]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/eeh.c
Merge tag 'hwmon-for-linus-v4.13-rc2' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / eeh.c
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/sched.h>
26 #include <linux/init.h>
27 #include <linux/list.h>
28 #include <linux/pci.h>
29 #include <linux/iommu.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rbtree.h>
32 #include <linux/reboot.h>
33 #include <linux/seq_file.h>
34 #include <linux/spinlock.h>
35 #include <linux/export.h>
36 #include <linux/of.h>
37
38 #include <linux/atomic.h>
39 #include <asm/debugfs.h>
40 #include <asm/eeh.h>
41 #include <asm/eeh_event.h>
42 #include <asm/io.h>
43 #include <asm/iommu.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47
48
49 /** Overview:
50 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
51 * dealing with PCI bus errors that can't be dealt with within the
52 * usual PCI framework, except by check-stopping the CPU. Systems
53 * that are designed for high-availability/reliability cannot afford
54 * to crash due to a "mere" PCI error, thus the need for EEH.
55 * An EEH-capable bridge operates by converting a detected error
56 * into a "slot freeze", taking the PCI adapter off-line, making
57 * the slot behave, from the OS'es point of view, as if the slot
58 * were "empty": all reads return 0xff's and all writes are silently
59 * ignored. EEH slot isolation events can be triggered by parity
60 * errors on the address or data busses (e.g. during posted writes),
61 * which in turn might be caused by low voltage on the bus, dust,
62 * vibration, humidity, radioactivity or plain-old failed hardware.
63 *
64 * Note, however, that one of the leading causes of EEH slot
65 * freeze events are buggy device drivers, buggy device microcode,
66 * or buggy device hardware. This is because any attempt by the
67 * device to bus-master data to a memory address that is not
68 * assigned to the device will trigger a slot freeze. (The idea
69 * is to prevent devices-gone-wild from corrupting system memory).
70 * Buggy hardware/drivers will have a miserable time co-existing
71 * with EEH.
72 *
73 * Ideally, a PCI device driver, when suspecting that an isolation
74 * event has occurred (e.g. by reading 0xff's), will then ask EEH
75 * whether this is the case, and then take appropriate steps to
76 * reset the PCI slot, the PCI device, and then resume operations.
77 * However, until that day, the checking is done here, with the
78 * eeh_check_failure() routine embedded in the MMIO macros. If
79 * the slot is found to be isolated, an "EEH Event" is synthesized
80 * and sent out for processing.
81 */
82
83 /* If a device driver keeps reading an MMIO register in an interrupt
84 * handler after a slot isolation event, it might be broken.
85 * This sets the threshold for how many read attempts we allow
86 * before printing an error message.
87 */
88 #define EEH_MAX_FAILS 2100000
89
90 /* Time to wait for a PCI slot to report status, in milliseconds */
91 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
92
93 /*
94 * EEH probe mode support, which is part of the flags,
95 * is to support multiple platforms for EEH. Some platforms
96 * like pSeries do PCI emunation based on device tree.
97 * However, other platforms like powernv probe PCI devices
98 * from hardware. The flag is used to distinguish that.
99 * In addition, struct eeh_ops::probe would be invoked for
100 * particular OF node or PCI device so that the corresponding
101 * PE would be created there.
102 */
103 int eeh_subsystem_flags;
104 EXPORT_SYMBOL(eeh_subsystem_flags);
105
106 /*
107 * EEH allowed maximal frozen times. If one particular PE's
108 * frozen count in last hour exceeds this limit, the PE will
109 * be forced to be offline permanently.
110 */
111 int eeh_max_freezes = 5;
112
113 /* Platform dependent EEH operations */
114 struct eeh_ops *eeh_ops = NULL;
115
116 /* Lock to avoid races due to multiple reports of an error */
117 DEFINE_RAW_SPINLOCK(confirm_error_lock);
118 EXPORT_SYMBOL_GPL(confirm_error_lock);
119
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130 /*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135 struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
143 };
144
145 static struct eeh_stats eeh_stats;
146
147 static int __init eeh_setup(char *str)
148 {
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
153
154 return 1;
155 }
156 __setup("eeh=", eeh_setup);
157
158 /*
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
162 */
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164 {
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
170
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
195 }
196
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 }
208
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
214
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
222
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
229 }
230
231 }
232
233 pr_warn("%s\n", buffer);
234 }
235
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
241
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
249
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
256 }
257 }
258
259 pr_warn("%s\n", buffer);
260 }
261
262 return n;
263 }
264
265 static void *eeh_dump_pe_log(void *data, void *flag)
266 {
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 eeh_pe_for_each_dev(pe, edev, tmp)
272 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
273 EEH_PCI_REGS_LOG_LEN - *plen);
274
275 return NULL;
276 }
277
278 /**
279 * eeh_slot_error_detail - Generate combined log including driver log and error log
280 * @pe: EEH PE
281 * @severity: temporary or permanent error log
282 *
283 * This routine should be called to generate the combined log, which
284 * is comprised of driver log and error log. The driver log is figured
285 * out from the config space of the corresponding PCI device, while
286 * the error log is fetched through platform dependent function call.
287 */
288 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
289 {
290 size_t loglen = 0;
291
292 /*
293 * When the PHB is fenced or dead, it's pointless to collect
294 * the data from PCI config space because it should return
295 * 0xFF's. For ER, we still retrieve the data from the PCI
296 * config space.
297 *
298 * For pHyp, we have to enable IO for log retrieval. Otherwise,
299 * 0xFF's is always returned from PCI config space.
300 *
301 * When the @severity is EEH_LOG_PERM, the PE is going to be
302 * removed. Prior to that, the drivers for devices included in
303 * the PE will be closed. The drivers rely on working IO path
304 * to bring the devices to quiet state. Otherwise, PCI traffic
305 * from those devices after they are removed is like to cause
306 * another unexpected EEH error.
307 */
308 if (!(pe->type & EEH_PE_PHB)) {
309 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG) ||
310 severity == EEH_LOG_PERM)
311 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
312
313 /*
314 * The config space of some PCI devices can't be accessed
315 * when their PEs are in frozen state. Otherwise, fenced
316 * PHB might be seen. Those PEs are identified with flag
317 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
318 * is set automatically when the PE is put to EEH_PE_ISOLATED.
