data to top and bottom 8 bytes */
722 if (flags & SPLT)
723 lptr[VSX_LO] = lptr[VSX_HI];
724 /* For 8 byte loads, zero the low 8 bytes */
725 else if (!(flags & ST) && (8 == length))
726 lptr[VSX_LO] = 0;
727 } else
728 return -EFAULT;
729
730 return 1;
731 }
732 #endif
733
734 /*
735 * Called on alignment exception. Attempts to fixup
736 *
737 * Return 1 on success
738 * Return 0 if unable to handle the interrupt
739 * Return -EFAULT if data address is bad
740 */
741
742 int fix_alignment(struct pt_regs *regs)
743 {
744 unsigned int instr, nb, flags, instruction = 0;
745 unsigned int reg, areg;
746 unsigned int dsisr;
747 unsigned char __user *addr;
748 unsigned long p, swiz;
749 int ret, i;
750 union data {
751 u64 ll;
752 double dd;
753 unsigned char v[8];
754 struct {
755 #ifdef __LITTLE_ENDIAN__
756 int low32;
757 unsigned hi32;
758 #else
759 unsigned hi32;
760 int low32;
761 #endif
762 } x32;
763 struct {
764 #ifdef __LITTLE_ENDIAN__
765 short low16;
766 unsigned char hi48[6];
767 #else
768 unsigned char hi48[6];
769 short low16;
770 #endif
771 } x16;
772 } data;
773
774 /*
775 * We require a complete register set, if not, then our assembly
776 * is broken
777 */
778 CHECK_FULL_REGS(regs);
779
780 dsisr = regs->dsisr;
781
782 /* Some processors don't provide us with a DSISR we can use here,
783 * let's make one up from the instruction
784 */
785 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
786 unsigned long pc = regs->nip;
787
788 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
789 pc ^= 4;
790 if (unlikely(__get_user_inatomic(instr,
791 (unsigned int __user *)pc)))
792 return -EFAULT;
793 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
794 instr = cpu_to_le32(instr);
795 dsisr = make_dsisr(instr);
796 instruction = instr;
797 }
798
799 /* extract the operation and registers from the dsisr */
800 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
801 areg = dsisr & 0x1f; /* register to update */
802
803 #ifdef CONFIG_SPE
804 if ((instr >> 26) == 0x4) {
805 PPC_WARN_ALIGNMENT(spe, regs);
806 return emulate_spe(regs, reg, instr);
807 }
808 #endif
809
810 instr = (dsisr >> 10) & 0x7f;
811 instr |= (dsisr >> 13) & 0x60;
812
813 /* Lookup the operation in our table */
814 nb = aligninfo[instr].len;
815 flags = aligninfo[instr].flags;
816
817 /* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
818 if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
819 nb = 8;
820 flags = LD+SW;
821 } else if (IS_XFORM(instruction) &&
822 ((instruction >> 1) & 0x3ff) == 660) {
823 nb = 8;
824 flags = ST+SW;
825 }
826
827 /* Byteswap little endian loads and stores */
828 swiz = 0;
829 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
830 flags ^= SW;
831 #ifdef __BIG_ENDIAN__
832 /*
833 * So-called "PowerPC little endian" mode works by
834 * swizzling addresses rather than by actually doing
835 * any byte-swapping. To emulate this, we XOR each
836 * byte address with 7. We also byte-swap, because
837 * the processor's address swizzling depends on the
838 * operand size (it xors the address with 7 for bytes,
839 * 6 for halfwords, 4 for words, 0 for doublewords) but
840 * we will xor with 7 and load/store each byte separately.
