]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/eeh.c
powerpc32: memset: only use dcbz once cache is enabled
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / eeh.c
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48
49
50 /** Overview:
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89 #define EEH_MAX_FAILS 2100000
90
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94 /*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106
107 /*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112 int eeh_max_freezes = 5;
113
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex);
122
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
125 * can access it.
126 */
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
129
130 /*
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
134 */
135 struct eeh_stats {
136 u64 no_device; /* PCI device not found */
137 u64 no_dn; /* OF node not found */
138 u64 no_cfg_addr; /* Config address not found */
139 u64 ignored_check; /* EEH check skipped */
140 u64 total_mmio_ffs; /* Total EEH checks */
141 u64 false_positives; /* Unnecessary EEH checks */
142 u64 slot_resets; /* PE reset */
143 };
144
145 static struct eeh_stats eeh_stats;
146
147 static int __init eeh_setup(char *str)
148 {
149 if (!strcmp(str, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED);
151 else if (!strcmp(str, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG);
153
154 return 1;
155 }
156 __setup("eeh=", eeh_setup);
157
158 /*
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
162 */
163 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
164 {
165 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
166 u32 cfg;
167 int cap, i;
168 int n = 0, l = 0;
169 char buffer[128];
170
171 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x:%01x\n",
172 edev->phb->global_number, pdn->busno,
173 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev->phb->global_number, pdn->busno,
176 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
177
178 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
179 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
181
182 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
183 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
185
186 /* Gather bridge-specific registers */
187 if (edev->mode & EEH_DEV_BRIDGE) {
188 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
189 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
191
192 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
193 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
194 pr_warn("EEH: Bridge control: %04x\n", cfg);
195 }
196
197 /* Dump out the PCI-X command and status regs */
198 cap = edev->pcix_cap;
199 if (cap) {
200 eeh_ops->read_config(pdn, cap, 4, &cfg);
201 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
203
204 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
205 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg);
207 }
208
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap = edev->pcie_cap;
211 if (cap) {
212 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
214
215 for (i=0; i<=8; i++) {
216 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
217 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
218
219 if ((i % 4) == 0) {
220 if (i != 0)
221 pr_warn("%s\n", buffer);
222
223 l = scnprintf(buffer, sizeof(buffer),
224 "EEH: PCI-E %02x: %08x ",
225 4*i, cfg);
226 } else {
227 l += scnprintf(buffer+l, sizeof(buffer)-l,
228 "%08x ", cfg);
229 }
230
231 }
232
233 pr_warn("%s\n", buffer);
234 }
235
236 /* If AER capable, dump it */
237 cap = edev->aer_cap;
238 if (cap) {
239 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
241
242 for (i=0; i<=13; i++) {
243 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
244 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
245
246 if ((i % 4) == 0) {
247 if (i != 0)
248 pr_warn("%s\n", buffer);
249
250 l = scnprintf(buffer, sizeof(buffer),
251 "EEH: PCI-E AER %02x: %08x ",
252 4*i, cfg);
253 } else {
254 l += scnprintf(buffer+l, sizeof(buffer)-l,
255 "%08x ", cfg);
256 }
257 }
258
259 pr_warn("%s\n", buffer);
260 }
261
262 return n;
263 }
264
265 static void *eeh_dump_pe_log(void *data, void *flag)
266 {
267 struct eeh_pe *pe = data;
268 struct eeh_dev *edev, *tmp;
269 size_t *plen = flag;
270
271 /* If the PE's config space is blocked, 0xFF's will be
272 * returned. It's pointless to collect the log in this
273 * case.
274 */
275 if (pe->state & EEH_PE_CFG_BLOCKED)
276 return NULL;
277
278 eeh_pe_for_each_dev(pe, edev, tmp)
279 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
280 EEH_PCI_REGS_LOG_LEN - *plen);
281
282 return NULL;
283 }
284
285 /**
286 * eeh_slot_error_detail - Generate combined log including driver log and error log
287 * @pe: EEH PE
288 * @severity: temporary or permanent error log
289 *
290 * This routine should be called to generate the combined log, which
291 * is comprised of driver log and error log. The driver log is figured
292 * out from the config space of the corresponding PCI device, while
293 * the error log is fetched through platform dependent function call.
294 */
295 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
296 {
297 size_t loglen = 0;
298
299 /*
300 * When the PHB is fenced or dead, it's pointless to collect
301 * the data from PCI config space because it should return
302 * 0xFF's. For ER, we still retrieve the data from the PCI
303 * config space.
304 *
305 * For pHyp, we have to enable IO for log retrieval. Otherwise,
306 * 0xFF's is always returned from PCI config space.
307 */
308 if (!(pe->type & EEH_PE_PHB)) {
309 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
310 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
311
312 /*
313 * The config space of some PCI devices can't be accessed
314 * when their PEs are in frozen state. Otherwise, fenced
315 * PHB might be seen. Those PEs are identified with flag
316 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 * is set automatically when the PE is put to EEH_PE_ISOLATED.
318 *
319 * Restoring BARs possibly triggers PCI config access in
320 * (OPAL) firmware and then causes fenced PHB. If the
321 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 * pointless to restore BARs and dump config space.
323 */
324 eeh_ops->configure_bridge(pe);
325 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
326 eeh_pe_restore_bars(pe);
327
328 pci_regs_buf[0] = 0;
329 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
330 }
331 }
332
333 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
334 }
335
336 /**
337 * eeh_token_to_phys - Convert EEH address token to phys address
338 * @token: I/O token, should be address in the form 0xA....
339 *
340 * This routine should be called to convert virtual I/O address
341 * to physical one.
342 */
343 static inline unsigned long eeh_token_to_phys(unsigned long token)
344 {
345 pte_t *ptep;
346 unsigned long pa;
347 int hugepage_shift;
348
349 /*
350 * We won't find hugepages here(this is iomem). Hence we are not
351 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 * page table free, because of init_mm.
