]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/eeh.c
Merge remote-tracking branch 'airlied/drm-next' into topic/drm-misc
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / eeh.c
1 /*
2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
22 */
23
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
37 #include <linux/of.h>
38
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
47 #include <asm/rtas.h>
48
49
50 /** Overview:
51 * EEH, or "Enhanced Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
64 *
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
72 * with EEH.
73 *
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
82 */
83
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
88 */
89 #define EEH_MAX_FAILS 2100000
90
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
93
94 /*
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
103 */
104 int eeh_subsystem_flags;
105 EXPORT_SYMBOL(eeh_subsystem_flags);
106
107 /*
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
111 */
112 int eeh_max_freezes = 5;
113
114 /* Platform dependent EEH operations */
115 struct eeh_ops *eeh_ops = NULL;
116
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock);
119 EXPORT_SYMBOL_GPL(confirm_error_lock);
120
121 /* Lock to protect passed flags */
122 static DEFINE_MUTEX(eeh_dev_mutex);
123
124 /* Buffer for reporting pci register dumps. Its here in BSS, and
125 * not dynamically alloced, so that it ends up in RMO where RTAS
126 * can access it.
127 */
128 #define EEH_PCI_REGS_LOG_LEN 8192
129 static unsigned char pci_regs_buf[EEH_PCI_REGS_LOG_LEN];
130
131 /*
132 * The struct is used to maintain the EEH global statistic
133 * information. Besides, the EEH global statistics will be
134 * exported to user space through procfs
135 */
136 struct eeh_stats {
137 u64 no_device; /* PCI device not found */
138 u64 no_dn; /* OF node not found */
139 u64 no_cfg_addr; /* Config address not found */
140 u64 ignored_check; /* EEH check skipped */
141 u64 total_mmio_ffs; /* Total EEH checks */
142 u64 false_positives; /* Unnecessary EEH checks */
143 u64 slot_resets; /* PE reset */
144 };
145
146 static struct eeh_stats eeh_stats;
147
148 static int __init eeh_setup(char *str)
149 {
150 if (!strcmp(str, "off"))
151 eeh_add_flag(EEH_FORCE_DISABLED);
152 else if (!strcmp(str, "early_log"))
153 eeh_add_flag(EEH_EARLY_DUMP_LOG);
154
155 return 1;
156 }
157 __setup("eeh=", eeh_setup);
158
159 /*
160 * This routine captures assorted PCI configuration space data
161 * for the indicated PCI device, and puts them into a buffer
162 * for RTAS error logging.
163 */
164 static size_t eeh_dump_dev_log(struct eeh_dev *edev, char *buf, size_t len)
165 {
166 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
167 u32 cfg;
168 int cap, i;
169 int n = 0, l = 0;
170 char buffer[128];
171
172 n += scnprintf(buf+n, len-n, "%04x:%02x:%02x.%01x\n",
173 edev->phb->global_number, pdn->busno,
174 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
175 pr_warn("EEH: of node=%04x:%02x:%02x.%01x\n",
176 edev->phb->global_number, pdn->busno,
177 PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
178
179 eeh_ops->read_config(pdn, PCI_VENDOR_ID, 4, &cfg);
180 n += scnprintf(buf+n, len-n, "dev/vend:%08x\n", cfg);
181 pr_warn("EEH: PCI device/vendor: %08x\n", cfg);
182
183 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cfg);
184 n += scnprintf(buf+n, len-n, "cmd/stat:%x\n", cfg);
185 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg);
186
187 /* Gather bridge-specific registers */
188 if (edev->mode & EEH_DEV_BRIDGE) {
189 eeh_ops->read_config(pdn, PCI_SEC_STATUS, 2, &cfg);
190 n += scnprintf(buf+n, len-n, "sec stat:%x\n", cfg);
191 pr_warn("EEH: Bridge secondary status: %04x\n", cfg);
192
193 eeh_ops->read_config(pdn, PCI_BRIDGE_CONTROL, 2, &cfg);
194 n += scnprintf(buf+n, len-n, "brdg ctl:%x\n", cfg);
195 pr_warn("EEH: Bridge control: %04x\n", cfg);