319 *
320 * Restoring BARs possibly triggers PCI config access in
321 * (OPAL) firmware and then causes fenced PHB. If the
322 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
323 * pointless to restore BARs and dump config space.
324 */
325 eeh_ops->configure_bridge(pe);
326 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
327 eeh_pe_restore_bars(pe);
328
329 pci_regs_buf[0] = 0;
330 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
331 }
332 }
333
334 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
335 }
336
337 /**
338 * eeh_token_to_phys - Convert EEH address token to phys address
339 * @token: I/O token, should be address in the form 0xA....
340 *
341 * This routine should be called to convert virtual I/O address
342 * to physical one.
343 */
344 static inline unsigned long eeh_token_to_phys(unsigned long token)
345 {
346 pte_t *ptep;
347 unsigned long pa;
348 int hugepage_shift;
349
350 /*
351 * We won't find hugepages here(this is iomem). Hence we are not
352 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
353 * page table free, because of init_mm.
354 */
355 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
356 NULL, &hugepage_shift);
357 if (!ptep)
358 return token;
359 WARN_ON(hugepage_shift);
360 pa = pte_pfn(*ptep) << PAGE_SHIFT;
361
362 return pa | (token & (PAGE_SIZE-1));
363 }
364
365 /*
366 * On PowerNV platform, we might already have fenced PHB there.
367 * For that case, it's meaningless to recover frozen PE. Intead,
368 * We have to handle fenced PHB firstly.
369 */
370 static int eeh_phb_check_failure(struct eeh_pe *pe)
371 {
372 struct eeh_pe *phb_pe;
373 unsigned long flags;
374 int ret;
375
376 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
377 return -EPERM;
378
379 /* Find the PHB PE */
380 phb_pe = eeh_phb_pe_get(pe->phb);
381 if (!phb_pe) {
382 pr_warn("%s Can't find PE for PHB#%x\n",
383 __func__, pe->phb->global_number);
384 return -EEXIST;
385 }
386
387 /* If the PHB has been in problematic state */
388 eeh_serialize_lock(&flags);
389 if (phb_pe->state & EEH_PE_ISOLATED) {
390 ret = 0;
391 goto out;
392 }
393
394 /* Check PHB state */
395 ret = eeh_ops->get_state(phb_pe, NULL);
396 if ((ret < 0) ||
397 (ret == EEH_STATE_NOT_SUPPORT) ||
398 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
399 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
400 ret = 0;
401 goto out;
402 }
403
404 /* Isolate the PHB and send event */
405 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
406 eeh_serialize_unlock(flags);
407
408 pr_err("EEH: PHB#%x failure detected, location: %s\n",
409 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
410 dump_stack();
411 eeh_send_failure_event(phb_pe);
412
413 return 1;
414 out:
415 eeh_serialize_unlock(flags);
416 return ret;
417 }
418
419 /**
420 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
421 * @edev: eeh device
422 *
423 * Check for an EEH failure for the given device node. Call this
424 * routine if the result of a read was all 0xff's and you want to
425 * find out if this is due to an EEH slot freeze. This routine
426 * will query firmware for the EEH status.
427 *
428 * Returns 0 if there has not been an EEH error; otherwise returns
429 * a non-zero value and queues up a slot isolation event notification.
430 *
431 * It is safe to call this routine in an interrupt context.
432 */
433 int eeh_dev_check_failure(struct eeh_dev *edev)
434 {
435 int ret;
436 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
437 unsigned long flags;
438 struct pci_dn *pdn;
439 struct pci_dev *dev;
440 struct eeh_pe *pe, *parent_pe, *phb_pe;
441 int rc = 0;
442 const char *location = NULL;
443
444 eeh_stats.total_mmio_ffs++;
445
446 if (!eeh_enabled())
447 return 0;
448
449 if (!edev) {
450 eeh_stats.no_dn++;
451 return 0;
452 }
453 dev = eeh_dev_to_pci_dev(edev);
454 pe = eeh_dev_to_pe(edev);
455
456 /* Access to IO BARs might get this far and still not want checking. */
457 if (!pe) {
458 eeh_stats.ignored_check++;
459 pr_debug("EEH: Ignored check for %s\n",
460 eeh_pci_name(dev));
461 return 0;
462 }
463
464 if (!pe->addr && !pe->config_addr) {
465 eeh_stats.no_cfg_addr++;
466 return 0;
467 }
468
469 /*
470 * On PowerNV platform, we might already have fenced PHB
471 * there and we need take care of that firstly.
472 */
473 ret = eeh_phb_check_failure(pe);
474 if (ret > 0)
475 return ret;
476
477 /*
478 * If the PE isn't owned by us, we shouldn't check the
479 * state. Instead, let the owner handle it if the PE has
480 * been frozen.
481 */
482 if (eeh_pe_passed(pe))
483 return 0;
484
485 /* If we already have a pending isolation event for this
486 * slot, we know it's bad already, we don't need to check.
487 * Do this checking under a lock; as multiple PCI devices
488 * in one slot might report errors simultaneously, and we
489 * only want one error recovery routine running.
490 */
491 eeh_serialize_lock(&flags);
492 rc = 1;
493 if (pe->state & EEH_PE_ISOLATED) {
494 pe->check_count++;
495 if (pe->check_count % EEH_MAX_FAILS == 0) {
496 pdn = eeh_dev_to_pdn(edev);
497 if (pdn->node)
498 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
499 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
500 "location=%s driver=%s pci addr=%s\n",
501 pe->check_count,
502 location ? location : "unknown",
503 eeh_driver_name(dev), eeh_pci_name(dev));
504 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
505 eeh_driver_name(dev));
506 dump_stack();
507 }
508 goto dn_unlock;
509 }
510
511 /*
512 * Now test for an EEH failure. This is VERY expensive.
513 * Note that the eeh_config_addr may be a parent device
514 * in the case of a device behind a bridge, or it may be
515 * function zero of a multi-function device.
516 * In any case they must share a common PHB.
517 */
518 ret = eeh_ops->get_state(pe, NULL);
519
520 /* Note that config-io to empty slots may fail;
521 * they are empty when they don't have children.
522 * We will punt with the following conditions: Failure to get
523 * PE's state, EEH not support and Permanently unavailable
524 * state, PE is in good state.