353 */
354 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token, &hugepage_shift);
355 if (!ptep)
356 return token;
357 WARN_ON(hugepage_shift);
358 pa = pte_pfn(*ptep) << PAGE_SHIFT;
359
360 return pa | (token & (PAGE_SIZE-1));
361 }
362
363 /*
364 * On PowerNV platform, we might already have fenced PHB there.
365 * For that case, it's meaningless to recover frozen PE. Intead,
366 * We have to handle fenced PHB firstly.
367 */
368 static int eeh_phb_check_failure(struct eeh_pe *pe)
369 {
370 struct eeh_pe *phb_pe;
371 unsigned long flags;
372 int ret;
373
374 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
375 return -EPERM;
376
377 /* Find the PHB PE */
378 phb_pe = eeh_phb_pe_get(pe->phb);
379 if (!phb_pe) {
380 pr_warn("%s Can't find PE for PHB#%d\n",
381 __func__, pe->phb->global_number);
382 return -EEXIST;
383 }
384
385 /* If the PHB has been in problematic state */
386 eeh_serialize_lock(&flags);
387 if (phb_pe->state & EEH_PE_ISOLATED) {
388 ret = 0;
389 goto out;
390 }
391
392 /* Check PHB state */
393 ret = eeh_ops->get_state(phb_pe, NULL);
394 if ((ret < 0) ||
395 (ret == EEH_STATE_NOT_SUPPORT) ||
396 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
397 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
398 ret = 0;
399 goto out;
400 }
401
402 /* Isolate the PHB and send event */
403 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
404 eeh_serialize_unlock(flags);
405
406 pr_err("EEH: PHB#%x failure detected, location: %s\n",
407 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
408 dump_stack();
409 eeh_send_failure_event(phb_pe);
410
411 return 1;
412 out:
413 eeh_serialize_unlock(flags);
414 return ret;
415 }
416
417 /**
418 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
419 * @edev: eeh device
420 *
421 * Check for an EEH failure for the given device node. Call this
422 * routine if the result of a read was all 0xff's and you want to
423 * find out if this is due to an EEH slot freeze. This routine
424 * will query firmware for the EEH status.
425 *
426 * Returns 0 if there has not been an EEH error; otherwise returns
427 * a non-zero value and queues up a slot isolation event notification.
428 *
429 * It is safe to call this routine in an interrupt context.
430 */
431 int eeh_dev_check_failure(struct eeh_dev *edev)
432 {
433 int ret;
434 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
435 unsigned long flags;
436 struct pci_dn *pdn;
437 struct pci_dev *dev;
438 struct eeh_pe *pe, *parent_pe, *phb_pe;
439 int rc = 0;
440 const char *location = NULL;
441
442 eeh_stats.total_mmio_ffs++;
443
444 if (!eeh_enabled())
445 return 0;
446
447 if (!edev) {
448 eeh_stats.no_dn++;
449 return 0;
450 }
451 dev = eeh_dev_to_pci_dev(edev);
452 pe = eeh_dev_to_pe(edev);
453
454 /* Access to IO BARs might get this far and still not want checking. */
455 if (!pe) {
456 eeh_stats.ignored_check++;
457 pr_debug("EEH: Ignored check for %s\n",
458 eeh_pci_name(dev));
459 return 0;
460 }
461
462 if (!pe->addr && !pe->config_addr) {
463 eeh_stats.no_cfg_addr++;
464 return 0;
465 }
466
467 /*
468 * On PowerNV platform, we might already have fenced PHB
469 * there and we need take care of that firstly.
470 */
471 ret = eeh_phb_check_failure(pe);
472 if (ret > 0)
473 return ret;
474
475 /*
476 * If the PE isn't owned by us, we shouldn't check the
477 * state. Instead, let the owner handle it if the PE has
478 * been frozen.
479 */
480 if (eeh_pe_passed(pe))
481 return 0;
482
483 /* If we already have a pending isolation event for this
484 * slot, we know it's bad already, we don't need to check.
485 * Do this checking under a lock; as multiple PCI devices
486 * in one slot might report errors simultaneously, and we
487 * only want one error recovery routine running.
488 */
489 eeh_serialize_lock(&flags);
490 rc = 1;
491 if (pe->state & EEH_PE_ISOLATED) {
492 pe->check_count++;
493 if (pe->check_count % EEH_MAX_FAILS == 0) {
494 pdn = eeh_dev_to_pdn(edev);
495 if (pdn->node)
496 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
497 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
498 "location=%s driver=%s pci addr=%s\n",
499 pe->check_count,
500 location ? location : "unknown",
501 eeh_driver_name(dev), eeh_pci_name(dev));
502 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
503 eeh_driver_name(dev));
504 dump_stack();
505 }
506 goto dn_unlock;
507 }
508
509 /*
510 * Now test for an EEH failure. This is VERY expensive.
511 * Note that the eeh_config_addr may be a parent device
512 * in the case of a device behind a bridge, or it may be
513 * function zero of a multi-function device.
514 * In any case they must share a common PHB.
515 */
516 ret = eeh_ops->get_state(pe, NULL);
517
518 /* Note that config-io to empty slots may fail;
519 * they are empty when they don't have children.
520 * We will punt with the following conditions: Failure to get
521 * PE's state, EEH not support and Permanently unavailable
522 * state, PE is in good state.
523 */
524 if ((ret < 0) ||
525 (ret == EEH_STATE_NOT_SUPPORT) ||
526 ((ret & active_flags) == active_flags)) {
527 eeh_stats.false_positives++;
528 pe->false_positives++;
529 rc = 0;
530 goto dn_unlock;
531 }
532
533 /*
534 * It should be corner case that the parent PE has been
535 * put into frozen state as well. We should take care
536 * that at first.
537 */
538 parent_pe = pe->parent;
539 while (parent_pe) {
540 /* Hit the ceiling ? */
541 if (parent_pe->type & EEH_PE_PHB)
542 break;
543
544 /* Frozen parent PE ? */
545 ret = eeh_ops->get_state(parent_pe, NULL);
546 if (ret > 0 &&
547 (ret & active_flags) != active_flags)
548 pe = parent_pe;
549
550 /* Next parent level */
551 parent_pe = parent_pe->parent;
552 }
553
554 eeh_stats.slot_resets++;
555
556 /* Avoid repeated reports of this failure, including problems
557 * with other functions on this device, and functions under
558 * bridges.