841 */
842 if (cpu_has_feature(CPU_FTR_PPC_LE))
843 swiz = 7;
844 #endif
845 }
846
847 /* DAR has the operand effective address */
848 addr = (unsigned char __user *)regs->dar;
849
850 #ifdef CONFIG_VSX
851 if ((instruction & 0xfc00003e) == 0x7c000018) {
852 unsigned int elsize;
853
854 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
855 reg |= (instruction & 0x1) << 5;
856 /* Simple inline decoder instead of a table */
857 /* VSX has only 8 and 16 byte memory accesses */
858 nb = 8;
859 if (instruction & 0x200)
860 nb = 16;
861
862 /* Vector stores in little-endian mode swap individual
863 elements, so process them separately */
864 elsize = 4;
865 if (instruction & 0x80)
866 elsize = 8;
867
868 flags = 0;
869 if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
870 flags |= SW;
871 if (instruction & 0x100)
872 flags |= ST;
873 if (instruction & 0x040)
874 flags |= U;
875 /* splat load needs a special decoder */
876 if ((instruction & 0x400) == 0){
877 flags |= SPLT;
878 nb = 8;
879 }
880 PPC_WARN_ALIGNMENT(vsx, regs);
881 return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
882 }
883 #endif
884 /* A size of 0 indicates an instruction we don't support, with
885 * the exception of DCBZ which is handled as a special case here
886 */
887 if (instr == DCBZ) {
888 PPC_WARN_ALIGNMENT(dcbz, regs);
889 return emulate_dcbz(regs, addr);
890 }
891 if (unlikely(nb == 0))
892 return 0;
893
894 /* Load/Store Multiple instructions are handled in their own
895 * function
896 */
897 if (flags & M) {
898 PPC_WARN_ALIGNMENT(multiple, regs);
899 return emulate_multiple(regs, addr, reg, nb,
900 flags, instr, swiz);
901 }
902
903 /* Verify the address of the operand */
904 if (unlikely(user_mode(regs) &&
905 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
906 addr, nb)))
907 return -EFAULT;
908
909 /* Force the fprs into the save area so we can reference them */
910 if (flags & F) {
911 /* userland only */
912 if (unlikely(!user_mode(regs)))
913 return 0;
914 flush_fp_to_thread(current);
915 }
916
917 /* Special case for 16-byte FP loads and stores */
918 if (nb == 16) {
919 PPC_WARN_ALIGNMENT(fp_pair, regs);
920 return emulate_fp_pair(addr, reg, flags);
921 }
922
923 PPC_WARN_ALIGNMENT(unaligned, regs);
924
925 /* If we are loading, get the data from user space, else
926 * get it from register values
927 */
928 if (!(flags & ST)) {
929 unsigned int start = 0;
930
931 switch (nb) {
932 case 4:
933 start = offsetof(union data, x32.low32);
934 break;
935 case 2:
936 start = offsetof(union data, x16.low16);
937 break;
938 }
939
940 data.ll = 0;
941 ret = 0;
942 p = (unsigned long)addr;
943
944 for (i = 0; i < nb; i++)
945 ret |= __get_user_inatomic(data.v[start + i],
946 SWIZ_PTR(p++));
947
948 if (unlikely(ret))
949 return -EFAULT;
950
951 } else if (flags & F) {
952 data.ll = current->thread.TS_FPR(reg);
953 if (flags & S) {
954 /* Single-precision FP store requires conversion... */
955 #ifdef CONFIG_PPC_FPU
956 preempt_disable();
957 enable_kernel_fp();
958 cvt_df(&data.dd, (float *)&data.x32.low32);
959 preempt_enable();
960 #else
961 return 0;
962 #endif
963 }
964 } else
965 data.ll = regs->gpr[reg];
966
967 if (flags & SW) {
968 switch (nb) {
969 case 8:
970 data.ll = swab64(data.ll);
971 break;
972 case 4:
973 data.x32.low32 = swab32(data.x32.low32);
974 break;
975 case 2:
976 data.x16.low16 = swab16(data.x16.low16);
977 break;
978 }
979 }
980
981 /* Perform other misc operations like sign extension
982 * or floating point single precision conversion
983 */
984 switch (flags & ~(U|SW)) {
985 case LD+SE: /* sign extending integer loads */
986 case LD+F+SE: /* sign extend for lfiwax */
987 if ( nb == 2 )
988 data.ll = data.x16.low16;
989 else /* nb must be 4 */
990 data.ll = data.x32.low32;
991 break;
992
993 /* Single-precision FP load requires conversion... */
994 case LD+F+S:
995 #ifdef CONFIG_PPC_FPU
996 preempt_disable();
997 enable_kernel_fp();
998 cvt_fd((float *)&data.x32.low32, &data.dd);
999 preempt_enable();
1000 #else
1001 return 0;
1002 #endif
1003 break;
1004 }
1005
1006 /* Store result to memory or update registers */
1007 if (flags & ST) {
1008 unsigned int start = 0;
1009
1010 switch (nb) {
1011 case 4:
1012 start = offsetof(union data, x32.low32);
1013 break;
1014 case 2:
1015 start = offsetof(union data, x16.low16);
1016 break;
1017 }
1018
1019 ret = 0;
1020 p = (unsigned long)addr;
1021
1022 for (i = 0; i < nb; i++)
1023 ret |= __put_user_inatomic(data.v[start + i],
1024 SWIZ_PTR(p++));
1025
1026 if (unlikely(ret))
1027 return -EFAULT;
1028 } else if (flags & F)
1029 current->thread.TS_FPR(reg) = data.ll;
1030 else
1031 regs->gpr[reg] = data.ll;
1032
1033 /* Update RA as needed */
1034 if (flags & U)
1035 regs->gpr[areg] = regs->dar;
1036
1037 return 1;
1038 }