525 */
526 if ((ret < 0) ||
527 (ret == EEH_STATE_NOT_SUPPORT) ||
528 ((ret & active_flags) == active_flags)) {
529 eeh_stats.false_positives++;
530 pe->false_positives++;
531 rc = 0;
532 goto dn_unlock;
533 }
534
535 /*
536 * It should be corner case that the parent PE has been
537 * put into frozen state as well. We should take care
538 * that at first.
539 */
540 parent_pe = pe->parent;
541 while (parent_pe) {
542 /* Hit the ceiling ? */
543 if (parent_pe->type & EEH_PE_PHB)
544 break;
545
546 /* Frozen parent PE ? */
547 ret = eeh_ops->get_state(parent_pe, NULL);
548 if (ret > 0 &&
549 (ret & active_flags) != active_flags)
550 pe = parent_pe;
551
552 /* Next parent level */
553 parent_pe = parent_pe->parent;
554 }
555
556 eeh_stats.slot_resets++;
557
558 /* Avoid repeated reports of this failure, including problems
559 * with other functions on this device, and functions under
560 * bridges.
561 */
562 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
563 eeh_serialize_unlock(flags);
564
565 /* Most EEH events are due to device driver bugs. Having
566 * a stack trace will help the device-driver authors figure
567 * out what happened. So print that out.
568 */
569 phb_pe = eeh_phb_pe_get(pe->phb);
570 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
571 pe->phb->global_number, pe->addr);
572 pr_err("EEH: PE location: %s, PHB location: %s\n",
573 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
574 dump_stack();
575
576 eeh_send_failure_event(pe);
577
578 return 1;
579
580 dn_unlock:
581 eeh_serialize_unlock(flags);
582 return rc;
583 }
584
585 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
586
587 /**
588 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
589 * @token: I/O address
590 *
591 * Check for an EEH failure at the given I/O address. Call this
592 * routine if the result of a read was all 0xff's and you want to
593 * find out if this is due to an EEH slot freeze event. This routine
594 * will query firmware for the EEH status.
595 *
596 * Note this routine is safe to call in an interrupt context.
597 */
598 int eeh_check_failure(const volatile void __iomem *token)
599 {
600 unsigned long addr;
601 struct eeh_dev *edev;
602
603 /* Finding the phys addr + pci device; this is pretty quick. */
604 addr = eeh_token_to_phys((unsigned long __force) token);
605 edev = eeh_addr_cache_get_dev(addr);
606 if (!edev) {
607 eeh_stats.no_device++;
608 return 0;
609 }
610
611 return eeh_dev_check_failure(edev);
612 }
613 EXPORT_SYMBOL(eeh_check_failure);
614
615
616 /**
617 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
618 * @pe: EEH PE
619 *
620 * This routine should be called to reenable frozen MMIO or DMA
621 * so that it would work correctly again. It's useful while doing
622 * recovery or log collection on the indicated device.
623 */
624 int eeh_pci_enable(struct eeh_pe *pe, int function)
625 {
626 int active_flag, rc;
627
628 /*
629 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
630 * Also, it's pointless to enable them on unfrozen PE. So
631 * we have to check before enabling IO or DMA.
632 */
633 switch (function) {
634 case EEH_OPT_THAW_MMIO:
635 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
636 break;
637 case EEH_OPT_THAW_DMA:
638 active_flag = EEH_STATE_DMA_ACTIVE;
639 break;
640 case EEH_OPT_DISABLE:
641 case EEH_OPT_ENABLE:
642 case EEH_OPT_FREEZE_PE:
643 active_flag = 0;
644 break;
645 default:
646 pr_warn("%s: Invalid function %d\n",
647 __func__, function);
648 return -EINVAL;
649 }
650
651 /*
652 * Check if IO or DMA has been enabled before
653 * enabling them.
654 */
655 if (active_flag) {
656 rc = eeh_ops->get_state(pe, NULL);
657 if (rc < 0)
658 return rc;
659
660 /* Needn't enable it at all */
661 if (rc == EEH_STATE_NOT_SUPPORT)
662 return 0;
663
664 /* It's already enabled */
665 if (rc & active_flag)
666 return 0;
667 }
668
669
670 /* Issue the request */
671 rc = eeh_ops->set_option(pe, function);
672 if (rc)
673 pr_warn("%s: Unexpected state change %d on "
674 "PHB#%x-PE#%x, err=%d\n",
675 __func__, function, pe->phb->global_number,
676 pe->addr, rc);
677
678 /* Check if the request is finished successfully */
679 if (active_flag) {
680 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
681 if (rc < 0)
682 return rc;
683
684 if (rc & active_flag)
685 return 0;
686
687 return -EIO;
688 }
689
690 return rc;
691 }
692
693 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
694 {
695 struct eeh_dev *edev = data;
696 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
697 struct pci_dev *dev = userdata;
698
699 /*
700 * The caller should have disabled and saved the
701 * state for the specified device
702 */
703 if (!pdev || pdev == dev)
704 return NULL;
705
706 /* Ensure we have D0 power state */
707 pci_set_power_state(pdev, PCI_D0);
708
709 /* Save device state */
710 pci_save_state(pdev);
711
712 /*
713 * Disable device to avoid any DMA traffic and
714 * interrupt from the device
715 */
716 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
717
718 return NULL;
719 }
720
721 static void *eeh_restore_dev_state(void *data, void *userdata)
722 {
723 struct eeh_dev *edev = data;
724 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
725 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
726 struct pci_dev *dev = userdata;
727
728 if (!pdev)
729 return NULL;
730
731 /* Apply customization from firmware */
732 if (pdn && eeh_ops->restore_config)
733 eeh_ops->restore_config(pdn);
734
735 /* The caller should restore state for the specified device */
736 if (pdev != dev)
737 pci_restore_state(pdev);
738
739 return NULL;
740 }
741
742 /**
743 * pcibios_set_pcie_reset_state - Set PCI-E reset state
744 * @dev: pci device struct
745 * @state: reset state to enter
746 *
747 * Return value:
748 * 0 if success
749 */
750 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
751 {
752 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
753 struct eeh_pe *pe = eeh_dev_to_pe(edev);
754
755 if (!pe) {
756 pr_err("%s: No PE found on PCI device %s\n",
757 __func__, pci_name(dev));
758 return -EINVAL;
759 }
760
761 switch (state) {
762 case pcie_deassert_reset:
763 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
764 eeh_unfreeze_pe(pe, false);
765 if (!(pe->type & EEH_PE_VF))
766 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
767 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
768 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
769 break;
770 case pcie_hot_reset:
771 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
772 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
773 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
774 if (!(pe->type & EEH_PE_VF))
775 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
776 eeh_ops->reset(pe, EEH_RESET_HOT);
777 break;
778 case pcie_warm_reset:
779 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
780 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
781 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
782 if (!(pe->type & EEH_PE_VF))
783 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
784 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
785 break;
786 default:
787 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
788 return -EINVAL;
789 };
790
791 return 0;
792 }
793
794 /**
795 * eeh_set_pe_freset - Check the required reset for the indicated device
796 * @data: EEH device
797 * @flag: return value
798 *
799 * Each device might have its preferred reset type: fundamental or
800 * hot reset. The routine is used to collected the information for
801 * the indicated device and its children so that the bunch of the
802 * devices could be reset properly.