559 */
560 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
561 eeh_serialize_unlock(flags);
562
563 /* Most EEH events are due to device driver bugs. Having
564 * a stack trace will help the device-driver authors figure
565 * out what happened. So print that out.
566 */
567 phb_pe = eeh_phb_pe_get(pe->phb);
568 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
569 pe->phb->global_number, pe->addr);
570 pr_err("EEH: PE location: %s, PHB location: %s\n",
571 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
572 dump_stack();
573
574 eeh_send_failure_event(pe);
575
576 return 1;
577
578 dn_unlock:
579 eeh_serialize_unlock(flags);
580 return rc;
581 }
582
583 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
584
585 /**
586 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
587 * @token: I/O address
588 *
589 * Check for an EEH failure at the given I/O address. Call this
590 * routine if the result of a read was all 0xff's and you want to
591 * find out if this is due to an EEH slot freeze event. This routine
592 * will query firmware for the EEH status.
593 *
594 * Note this routine is safe to call in an interrupt context.
595 */
596 int eeh_check_failure(const volatile void __iomem *token)
597 {
598 unsigned long addr;
599 struct eeh_dev *edev;
600
601 /* Finding the phys addr + pci device; this is pretty quick. */
602 addr = eeh_token_to_phys((unsigned long __force) token);
603 edev = eeh_addr_cache_get_dev(addr);
604 if (!edev) {
605 eeh_stats.no_device++;
606 return 0;
607 }
608
609 return eeh_dev_check_failure(edev);
610 }
611 EXPORT_SYMBOL(eeh_check_failure);
612
613
614 /**
615 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
616 * @pe: EEH PE
617 *
618 * This routine should be called to reenable frozen MMIO or DMA
619 * so that it would work correctly again. It's useful while doing
620 * recovery or log collection on the indicated device.
621 */
622 int eeh_pci_enable(struct eeh_pe *pe, int function)
623 {
624 int active_flag, rc;
625
626 /*
627 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
628 * Also, it's pointless to enable them on unfrozen PE. So
629 * we have to check before enabling IO or DMA.
630 */
631 switch (function) {
632 case EEH_OPT_THAW_MMIO:
633 active_flag = EEH_STATE_MMIO_ACTIVE;
634 break;
635 case EEH_OPT_THAW_DMA:
636 active_flag = EEH_STATE_DMA_ACTIVE;
637 break;
638 case EEH_OPT_DISABLE:
639 case EEH_OPT_ENABLE:
640 case EEH_OPT_FREEZE_PE:
641 active_flag = 0;
642 break;
643 default:
644 pr_warn("%s: Invalid function %d\n",
645 __func__, function);
646 return -EINVAL;
647 }
648
649 /*
650 * Check if IO or DMA has been enabled before
651 * enabling them.
652 */
653 if (active_flag) {
654 rc = eeh_ops->get_state(pe, NULL);
655 if (rc < 0)
656 return rc;
657
658 /* Needn't enable it at all */
659 if (rc == EEH_STATE_NOT_SUPPORT)
660 return 0;
661
662 /* It's already enabled */
663 if (rc & active_flag)
664 return 0;
665 }
666
667
668 /* Issue the request */
669 rc = eeh_ops->set_option(pe, function);
670 if (rc)
671 pr_warn("%s: Unexpected state change %d on "
672 "PHB#%d-PE#%x, err=%d\n",
673 __func__, function, pe->phb->global_number,
674 pe->addr, rc);
675
676 /* Check if the request is finished successfully */
677 if (active_flag) {
678 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
679 if (rc <= 0)
680 return rc;
681
682 if (rc & active_flag)
683 return 0;
684
685 return -EIO;
686 }
687
688 return rc;
689 }
690
691 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
692 {
693 struct eeh_dev *edev = data;
694 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
695 struct pci_dev *dev = userdata;
696
697 /*
698 * The caller should have disabled and saved the
699 * state for the specified device
700 */
701 if (!pdev || pdev == dev)
702 return NULL;
703
704 /* Ensure we have D0 power state */
705 pci_set_power_state(pdev, PCI_D0);
706
707 /* Save device state */
708 pci_save_state(pdev);
709
710 /*
711 * Disable device to avoid any DMA traffic and
712 * interrupt from the device
713 */
714 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
715
716 return NULL;
717 }
718
719 static void *eeh_restore_dev_state(void *data, void *userdata)
720 {
721 struct eeh_dev *edev = data;
722 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
723 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
724 struct pci_dev *dev = userdata;
725
726 if (!pdev)
727 return NULL;
728
729 /* Apply customization from firmware */
730 if (pdn && eeh_ops->restore_config)
731 eeh_ops->restore_config(pdn);
732
733 /* The caller should restore state for the specified device */
734 if (pdev != dev)
735 pci_restore_state(pdev);
736
737 return NULL;
738 }
739
740 /**
741 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
742 * @dev: pci device struct
743 * @state: reset state to enter
744 *
745 * Return value:
746 * 0 if success
747 */
748 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
749 {
750 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
751 struct eeh_pe *pe = eeh_dev_to_pe(edev);
752
753 if (!pe) {
754 pr_err("%s: No PE found on PCI device %s\n",
755 __func__, pci_name(dev));
756 return -EINVAL;
757 }
758
759 switch (state) {
760 case pcie_deassert_reset:
761 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
762 eeh_unfreeze_pe(pe, false);
763 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
764 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
765 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
766 break;
767 case pcie_hot_reset:
768 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
769 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
770 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
771 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
772 eeh_ops->reset(pe, EEH_RESET_HOT);
773 break;
774 case pcie_warm_reset:
775 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
776 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
777 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
778 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
779 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
780 break;
781 default:
782 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
783 return -EINVAL;
784 };
785
786 return 0;
787 }
788
789 /**
790 * eeh_set_pe_freset - Check the required reset for the indicated device
791 * @data: EEH device
792 * @flag: return value
793 *
794 * Each device might have its preferred reset type: fundamental or
795 * hot reset. The routine is used to collected the information for
796 * the indicated device and its children so that the bunch of the
797 * devices could be reset properly.