803 */
804 static void *eeh_set_dev_freset(void *data, void *flag)
805 {
806 struct pci_dev *dev;
807 unsigned int *freset = (unsigned int *)flag;
808 struct eeh_dev *edev = (struct eeh_dev *)data;
809
810 dev = eeh_dev_to_pci_dev(edev);
811 if (dev)
812 *freset |= dev->needs_freset;
813
814 return NULL;
815 }
816
817 /**
818 * eeh_pe_reset_full - Complete a full reset process on the indicated PE
819 * @pe: EEH PE
820 *
821 * This function executes a full reset procedure on a PE, including setting
822 * the appropriate flags, performing a fundamental or hot reset, and then
823 * deactivating the reset status. It is designed to be used within the EEH
824 * subsystem, as opposed to eeh_pe_reset which is exported to drivers and
825 * only performs a single operation at a time.
826 *
827 * This function will attempt to reset a PE three times before failing.
828 */
829 int eeh_pe_reset_full(struct eeh_pe *pe)
830 {
831 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
832 int reset_state = (EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
833 int type = EEH_RESET_HOT;
834 unsigned int freset = 0;
835 int i, state, ret;
836
837 /*
838 * Determine the type of reset to perform - hot or fundamental.
839 * Hot reset is the default operation, unless any device under the
840 * PE requires a fundamental reset.
841 */
842 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
843
844 if (freset)
845 type = EEH_RESET_FUNDAMENTAL;
846
847 /* Mark the PE as in reset state and block config space accesses */
848 eeh_pe_state_mark(pe, reset_state);
849
850 /* Make three attempts at resetting the bus */
851 for (i = 0; i < 3; i++) {
852 ret = eeh_pe_reset(pe, type);
853 if (ret)
854 break;
855
856 ret = eeh_pe_reset(pe, EEH_RESET_DEACTIVATE);
857 if (ret)
858 break;
859
860 /* Wait until the PE is in a functioning state */
861 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
862 if ((state & active_flags) == active_flags)
863 break;
864
865 if (state < 0) {
866 pr_warn("%s: Unrecoverable slot failure on PHB#%x-PE#%x",
867 __func__, pe->phb->global_number, pe->addr);
868 ret = -ENOTRECOVERABLE;
869 break;
870 }
871
872 /* Set error in case this is our last attempt */
873 ret = -EIO;
874 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
875 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
876 }
877
878 eeh_pe_state_clear(pe, reset_state);
879 return ret;
880 }
881
882 /**
883 * eeh_save_bars - Save device bars
884 * @edev: PCI device associated EEH device
885 *
886 * Save the values of the device bars. Unlike the restore
887 * routine, this routine is *not* recursive. This is because
888 * PCI devices are added individually; but, for the restore,
889 * an entire slot is reset at a time.
890 */
891 void eeh_save_bars(struct eeh_dev *edev)
892 {
893 struct pci_dn *pdn;
894 int i;
895
896 pdn = eeh_dev_to_pdn(edev);
897 if (!pdn)
898 return;
899
900 for (i = 0; i < 16; i++)
901 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
902
903 /*
904 * For PCI bridges including root port, we need enable bus
905 * master explicitly. Otherwise, it can't fetch IODA table
906 * entries correctly. So we cache the bit in advance so that
907 * we can restore it after reset, either PHB range or PE range.
908 */
909 if (edev->mode & EEH_DEV_BRIDGE)
910 edev->config_space[1] |= PCI_COMMAND_MASTER;
911 }
912
913 /**
914 * eeh_ops_register - Register platform dependent EEH operations
915 * @ops: platform dependent EEH operations
916 *
917 * Register the platform dependent EEH operation callback
918 * functions. The platform should call this function before
919 * any other EEH operations.
920 */
921 int __init eeh_ops_register(struct eeh_ops *ops)
922 {
923 if (!ops->name) {
924 pr_warn("%s: Invalid EEH ops name for %p\n",
925 __func__, ops);
926 return -EINVAL;
927 }
928
929 if (eeh_ops && eeh_ops != ops) {
930 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
931 __func__, eeh_ops->name, ops->name);
932 return -EEXIST;
933 }
934
935 eeh_ops = ops;
936
937 return 0;
938 }
939
940 /**
941 * eeh_ops_unregister - Unreigster platform dependent EEH operations
942 * @name: name of EEH platform operations
943 *
944 * Unregister the platform dependent EEH operation callback
945 * functions.
946 */
947 int __exit eeh_ops_unregister(const char *name)
948 {
949 if (!name || !strlen(name)) {
950 pr_warn("%s: Invalid EEH ops name\n",
951 __func__);
952 return -EINVAL;
953 }
954
955 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
956 eeh_ops = NULL;
957 return 0;
958 }
959
960 return -EEXIST;
961 }
962
963 static int eeh_reboot_notifier(struct notifier_block *nb,
964 unsigned long action, void *unused)
965 {
966 eeh_clear_flag(EEH_ENABLED);
967 return NOTIFY_DONE;
968 }
969
970 static struct notifier_block eeh_reboot_nb = {
971 .notifier_call = eeh_reboot_notifier,
972 };
973
974 /**
975 * eeh_init - EEH initialization
976 *
977 * Initialize EEH by trying to enable it for all of the adapters in the system.
978 * As a side effect we can determine here if eeh is supported at all.