798 */
799 static void *eeh_set_dev_freset(void *data, void *flag)
800 {
801 struct pci_dev *dev;
802 unsigned int *freset = (unsigned int *)flag;
803 struct eeh_dev *edev = (struct eeh_dev *)data;
804
805 dev = eeh_dev_to_pci_dev(edev);
806 if (dev)
807 *freset |= dev->needs_freset;
808
809 return NULL;
810 }
811
812 /**
813 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
814 * @pe: EEH PE
815 *
816 * Assert the PCI #RST line for 1/4 second.
817 */
818 static void eeh_reset_pe_once(struct eeh_pe *pe)
819 {
820 unsigned int freset = 0;
821
822 /* Determine type of EEH reset required for
823 * Partitionable Endpoint, a hot-reset (1)
824 * or a fundamental reset (3).
825 * A fundamental reset required by any device under
826 * Partitionable Endpoint trumps hot-reset.
827 */
828 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
829
830 if (freset)
831 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
832 else
833 eeh_ops->reset(pe, EEH_RESET_HOT);
834
835 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
836 }
837
838 /**
839 * eeh_reset_pe - Reset the indicated PE
840 * @pe: EEH PE
841 *
842 * This routine should be called to reset indicated device, including
843 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
844 * might be involved as well.
845 */
846 int eeh_reset_pe(struct eeh_pe *pe)
847 {
848 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
849 int i, state, ret;
850
851 /* Mark as reset and block config space */
852 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
853
854 /* Take three shots at resetting the bus */
855 for (i = 0; i < 3; i++) {
856 eeh_reset_pe_once(pe);
857
858 /*
859 * EEH_PE_ISOLATED is expected to be removed after
860 * BAR restore.
861 */
862 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
863 if ((state & flags) == flags) {
864 ret = 0;
865 goto out;
866 }
867
868 if (state < 0) {
869 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
870 __func__, pe->phb->global_number, pe->addr);
871 ret = -ENOTRECOVERABLE;
872 goto out;
873 }
874
875 /* We might run out of credits */
876 ret = -EIO;
877 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
878 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
879 }
880
881 out:
882 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
883 return ret;
884 }
885
886 /**
887 * eeh_save_bars - Save device bars
888 * @edev: PCI device associated EEH device
889 *
890 * Save the values of the device bars. Unlike the restore
891 * routine, this routine is *not* recursive. This is because
892 * PCI devices are added individually; but, for the restore,
893 * an entire slot is reset at a time.
894 */
895 void eeh_save_bars(struct eeh_dev *edev)
896 {
897 struct pci_dn *pdn;
898 int i;
899
900 pdn = eeh_dev_to_pdn(edev);
901 if (!pdn)
902 return;
903
904 for (i = 0; i < 16; i++)
905 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
906
907 /*
908 * For PCI bridges including root port, we need enable bus
909 * master explicitly. Otherwise, it can't fetch IODA table
910 * entries correctly. So we cache the bit in advance so that
911 * we can restore it after reset, either PHB range or PE range.
912 */
913 if (edev->mode & EEH_DEV_BRIDGE)
914 edev->config_space[1] |= PCI_COMMAND_MASTER;
915 }
916
917 /**
918 * eeh_ops_register - Register platform dependent EEH operations
919 * @ops: platform dependent EEH operations
920 *
921 * Register the platform dependent EEH operation callback
922 * functions. The platform should call this function before
923 * any other EEH operations.
924 */
925 int __init eeh_ops_register(struct eeh_ops *ops)
926 {
927 if (!ops->name) {
928 pr_warn("%s: Invalid EEH ops name for %p\n",
929 __func__, ops);
930 return -EINVAL;
931 }
932
933 if (eeh_ops && eeh_ops != ops) {
934 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
935 __func__, eeh_ops->name, ops->name);
936 return -EEXIST;
937 }
938
939 eeh_ops = ops;
940
941 return 0;
942 }
943
944 /**
945 * eeh_ops_unregister - Unreigster platform dependent EEH operations
946 * @name: name of EEH platform operations
947 *
948 * Unregister the platform dependent EEH operation callback
949 * functions.
950 */
951 int __exit eeh_ops_unregister(const char *name)
952 {
953 if (!name || !strlen(name)) {
954 pr_warn("%s: Invalid EEH ops name\n",
955 __func__);
956 return -EINVAL;
957 }
958
959 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
960 eeh_ops = NULL;
961 return 0;
962 }
963
964 return -EEXIST;
965 }
966
967 static int eeh_reboot_notifier(struct notifier_block *nb,
968 unsigned long action, void *unused)
969 {
970 eeh_clear_flag(EEH_ENABLED);
971 return NOTIFY_DONE;
972 }
973
974 static struct notifier_block eeh_reboot_nb = {
975 .notifier_call = eeh_reboot_notifier,
976 };
977
978 /**
979 * eeh_init - EEH initialization
980 *
981 * Initialize EEH by trying to enable it for all of the adapters in the system.
982 * As a side effect we can determine here if eeh is supported at all.
983 * Note that we leave EEH on so failed config cycles won't cause a machine
984 * check. If a user turns off EEH for a particular adapter they are really
985 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
986 * grant access to a slot if EEH isn't enabled, and so we always enable
987 * EEH for all slots/all devices.
988 *
989 * The eeh-force-off option disables EEH checking globally, for all slots.
990 * Even if force-off is set, the EEH hardware is still enabled, so that
991 * newer systems can boot.
992 */
993 int eeh_init(void)
994 {
995 struct pci_controller *hose, *tmp;
996 struct pci_dn *pdn;
997 static int cnt = 0;
998 int ret = 0;
999
1000 /*
1001 * We have to delay the initialization on PowerNV after
1002 * the PCI hierarchy tree has been built because the PEs
1003 * are figured out based on PCI devices instead of device
1004 * tree nodes
1005 */
1006 if (machine_is(powernv) && cnt++ <= 0)
1007 return ret;
1008
1009 /* Register reboot notifier */
1010 ret = register_reboot_notifier(&eeh_reboot_nb);
1011 if (ret) {
1012 pr_warn("%s: Failed to register notifier (%d)\n",
1013 __func__, ret);
1014 return ret;
1015 }
1016
1017 /* call platform initialization function */
1018 if (!eeh_ops) {
1019 pr_warn("%s: Platform EEH operation not found\n",
1020 __func__);
1021 return -EEXIST;
1022 } else if ((ret = eeh_ops->init()))
1023 return ret;
1024
1025 /* Initialize EEH event */
1026 ret = eeh_event_init();
1027 if (ret)
1028 return ret;
1029
1030 /* Enable EEH for all adapters */
1031 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1032 pdn = hose->pci_data;
1033 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1034 }
1035
1036 /*
1037 * Call platform post-initialization. Actually, It's good chance
1038 * to inform platform that EEH is ready to supply service if the
1039 * I/O cache stuff has been built up.
1040 */
1041 if (eeh_ops->post_init) {
1042 ret = eeh_ops->post_init();
1043 if (ret)
1044 return ret;
1045 }
1046
1047 if (eeh_enabled())
1048 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1049 else
1050 pr_warn("EEH: No capable adapters found\n");
1051
1052 return ret;
1053 }
1054
1055 core_initcall_sync(eeh_init);
1056
1057 /**
1058 * eeh_add_device_early - Enable EEH for the indicated device node
1059 * @pdn: PCI device node for which to set up EEH
1060 *
1061 * This routine must be used to perform EEH initialization for PCI
1062 * devices that were added after system boot (e.g. hotplug, dlpar).
1063 * This routine must be called before any i/o is performed to the
1064 * adapter (inluding any config-space i/o).
1065 * Whether this actually enables EEH or not for this device depends
1066 * on the CEC architecture, type of the device, on earlier boot
1067 * command-line arguments & etc.
1068 */
1069 void eeh_add_device_early(struct pci_dn *pdn)
1070 {
1071 struct pci_controller *phb;
1072 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1073
1074 if (!edev || !eeh_enabled())
1075 return;
1076
1077 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1078 return;
1079
1080 /* USB Bus children of PCI devices will not have BUID's */
1081 phb = edev->phb;
1082 if (NULL == phb ||
1083 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1084 return;
1085
1086 eeh_ops->probe(pdn, NULL);
1087 }
1088
1089 /**
1090 * eeh_add_device_tree_early - Enable EEH for the indicated device
1091 * @pdn: PCI device node
1092 *
1093 * This routine must be used to perform EEH initialization for the
1094 * indicated PCI device that was added after system boot (e.g.
1095 * hotplug, dlpar).
1096 */
1097 void eeh_add_device_tree_early(struct pci_dn *pdn)
1098 {
1099 struct pci_dn *n;
1100
1101 if (!pdn)
1102 return;
1103
1104 list_for_each_entry(n, &pdn->child_list, list)
1105 eeh_add_device_tree_early(n);
1106 eeh_add_device_early(pdn);
1107 }
1108 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1109
1110 /**
1111 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1112 * @dev: pci device for which to set up EEH
1113 *
1114 * This routine must be used to complete EEH initialization for PCI
1115 * devices that were added after system boot (e.g. hotplug, dlpar).
1116 */
1117 void eeh_add_device_late(struct pci_dev *dev)
1118 {
1119 struct pci_dn *pdn;
1120 struct eeh_dev *edev;
1121
1122 if (!dev || !eeh_enabled())
1123 return;
1124
1125 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1126
1127 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1128 edev = pdn_to_eeh_dev(pdn);
1129 if (edev->pdev == dev) {
1130 pr_debug("EEH: Already referenced !\n");
1131 return;
1132 }
1133
1134 /*
1135 * The EEH cache might not be removed correctly because of
1136 * unbalanced kref to the device during unplug time, which
1137 * relies on pcibios_release_device(). So we have to remove
1138 * that here explicitly.
1139 */
1140 if (edev->pdev) {
1141 eeh_rmv_from_parent_pe(edev);
1142 eeh_addr_cache_rmv_dev(edev->pdev);
1143 eeh_sysfs_remove_device(edev->pdev);
1144 edev->mode &= ~EEH_DEV_SYSFS;
1145
1146 /*
1147 * We definitely should have the PCI device removed
1148 * though it wasn't correctly. So we needn't call
1149 * into error handler afterwards.
1150 */
1151 edev->mode |= EEH_DEV_NO_HANDLER;
1152
1153 edev->pdev = NULL;
1154 dev->dev.archdata.edev = NULL;
1155 }
1156
1157 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1158 eeh_ops->probe(pdn, NULL);
1159
1160 edev->pdev = dev;
1161 dev->dev.archdata.edev = edev;
1162
1163 eeh_addr_cache_insert_dev(dev);
1164 }
1165
1166 /**
1167 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1168 * @bus: PCI bus
1169 *
1170 * This routine must be used to perform EEH initialization for PCI
1171 * devices which are attached to the indicated PCI bus. The PCI bus
1172 * is added after system boot through hotplug or dlpar.
1173 */
1174 void eeh_add_device_tree_late(struct pci_bus *bus)
1175 {
1176 struct pci_dev *dev;
1177
1178 list_for_each_entry(dev, &bus->devices, bus_list) {
1179 eeh_add_device_late(dev);
1180 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1181 struct pci_bus *subbus = dev->subordinate;
1182 if (subbus)
1183 eeh_add_device_tree_late(subbus);
1184 }
1185 }
1186 }
1187 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1188
1189 /**
1190 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1191 * @bus: PCI bus
1192 *
1193 * This routine must be used to add EEH sysfs files for PCI
1194 * devices which are attached to the indicated PCI bus. The PCI bus
1195 * is added after system boot through hotplug or dlpar.