979 * Note that we leave EEH on so failed config cycles won't cause a machine
980 * check. If a user turns off EEH for a particular adapter they are really
981 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
982 * grant access to a slot if EEH isn't enabled, and so we always enable
983 * EEH for all slots/all devices.
984 *
985 * The eeh-force-off option disables EEH checking globally, for all slots.
986 * Even if force-off is set, the EEH hardware is still enabled, so that
987 * newer systems can boot.
988 */
989 int eeh_init(void)
990 {
991 struct pci_controller *hose, *tmp;
992 struct pci_dn *pdn;
993 static int cnt = 0;
994 int ret = 0;
995
996 /*
997 * We have to delay the initialization on PowerNV after
998 * the PCI hierarchy tree has been built because the PEs
999 * are figured out based on PCI devices instead of device
1000 * tree nodes
1001 */
1002 if (machine_is(powernv) && cnt++ <= 0)
1003 return ret;
1004
1005 /* Register reboot notifier */
1006 ret = register_reboot_notifier(&eeh_reboot_nb);
1007 if (ret) {
1008 pr_warn("%s: Failed to register notifier (%d)\n",
1009 __func__, ret);
1010 return ret;
1011 }
1012
1013 /* call platform initialization function */
1014 if (!eeh_ops) {
1015 pr_warn("%s: Platform EEH operation not found\n",
1016 __func__);
1017 return -EEXIST;
1018 } else if ((ret = eeh_ops->init()))
1019 return ret;
1020
1021 /* Initialize EEH event */
1022 ret = eeh_event_init();
1023 if (ret)
1024 return ret;
1025
1026 /* Enable EEH for all adapters */
1027 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1028 pdn = hose->pci_data;
1029 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1030 }
1031
1032 /*
1033 * Call platform post-initialization. Actually, It's good chance
1034 * to inform platform that EEH is ready to supply service if the
1035 * I/O cache stuff has been built up.
1036 */
1037 if (eeh_ops->post_init) {
1038 ret = eeh_ops->post_init();
1039 if (ret)
1040 return ret;
1041 }
1042
1043 if (eeh_enabled())
1044 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1045 else
1046 pr_info("EEH: No capable adapters found\n");
1047
1048 return ret;
1049 }
1050
1051 core_initcall_sync(eeh_init);
1052
1053 /**
1054 * eeh_add_device_early - Enable EEH for the indicated device node
1055 * @pdn: PCI device node for which to set up EEH
1056 *
1057 * This routine must be used to perform EEH initialization for PCI
1058 * devices that were added after system boot (e.g. hotplug, dlpar).
1059 * This routine must be called before any i/o is performed to the
1060 * adapter (inluding any config-space i/o).
1061 * Whether this actually enables EEH or not for this device depends
1062 * on the CEC architecture, type of the device, on earlier boot
1063 * command-line arguments & etc.
1064 */
1065 void eeh_add_device_early(struct pci_dn *pdn)
1066 {
1067 struct pci_controller *phb;
1068 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1069
1070 if (!edev)
1071 return;
1072
1073 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1074 return;
1075
1076 /* USB Bus children of PCI devices will not have BUID's */
1077 phb = edev->phb;
1078 if (NULL == phb ||
1079 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1080 return;
1081
1082 eeh_ops->probe(pdn, NULL);
1083 }
1084
1085 /**
1086 * eeh_add_device_tree_early - Enable EEH for the indicated device
1087 * @pdn: PCI device node
1088 *
1089 * This routine must be used to perform EEH initialization for the
1090 * indicated PCI device that was added after system boot (e.g.
1091 * hotplug, dlpar).
1092 */
1093 void eeh_add_device_tree_early(struct pci_dn *pdn)
1094 {
1095 struct pci_dn *n;
1096
1097 if (!pdn)
1098 return;
1099
1100 list_for_each_entry(n, &pdn->child_list, list)
1101 eeh_add_device_tree_early(n);
1102 eeh_add_device_early(pdn);
1103 }
1104 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1105
1106 /**
1107 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1108 * @dev: pci device for which to set up EEH
1109 *
1110 * This routine must be used to complete EEH initialization for PCI
1111 * devices that were added after system boot (e.g. hotplug, dlpar).
1112 */
1113 void eeh_add_device_late(struct pci_dev *dev)
1114 {
1115 struct pci_dn *pdn;
1116 struct eeh_dev *edev;
1117
1118 if (!dev || !eeh_enabled())
1119 return;
1120
1121 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1122
1123 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1124 edev = pdn_to_eeh_dev(pdn);
1125 if (edev->pdev == dev) {
1126 pr_debug("EEH: Already referenced !\n");
1127 return;
1128 }
1129
1130 /*
1131 * The EEH cache might not be removed correctly because of
1132 * unbalanced kref to the device during unplug time, which
1133 * relies on pcibios_release_device(). So we have to remove
1134 * that here explicitly.
1135 */
1136 if (edev->pdev) {
1137 eeh_rmv_from_parent_pe(edev);
1138 eeh_addr_cache_rmv_dev(edev->pdev);
1139 eeh_sysfs_remove_device(edev->pdev);
1140 edev->mode &= ~EEH_DEV_SYSFS;
1141
1142 /*
1143 * We definitely should have the PCI device removed
1144 * though it wasn't correctly. So we needn't call
1145 * into error handler afterwards.
1146 */
1147 edev->mode |= EEH_DEV_NO_HANDLER;
1148
1149 edev->pdev = NULL;
1150 dev->dev.archdata.edev = NULL;
1151 }
1152
1153 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1154 eeh_ops->probe(pdn, NULL);
1155
1156 edev->pdev = dev;
1157 dev->dev.archdata.edev = edev;
1158
1159 eeh_addr_cache_insert_dev(dev);
1160 }
1161
1162 /**
1163 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1164 * @bus: PCI bus
1165 *
1166 * This routine must be used to perform EEH initialization for PCI
1167 * devices which are attached to the indicated PCI bus. The PCI bus
1168 * is added after system boot through hotplug or dlpar.