1196 */
1197 void eeh_add_sysfs_files(struct pci_bus *bus)
1198 {
1199 struct pci_dev *dev;
1200
1201 list_for_each_entry(dev, &bus->devices, bus_list) {
1202 eeh_sysfs_add_device(dev);
1203 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1204 struct pci_bus *subbus = dev->subordinate;
1205 if (subbus)
1206 eeh_add_sysfs_files(subbus);
1207 }
1208 }
1209 }
1210 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1211
1212 /**
1213 * eeh_remove_device - Undo EEH setup for the indicated pci device
1214 * @dev: pci device to be removed
1215 *
1216 * This routine should be called when a device is removed from
1217 * a running system (e.g. by hotplug or dlpar). It unregisters
1218 * the PCI device from the EEH subsystem. I/O errors affecting
1219 * this device will no longer be detected after this call; thus,
1220 * i/o errors affecting this slot may leave this device unusable.
1221 */
1222 void eeh_remove_device(struct pci_dev *dev)
1223 {
1224 struct eeh_dev *edev;
1225
1226 if (!dev || !eeh_enabled())
1227 return;
1228 edev = pci_dev_to_eeh_dev(dev);
1229
1230 /* Unregister the device with the EEH/PCI address search system */
1231 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1232
1233 if (!edev || !edev->pdev || !edev->pe) {
1234 pr_debug("EEH: Not referenced !\n");
1235 return;
1236 }
1237
1238 /*
1239 * During the hotplug for EEH error recovery, we need the EEH
1240 * device attached to the parent PE in order for BAR restore
1241 * a bit later. So we keep it for BAR restore and remove it
1242 * from the parent PE during the BAR resotre.
1243 */
1244 edev->pdev = NULL;
1245 dev->dev.archdata.edev = NULL;
1246 if (!(edev->pe->state & EEH_PE_KEEP))
1247 eeh_rmv_from_parent_pe(edev);
1248 else
1249 edev->mode |= EEH_DEV_DISCONNECTED;
1250
1251 /*
1252 * We're removing from the PCI subsystem, that means
1253 * the PCI device driver can't support EEH or not
1254 * well. So we rely on hotplug completely to do recovery
1255 * for the specific PCI device.
1256 */
1257 edev->mode |= EEH_DEV_NO_HANDLER;
1258
1259 eeh_addr_cache_rmv_dev(dev);
1260 eeh_sysfs_remove_device(dev);
1261 edev->mode &= ~EEH_DEV_SYSFS;
1262 }
1263
1264 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1265 {
1266 int ret;
1267
1268 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1269 if (ret) {
1270 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1271 __func__, ret, pe->phb->global_number, pe->addr);
1272 return ret;
1273 }
1274
1275 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1276 if (ret) {
1277 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1278 __func__, ret, pe->phb->global_number, pe->addr);
1279 return ret;
1280 }
1281
1282 /* Clear software isolated state */
1283 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1284 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1285
1286 return ret;
1287 }
1288
1289
1290 static struct pci_device_id eeh_reset_ids[] = {
1291 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1292 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1293 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1294 { 0 }
1295 };
1296
1297 static int eeh_pe_change_owner(struct eeh_pe *pe)
1298 {
1299 struct eeh_dev *edev, *tmp;
1300 struct pci_dev *pdev;
1301 struct pci_device_id *id;
1302 int flags, ret;
1303
1304 /* Check PE state */
1305 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1306 ret = eeh_ops->get_state(pe, NULL);
1307 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1308 return 0;
1309
1310 /* Unfrozen PE, nothing to do */
1311 if ((ret & flags) == flags)
1312 return 0;
1313
1314 /* Frozen PE, check if it needs PE level reset */
1315 eeh_pe_for_each_dev(pe, edev, tmp) {
1316 pdev = eeh_dev_to_pci_dev(edev);
1317 if (!pdev)
1318 continue;
1319
1320 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1321 if (id->vendor != PCI_ANY_ID &&
1322 id->vendor != pdev->vendor)
1323 continue;
1324 if (id->device != PCI_ANY_ID &&
1325 id->device != pdev->device)
1326 continue;
1327 if (id->subvendor != PCI_ANY_ID &&
1328 id->subvendor != pdev->subsystem_vendor)
1329 continue;
1330 if (id->subdevice != PCI_ANY_ID &&
1331 id->subdevice != pdev->subsystem_device)
1332 continue;
1333
1334 goto reset;
1335 }
1336 }
1337
1338 return eeh_unfreeze_pe(pe, true);
1339
1340 reset:
1341 return eeh_pe_reset_and_recover(pe);
1342 }
1343
1344 /**
1345 * eeh_dev_open - Increase count of pass through devices for PE
1346 * @pdev: PCI device
1347 *
1348 * Increase count of passed through devices for the indicated
1349 * PE. In the result, the EEH errors detected on the PE won't be
1350 * reported. The PE owner will be responsible for detection
1351 * and recovery.
1352 */
1353 int eeh_dev_open(struct pci_dev *pdev)
1354 {
1355 struct eeh_dev *edev;
1356 int ret = -ENODEV;
1357
1358 mutex_lock(&eeh_dev_mutex);
1359
1360 /* No PCI device ? */
1361 if (!pdev)
1362 goto out;
1363
1364 /* No EEH device or PE ? */
1365 edev = pci_dev_to_eeh_dev(pdev);
1366 if (!edev || !edev->pe)
1367 goto out;
1368
1369 /*
1370 * The PE might have been put into frozen state, but we
1371 * didn't detect that yet. The passed through PCI devices
1372 * in frozen PE won't work properly. Clear the frozen state
1373 * in advance.
1374 */
1375 ret = eeh_pe_change_owner(edev->pe);
1376 if (ret)
1377 goto out;
1378
1379 /* Increase PE's pass through count */
1380 atomic_inc(&edev->pe->pass_dev_cnt);
1381 mutex_unlock(&eeh_dev_mutex);
1382
1383 return 0;
1384 out:
1385 mutex_unlock(&eeh_dev_mutex);
1386 return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(eeh_dev_open);
1389
1390 /**
1391 * eeh_dev_release - Decrease count of pass through devices for PE
1392 * @pdev: PCI device
1393 *
1394 * Decrease count of pass through devices for the indicated PE. If
1395 * there is no passed through device in PE, the EEH errors detected
1396 * on the PE will be reported and handled as usual.
1397 */
1398 void eeh_dev_release(struct pci_dev *pdev)
1399 {
1400 struct eeh_dev *edev;
1401
1402 mutex_lock(&eeh_dev_mutex);
1403
1404 /* No PCI device ? */
1405 if (!pdev)
1406 goto out;
1407
1408 /* No EEH device ? */
1409 edev = pci_dev_to_eeh_dev(pdev);
1410 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1411 goto out;
1412
1413 /* Decrease PE's pass through count */
1414 atomic_dec(&edev->pe->pass_dev_cnt);
1415 WARN_ON(atomic_read(&edev->pe->pass_dev_cnt) < 0);
1416 eeh_pe_change_owner(edev->pe);
1417 out:
1418 mutex_unlock(&eeh_dev_mutex);
1419 }
1420 EXPORT_SYMBOL(eeh_dev_release);
1421
1422 #ifdef CONFIG_IOMMU_API
1423
1424 static int dev_has_iommu_table(struct device *dev, void *data)
1425 {
1426 struct pci_dev *pdev = to_pci_dev(dev);
1427 struct pci_dev **ppdev = data;
1428
1429 if (!dev)
1430 return 0;
1431
1432 if (dev->iommu_group) {
1433 *ppdev = pdev;
1434 return 1;
1435 }
1436
1437 return 0;
1438 }
1439
1440 /**
1441 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1442 * @group: IOMMU group
1443 *
1444 * The routine is called to convert IOMMU group to EEH PE.
1445 */
1446 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1447 {
1448 struct pci_dev *pdev = NULL;
1449 struct eeh_dev *edev;
1450 int ret;
1451
1452 /* No IOMMU group ? */
1453 if (!group)
1454 return NULL;
1455
1456 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1457 if (!ret || !pdev)
1458 return NULL;
1459
1460 /* No EEH device or PE ? */
1461 edev = pci_dev_to_eeh_dev(pdev);
1462 if (!edev || !edev->pe)
1463 return NULL;
1464
1465 return edev->pe;
1466 }
1467 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1468
1469 #endif /* CONFIG_IOMMU_API */
1470
1471 /**
1472 * eeh_pe_set_option - Set options for the indicated PE
1473 * @pe: EEH PE
1474 * @option: requested option
1475 *
1476 * The routine is called to enable or disable EEH functionality
1477 * on the indicated PE, to enable IO or DMA for the frozen PE.
1478 */
1479 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1480 {
1481 int ret = 0;
1482
1483 /* Invalid PE ? */
1484 if (!pe)
1485 return -ENODEV;
1486
1487 /*
1488 * EEH functionality could possibly be disabled, just
1489 * return error for the case. And the EEH functinality
1490 * isn't expected to be disabled on one specific PE.
1491 */
1492 switch (option) {
1493 case EEH_OPT_ENABLE:
1494 if (eeh_enabled()) {
1495 ret = eeh_pe_change_owner(pe);
1496 break;
1497 }
1498 ret = -EIO;
1499 break;
1500 case EEH_OPT_DISABLE:
1501 break;
1502 case EEH_OPT_THAW_MMIO:
1503 case EEH_OPT_THAW_DMA:
1504 if (!eeh_ops || !eeh_ops->set_option) {
1505 ret = -ENOENT;
1506 break;
1507 }
1508
1509 ret = eeh_pci_enable(pe, option);
1510 break;
1511 default:
1512 pr_debug("%s: Option %d out of range (%d, %d)\n",
1513 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1514 ret = -EINVAL;
1515 }
1516
1517 return ret;
1518 }
1519 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1520
1521 /**
1522 * eeh_pe_get_state - Retrieve PE's state
1523 * @pe: EEH PE
1524 *
1525 * Retrieve the PE's state, which includes 3 aspects: enabled
1526 * DMA, enabled IO and asserted reset.
1527 */
1528 int eeh_pe_get_state(struct eeh_pe *pe)
1529 {
1530 int result, ret = 0;
1531 bool rst_active, dma_en, mmio_en;
1532
1533 /* Existing PE ? */
1534 if (!pe)
1535 return -ENODEV;
1536
1537 if (!eeh_ops || !eeh_ops->get_state)
1538 return -ENOENT;
1539
1540 result = eeh_ops->get_state(pe, NULL);
1541 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1542 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1543 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1544
1545 if (rst_active)
1546 ret = EEH_PE_STATE_RESET;
1547 else if (dma_en && mmio_en)
1548 ret = EEH_PE_STATE_NORMAL;
1549 else if (!dma_en && !mmio_en)
1550 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1551 else if (!dma_en && mmio_en)
1552 ret = EEH_PE_STATE_STOPPED_DMA;
1553 else
1554 ret = EEH_PE_STATE_UNAVAIL;
1555
1556 return ret;
1557 }
1558 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1559
1560 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1561 {
1562 struct eeh_dev *edev, *tmp;
1563 struct pci_dev *pdev;
1564 int ret = 0;
1565
1566 /* Restore config space */
1567 eeh_pe_restore_bars(pe);
1568
1569 /*
1570 * Reenable PCI devices as the devices passed
1571 * through are always enabled before the reset.
1572 */
1573 eeh_pe_for_each_dev(pe, edev, tmp) {
1574 pdev = eeh_dev_to_pci_dev(edev);
1575 if (!pdev)
1576 continue;
1577
1578 ret = pci_reenable_device(pdev);
1579 if (ret) {
1580 pr_warn("%s: Failure %d reenabling %s\n",
1581 __func__, ret, pci_name(pdev));
1582 return ret;
1583 }
1584 }
1585
1586 /* The PE is still in frozen state */
1587 return eeh_unfreeze_pe(pe, true);
1588 }
1589
1590 /**
1591 * eeh_pe_reset - Issue PE reset according to specified type
1592 * @pe: EEH PE
1593 * @option: reset type
1594 *
1595 * The routine is called to reset the specified PE with the
1596 * indicated type, either fundamental reset or hot reset.