1169 */
1170 void eeh_add_device_tree_late(struct pci_bus *bus)
1171 {
1172 struct pci_dev *dev;
1173
1174 list_for_each_entry(dev, &bus->devices, bus_list) {
1175 eeh_add_device_late(dev);
1176 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1177 struct pci_bus *subbus = dev->subordinate;
1178 if (subbus)
1179 eeh_add_device_tree_late(subbus);
1180 }
1181 }
1182 }
1183 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1184
1185 /**
1186 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1187 * @bus: PCI bus
1188 *
1189 * This routine must be used to add EEH sysfs files for PCI
1190 * devices which are attached to the indicated PCI bus. The PCI bus
1191 * is added after system boot through hotplug or dlpar.
1192 */
1193 void eeh_add_sysfs_files(struct pci_bus *bus)
1194 {
1195 struct pci_dev *dev;
1196
1197 list_for_each_entry(dev, &bus->devices, bus_list) {
1198 eeh_sysfs_add_device(dev);
1199 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1200 struct pci_bus *subbus = dev->subordinate;
1201 if (subbus)
1202 eeh_add_sysfs_files(subbus);
1203 }
1204 }
1205 }
1206 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1207
1208 /**
1209 * eeh_remove_device - Undo EEH setup for the indicated pci device
1210 * @dev: pci device to be removed
1211 *
1212 * This routine should be called when a device is removed from
1213 * a running system (e.g. by hotplug or dlpar). It unregisters
1214 * the PCI device from the EEH subsystem. I/O errors affecting
1215 * this device will no longer be detected after this call; thus,
1216 * i/o errors affecting this slot may leave this device unusable.
1217 */
1218 void eeh_remove_device(struct pci_dev *dev)
1219 {
1220 struct eeh_dev *edev;
1221
1222 if (!dev || !eeh_enabled())
1223 return;
1224 edev = pci_dev_to_eeh_dev(dev);
1225
1226 /* Unregister the device with the EEH/PCI address search system */
1227 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1228
1229 if (!edev || !edev->pdev || !edev->pe) {
1230 pr_debug("EEH: Not referenced !\n");
1231 return;
1232 }
1233
1234 /*
1235 * During the hotplug for EEH error recovery, we need the EEH
1236 * device attached to the parent PE in order for BAR restore
1237 * a bit later. So we keep it for BAR restore and remove it
1238 * from the parent PE during the BAR resotre.
1239 */
1240 edev->pdev = NULL;
1241
1242 /*
1243 * The flag "in_error" is used to trace EEH devices for VFs
1244 * in error state or not. It's set in eeh_report_error(). If
1245 * it's not set, eeh_report_{reset,resume}() won't be called
1246 * for the VF EEH device.
1247 */
1248 edev->in_error = false;
1249 dev->dev.archdata.edev = NULL;
1250 if (!(edev->pe->state & EEH_PE_KEEP))
1251 eeh_rmv_from_parent_pe(edev);
1252 else
1253 edev->mode |= EEH_DEV_DISCONNECTED;
1254
1255 /*
1256 * We're removing from the PCI subsystem, that means
1257 * the PCI device driver can't support EEH or not
1258 * well. So we rely on hotplug completely to do recovery
1259 * for the specific PCI device.
1260 */
1261 edev->mode |= EEH_DEV_NO_HANDLER;
1262
1263 eeh_addr_cache_rmv_dev(dev);
1264 eeh_sysfs_remove_device(dev);
1265 edev->mode &= ~EEH_DEV_SYSFS;
1266 }
1267
1268 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1269 {
1270 int ret;
1271
1272 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1273 if (ret) {
1274 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1275 __func__, ret, pe->phb->global_number, pe->addr);
1276 return ret;
1277 }
1278
1279 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1280 if (ret) {
1281 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1282 __func__, ret, pe->phb->global_number, pe->addr);
1283 return ret;
1284 }
1285
1286 /* Clear software isolated state */
1287 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1288 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1289
1290 return ret;
1291 }
1292
1293
1294 static struct pci_device_id eeh_reset_ids[] = {
1295 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1296 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1297 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1298 { 0 }
1299 };
1300
1301 static int eeh_pe_change_owner(struct eeh_pe *pe)
1302 {
1303 struct eeh_dev *edev, *tmp;
1304 struct pci_dev *pdev;
1305 struct pci_device_id *id;
1306 int flags, ret;
1307
1308 /* Check PE state */
1309 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1310 ret = eeh_ops->get_state(pe, NULL);
1311 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1312 return 0;
1313
1314 /* Unfrozen PE, nothing to do */
1315 if ((ret & flags) == flags)
1316 return 0;
1317
1318 /* Frozen PE, check if it needs PE level reset */
1319 eeh_pe_for_each_dev(pe, edev, tmp) {
1320 pdev = eeh_dev_to_pci_dev(edev);
1321 if (!pdev)
1322 continue;
1323
1324 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1325 if (id->vendor != PCI_ANY_ID &&
1326 id->vendor != pdev->vendor)
1327 continue;
1328 if (id->device != PCI_ANY_ID &&
1329 id->device != pdev->device)
1330 continue;
1331 if (id->subvendor != PCI_ANY_ID &&
1332 id->subvendor != pdev->subsystem_vendor)
1333 continue;
1334 if (id->subdevice != PCI_ANY_ID &&
1335 id->subdevice != pdev->subsystem_device)
1336 continue;
1337
1338 return eeh_pe_reset_and_recover(pe);
1339 }
1340 }
1341
1342 return eeh_unfreeze_pe(pe, true);
1343 }
1344
1345 /**
1346 * eeh_dev_open - Increase count of pass through devices for PE
1347 * @pdev: PCI device
1348 *
1349 * Increase count of passed through devices for the indicated
1350 * PE. In the result, the EEH errors detected on the PE won't be
1351 * reported. The PE owner will be responsible for detection
1352 * and recovery.
1353 */
1354 int eeh_dev_open(struct pci_dev *pdev)
1355 {
1356 struct eeh_dev *edev;
1357 int ret = -ENODEV;
1358
1359 mutex_lock(&eeh_dev_mutex);
1360
1361 /* No PCI device ? */
1362 if (!pdev)
1363 goto out;
1364
1365 /* No EEH device or PE ? */
1366 edev = pci_dev_to_eeh_dev(pdev);
1367 if (!edev || !edev->pe)
1368 goto out;
1369
1370 /*
1371 * The PE might have been put into frozen state, but we
1372 * didn't detect that yet. The passed through PCI devices
1373 * in frozen PE won't work properly. Clear the frozen state
1374 * in advance.
1375 */
1376 ret = eeh_pe_change_owner(edev->pe);
1377 if (ret)
1378 goto out;
1379
1380 /* Increase PE's pass through count */
1381 atomic_inc(&edev->pe->pass_dev_cnt);
1382 mutex_unlock(&eeh_dev_mutex);
1383
1384 return 0;
1385 out:
1386 mutex_unlock(&eeh_dev_mutex);
1387 return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(eeh_dev_open);
1390
1391 /**
1392 * eeh_dev_release - Decrease count of pass through devices for PE
1393 * @pdev: PCI device
1394 *
1395 * Decrease count of pass through devices for the indicated PE. If
1396 * there is no passed through device in PE, the EEH errors detected
1397 * on the PE will be reported and handled as usual.
1398 */
1399 void eeh_dev_release(struct pci_dev *pdev)
1400 {
1401 struct eeh_dev *edev;
1402
1403 mutex_lock(&eeh_dev_mutex);
1404
1405 /* No PCI device ? */
1406 if (!pdev)
1407 goto out;
1408
1409 /* No EEH device ? */
1410 edev = pci_dev_to_eeh_dev(pdev);
1411 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1412 goto out;
1413
1414 /* Decrease PE's pass through count */
1415 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1416 eeh_pe_change_owner(edev->pe);
1417 out:
1418 mutex_unlock(&eeh_dev_mutex);
1419 }
1420 EXPORT_SYMBOL(eeh_dev_release);
1421
1422 #ifdef CONFIG_IOMMU_API
1423
1424 static int dev_has_iommu_table(struct device *dev, void *data)
1425 {
1426 struct pci_dev *pdev = to_pci_dev(dev);
1427 struct pci_dev **ppdev = data;
1428
1429 if (!dev)
1430 return 0;
1431
1432 if (dev->iommu_group) {
1433 *ppdev = pdev;
1434 return 1;
1435 }
1436
1437 return 0;
1438 }
1439
1440 /**
1441 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1442 * @group: IOMMU group
1443 *
1444 * The routine is called to convert IOMMU group to EEH PE.
1445 */
1446 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1447 {
1448 struct pci_dev *pdev = NULL;
1449 struct eeh_dev *edev;
1450 int ret;
1451
1452 /* No IOMMU group ? */
1453 if (!group)
1454 return NULL;
1455
1456 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1457 if (!ret || !pdev)
1458 return NULL;
1459
1460 /* No EEH device or PE ? */
1461 edev = pci_dev_to_eeh_dev(pdev);
1462 if (!edev || !edev->pe)
1463 return NULL;
1464
1465 return edev->pe;
1466 }
1467 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1468
1469 #endif /* CONFIG_IOMMU_API */
1470
1471 /**
1472 * eeh_pe_set_option - Set options for the indicated PE
1473 * @pe: EEH PE
1474 * @option: requested option
1475 *
1476 * The routine is called to enable or disable EEH functionality
1477 * on the indicated PE, to enable IO or DMA for the frozen PE.
1478 */
1479 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1480 {
1481 int ret = 0;
1482
1483 /* Invalid PE ? */
1484 if (!pe)
1485 return -ENODEV;
1486
1487 /*
1488 * EEH functionality could possibly be disabled, just
1489 * return error for the case. And the EEH functinality
1490 * isn't expected to be disabled on one specific PE.
1491 */
1492 switch (option) {
1493 case EEH_OPT_ENABLE:
1494 if (eeh_enabled()) {
1495 ret = eeh_pe_change_owner(pe);
1496 break;
1497 }
1498 ret = -EIO;
1499 break;
1500 case EEH_OPT_DISABLE:
1501 break;
1502 case EEH_OPT_THAW_MMIO:
1503 case EEH_OPT_THAW_DMA:
1504 case EEH_OPT_FREEZE_PE:
1505 if (!eeh_ops || !eeh_ops->set_option) {
1506 ret = -ENOENT;
1507 break;
1508 }
1509
1510 ret = eeh_pci_enable(pe, option);
1511 break;
1512 default:
1513 pr_debug("%s: Option %d out of range (%d, %d)\n",
1514 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1515 ret = -EINVAL;
1516 }
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1521
1522 /**
1523 * eeh_pe_get_state - Retrieve PE's state
1524 * @pe: EEH PE
1525 *
1526 * Retrieve the PE's state, which includes 3 aspects: enabled
1527 * DMA, enabled IO and asserted reset.
1528 */
1529 int eeh_pe_get_state(struct eeh_pe *pe)
1530 {
1531 int result, ret = 0;
1532 bool rst_active, dma_en, mmio_en;
1533
1534 /* Existing PE ? */
1535 if (!pe)
1536 return -ENODEV;
1537
1538 if (!eeh_ops || !eeh_ops->get_state)
1539 return -ENOENT;
1540
1541 /*
1542 * If the parent PE is owned by the host kernel and is undergoing
1543 * error recovery, we should return the PE state as temporarily
1544 * unavailable so that the error recovery on the guest is suspended
1545 * until the recovery completes on the host.
1546 */
1547 if (pe->parent &&
1548 !(pe->state & EEH_PE_REMOVED) &&
1549 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1550 return EEH_PE_STATE_UNAVAIL;
1551
1552 result = eeh_ops->get_state(pe, NULL);
1553 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1554 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1555 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1556
1557 if (rst_active)
1558 ret = EEH_PE_STATE_RESET;
1559 else if (dma_en && mmio_en)
1560 ret = EEH_PE_STATE_NORMAL;
1561 else if (!dma_en && !mmio_en)
1562 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1563 else if (!dma_en && mmio_en)
1564 ret = EEH_PE_STATE_STOPPED_DMA;
1565 else
1566 ret = EEH_PE_STATE_UNAVAIL;
1567
1568 return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1571
1572 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1573 {
1574 struct eeh_dev *edev, *tmp;
1575 struct pci_dev *pdev;
1576 int ret = 0;
1577
1578 /* Restore config space */
1579 eeh_pe_restore_bars(pe);
1580
1581 /*
1582 * Reenable PCI devices as the devices passed
1583 * through are always enabled before the reset.