1597 * PE reset is the most important part for error recovery.
1598 */
1599 int eeh_pe_reset(struct eeh_pe *pe, int option)
1600 {
1601 int ret = 0;
1602
1603 /* Invalid PE ? */
1604 if (!pe)
1605 return -ENODEV;
1606
1607 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1608 return -ENOENT;
1609
1610 switch (option) {
1611 case EEH_RESET_DEACTIVATE:
1612 ret = eeh_ops->reset(pe, option);
1613 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1614 if (ret)
1615 break;
1616
1617 ret = eeh_pe_reenable_devices(pe);
1618 break;
1619 case EEH_RESET_HOT:
1620 case EEH_RESET_FUNDAMENTAL:
1621 /*
1622 * Proactively freeze the PE to drop all MMIO access
1623 * during reset, which should be banned as it's always
1624 * cause recursive EEH error.
1625 */
1626 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1627
1628 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1629 ret = eeh_ops->reset(pe, option);
1630 break;
1631 default:
1632 pr_debug("%s: Unsupported option %d\n",
1633 __func__, option);
1634 ret = -EINVAL;
1635 }
1636
1637 return ret;
1638 }
1639 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1640
1641 /**
1642 * eeh_pe_configure - Configure PCI bridges after PE reset
1643 * @pe: EEH PE
1644 *
1645 * The routine is called to restore the PCI config space for
1646 * those PCI devices, especially PCI bridges affected by PE
1647 * reset issued previously.
1648 */
1649 int eeh_pe_configure(struct eeh_pe *pe)
1650 {
1651 int ret = 0;
1652
1653 /* Invalid PE ? */
1654 if (!pe)
1655 return -ENODEV;
1656
1657 return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1660
1661 /**
1662 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1663 * @pe: the indicated PE
1664 * @type: error type
1665 * @function: error function
1666 * @addr: address
1667 * @mask: address mask
1668 *
1669 * The routine is called to inject the specified PCI error, which
1670 * is determined by @type and @function, to the indicated PE for
1671 * testing purpose.
1672 */
1673 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1674 unsigned long addr, unsigned long mask)
1675 {
1676 /* Invalid PE ? */
1677 if (!pe)
1678 return -ENODEV;
1679
1680 /* Unsupported operation ? */
1681 if (!eeh_ops || !eeh_ops->err_inject)
1682 return -ENOENT;
1683
1684 /* Check on PCI error type */
1685 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1686 return -EINVAL;
1687
1688 /* Check on PCI error function */
1689 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1690 return -EINVAL;
1691
1692 return eeh_ops->err_inject(pe, type, func, addr, mask);
1693 }
1694 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1695
1696 static int proc_eeh_show(struct seq_file *m, void *v)
1697 {
1698 if (!eeh_enabled()) {
1699 seq_printf(m, "EEH Subsystem is globally disabled\n");
1700 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1701 } else {
1702 seq_printf(m, "EEH Subsystem is enabled\n");
1703 seq_printf(m,
1704 "no device=%llu\n"
1705 "no device node=%llu\n"
1706 "no config address=%llu\n"
1707 "check not wanted=%llu\n"
1708 "eeh_total_mmio_ffs=%llu\n"
1709 "eeh_false_positives=%llu\n"
1710 "eeh_slot_resets=%llu\n",
1711 eeh_stats.no_device,
1712 eeh_stats.no_dn,
1713 eeh_stats.no_cfg_addr,
1714 eeh_stats.ignored_check,
1715 eeh_stats.total_mmio_ffs,
1716 eeh_stats.false_positives,
1717 eeh_stats.slot_resets);
1718 }
1719
1720 return 0;
1721 }
1722
1723 static int proc_eeh_open(struct inode *inode, struct file *file)
1724 {
1725 return single_open(file, proc_eeh_show, NULL);
1726 }
1727
1728 static const struct file_operations proc_eeh_operations = {
1729 .open = proc_eeh_open,
1730 .read = seq_read,
1731 .llseek = seq_lseek,
1732 .release = single_release,
1733 };
1734
1735 #ifdef CONFIG_DEBUG_FS
1736 static int eeh_enable_dbgfs_set(void *data, u64 val)
1737 {
1738 if (val)
1739 eeh_clear_flag(EEH_FORCE_DISABLED);
1740 else
1741 eeh_add_flag(EEH_FORCE_DISABLED);
1742
1743 /* Notify the backend */
1744 if (eeh_ops->post_init)
1745 eeh_ops->post_init();
1746
1747 return 0;
1748 }
1749
1750 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1751 {
1752 if (eeh_enabled())
1753 *val = 0x1ul;
1754 else
1755 *val = 0x0ul;
1756 return 0;
1757 }
1758
1759 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1760 {
1761 eeh_max_freezes = val;
1762 return 0;
1763 }
1764
1765 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1766 {
1767 *val = eeh_max_freezes;
1768 return 0;
1769 }
1770
1771 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1772 eeh_enable_dbgfs_set, "0x%llx\n");
1773 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1774 eeh_freeze_dbgfs_set, "0x%llx\n");
1775 #endif
1776
1777 static int __init eeh_init_proc(void)
1778 {
1779 if (machine_is(pseries) || machine_is(powernv)) {
1780 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1781 #ifdef CONFIG_DEBUG_FS
1782 debugfs_create_file("eeh_enable", 0600,
1783 powerpc_debugfs_root, NULL,
1784 &eeh_enable_dbgfs_ops);
1785 debugfs_create_file("eeh_max_freezes", 0600,
1786 powerpc_debugfs_root, NULL,
1787 &eeh_freeze_dbgfs_ops);
1788 #endif
1789 }
1790
1791 return 0;
1792 }
1793 __initcall(eeh_init_proc);