1584 */
1585 eeh_pe_for_each_dev(pe, edev, tmp) {
1586 pdev = eeh_dev_to_pci_dev(edev);
1587 if (!pdev)
1588 continue;
1589
1590 ret = pci_reenable_device(pdev);
1591 if (ret) {
1592 pr_warn("%s: Failure %d reenabling %s\n",
1593 __func__, ret, pci_name(pdev));
1594 return ret;
1595 }
1596 }
1597
1598 /* The PE is still in frozen state */
1599 return eeh_unfreeze_pe(pe, true);
1600 }
1601
1602
1603 /**
1604 * eeh_pe_reset - Issue PE reset according to specified type
1605 * @pe: EEH PE
1606 * @option: reset type
1607 *
1608 * The routine is called to reset the specified PE with the
1609 * indicated type, either fundamental reset or hot reset.
1610 * PE reset is the most important part for error recovery.
1611 */
1612 int eeh_pe_reset(struct eeh_pe *pe, int option)
1613 {
1614 int ret = 0;
1615
1616 /* Invalid PE ? */
1617 if (!pe)
1618 return -ENODEV;
1619
1620 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1621 return -ENOENT;
1622
1623 switch (option) {
1624 case EEH_RESET_DEACTIVATE:
1625 ret = eeh_ops->reset(pe, option);
1626 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1627 if (ret)
1628 break;
1629
1630 ret = eeh_pe_reenable_devices(pe);
1631 break;
1632 case EEH_RESET_HOT:
1633 case EEH_RESET_FUNDAMENTAL:
1634 /*
1635 * Proactively freeze the PE to drop all MMIO access
1636 * during reset, which should be banned as it's always
1637 * cause recursive EEH error.
1638 */
1639 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1640
1641 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1642 ret = eeh_ops->reset(pe, option);
1643 break;
1644 default:
1645 pr_debug("%s: Unsupported option %d\n",
1646 __func__, option);
1647 ret = -EINVAL;
1648 }
1649
1650 return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1653
1654 /**
1655 * eeh_pe_configure - Configure PCI bridges after PE reset
1656 * @pe: EEH PE
1657 *
1658 * The routine is called to restore the PCI config space for
1659 * those PCI devices, especially PCI bridges affected by PE
1660 * reset issued previously.
1661 */
1662 int eeh_pe_configure(struct eeh_pe *pe)
1663 {
1664 int ret = 0;
1665
1666 /* Invalid PE ? */
1667 if (!pe)
1668 return -ENODEV;
1669
1670 return ret;
1671 }
1672 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1673
1674 /**
1675 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1676 * @pe: the indicated PE
1677 * @type: error type
1678 * @function: error function
1679 * @addr: address
1680 * @mask: address mask
1681 *
1682 * The routine is called to inject the specified PCI error, which
1683 * is determined by @type and @function, to the indicated PE for
1684 * testing purpose.
1685 */
1686 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1687 unsigned long addr, unsigned long mask)
1688 {
1689 /* Invalid PE ? */
1690 if (!pe)
1691 return -ENODEV;
1692
1693 /* Unsupported operation ? */
1694 if (!eeh_ops || !eeh_ops->err_inject)
1695 return -ENOENT;
1696
1697 /* Check on PCI error type */
1698 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1699 return -EINVAL;
1700
1701 /* Check on PCI error function */
1702 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1703 return -EINVAL;
1704
1705 return eeh_ops->err_inject(pe, type, func, addr, mask);
1706 }
1707 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1708
1709 static int proc_eeh_show(struct seq_file *m, void *v)
1710 {
1711 if (!eeh_enabled()) {
1712 seq_printf(m, "EEH Subsystem is globally disabled\n");
1713 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1714 } else {
1715 seq_printf(m, "EEH Subsystem is enabled\n");
1716 seq_printf(m,
1717 "no device=%llu\n"
1718 "no device node=%llu\n"
1719 "no config address=%llu\n"
1720 "check not wanted=%llu\n"
1721 "eeh_total_mmio_ffs=%llu\n"
1722 "eeh_false_positives=%llu\n"
1723 "eeh_slot_resets=%llu\n",
1724 eeh_stats.no_device,
1725 eeh_stats.no_dn,
1726 eeh_stats.no_cfg_addr,
1727 eeh_stats.ignored_check,
1728 eeh_stats.total_mmio_ffs,
1729 eeh_stats.false_positives,
1730 eeh_stats.slot_resets);
1731 }
1732
1733 return 0;
1734 }
1735
1736 static int proc_eeh_open(struct inode *inode, struct file *file)
1737 {
1738 return single_open(file, proc_eeh_show, NULL);
1739 }
1740
1741 static const struct file_operations proc_eeh_operations = {
1742 .open = proc_eeh_open,
1743 .read = seq_read,
1744 .llseek = seq_lseek,
1745 .release = single_release,
1746 };
1747
1748 #ifdef CONFIG_DEBUG_FS
1749 static int eeh_enable_dbgfs_set(void *data, u64 val)
1750 {
1751 if (val)
1752 eeh_clear_flag(EEH_FORCE_DISABLED);
1753 else
1754 eeh_add_flag(EEH_FORCE_DISABLED);
1755
1756 /* Notify the backend */
1757 if (eeh_ops->post_init)
1758 eeh_ops->post_init();
1759
1760 return 0;
1761 }
1762
1763 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1764 {
1765 if (eeh_enabled())
1766 *val = 0x1ul;
1767 else
1768 *val = 0x0ul;
1769 return 0;
1770 }
1771
1772 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1773 {
1774 eeh_max_freezes = val;
1775 return 0;
1776 }
1777
1778 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1779 {
1780 *val = eeh_max_freezes;
1781 return 0;
1782 }
1783
1784 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1785 eeh_enable_dbgfs_set, "0x%llx\n");
1786 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1787 eeh_freeze_dbgfs_set, "0x%llx\n");
1788 #endif
1789
1790 static int __init eeh_init_proc(void)
1791 {
1792 if (machine_is(pseries) || machine_is(powernv)) {
1793 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1794 #ifdef CONFIG_DEBUG_FS
1795 debugfs_create_file("eeh_enable", 0600,
1796 powerpc_debugfs_root, NULL,
1797 &eeh_enable_dbgfs_ops);
1798 debugfs_create_file("eeh_max_freezes", 0600,
1799 powerpc_debugfs_root, NULL,
1800 &eeh_freeze_dbgfs_ops);
1801 #endif
1802 }
1803
1804 return 0;
1805 }
1806 __initcall(eeh_init_proc);