196 }
197
198 /* Dump out the PCI-X command and status regs */
199 cap = edev->pcix_cap;
200 if (cap) {
201 eeh_ops->read_config(pdn, cap, 4, &cfg);
202 n += scnprintf(buf+n, len-n, "pcix-cmd:%x\n", cfg);
203 pr_warn("EEH: PCI-X cmd: %08x\n", cfg);
204
205 eeh_ops->read_config(pdn, cap+4, 4, &cfg);
206 n += scnprintf(buf+n, len-n, "pcix-stat:%x\n", cfg);
207 pr_warn("EEH: PCI-X status: %08x\n", cfg);
208 }
209
210 /* If PCI-E capable, dump PCI-E cap 10 */
211 cap = edev->pcie_cap;
212 if (cap) {
213 n += scnprintf(buf+n, len-n, "pci-e cap10:\n");
214 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215
216 for (i=0; i<=8; i++) {
217 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
218 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
219
220 if ((i % 4) == 0) {
221 if (i != 0)
222 pr_warn("%s\n", buffer);
223
224 l = scnprintf(buffer, sizeof(buffer),
225 "EEH: PCI-E %02x: %08x ",
226 4*i, cfg);
227 } else {
228 l += scnprintf(buffer+l, sizeof(buffer)-l,
229 "%08x ", cfg);
230 }
231
232 }
233
234 pr_warn("%s\n", buffer);
235 }
236
237 /* If AER capable, dump it */
238 cap = edev->aer_cap;
239 if (cap) {
240 n += scnprintf(buf+n, len-n, "pci-e AER:\n");
241 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242
243 for (i=0; i<=13; i++) {
244 eeh_ops->read_config(pdn, cap+4*i, 4, &cfg);
245 n += scnprintf(buf+n, len-n, "%02x:%x\n", 4*i, cfg);
246
247 if ((i % 4) == 0) {
248 if (i != 0)
249 pr_warn("%s\n", buffer);
250
251 l = scnprintf(buffer, sizeof(buffer),
252 "EEH: PCI-E AER %02x: %08x ",
253 4*i, cfg);
254 } else {
255 l += scnprintf(buffer+l, sizeof(buffer)-l,
256 "%08x ", cfg);
257 }
258 }
259
260 pr_warn("%s\n", buffer);
261 }
262
263 return n;
264 }
265
266 static void *eeh_dump_pe_log(void *data, void *flag)
267 {
268 struct eeh_pe *pe = data;
269 struct eeh_dev *edev, *tmp;
270 size_t *plen = flag;
271
272 eeh_pe_for_each_dev(pe, edev, tmp)
273 *plen += eeh_dump_dev_log(edev, pci_regs_buf + *plen,
274 EEH_PCI_REGS_LOG_LEN - *plen);
275
276 return NULL;
277 }
278
279 /**
280 * eeh_slot_error_detail - Generate combined log including driver log and error log
281 * @pe: EEH PE
282 * @severity: temporary or permanent error log
283 *
284 * This routine should be called to generate the combined log, which
285 * is comprised of driver log and error log. The driver log is figured
286 * out from the config space of the corresponding PCI device, while
287 * the error log is fetched through platform dependent function call.
288 */
289 void eeh_slot_error_detail(struct eeh_pe *pe, int severity)
290 {
291 size_t loglen = 0;
292
293 /*
294 * When the PHB is fenced or dead, it's pointless to collect
295 * the data from PCI config space because it should return
296 * 0xFF's. For ER, we still retrieve the data from the PCI
297 * config space.
298 *
299 * For pHyp, we have to enable IO for log retrieval. Otherwise,
300 * 0xFF's is always returned from PCI config space.
301 */
302 if (!(pe->type & EEH_PE_PHB)) {
303 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG))
304 eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
305
306 /*
307 * The config space of some PCI devices can't be accessed
308 * when their PEs are in frozen state. Otherwise, fenced
309 * PHB might be seen. Those PEs are identified with flag
310 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
311 * is set automatically when the PE is put to EEH_PE_ISOLATED.
312 *
313 * Restoring BARs possibly triggers PCI config access in
314 * (OPAL) firmware and then causes fenced PHB. If the
315 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
316 * pointless to restore BARs and dump config space.
317 */
318 eeh_ops->configure_bridge(pe);
319 if (!(pe->state & EEH_PE_CFG_BLOCKED)) {
320 eeh_pe_restore_bars(pe);
321
322 pci_regs_buf[0] = 0;
323 eeh_pe_traverse(pe, eeh_dump_pe_log, &loglen);
324 }
325 }
326
327 eeh_ops->get_log(pe, severity, pci_regs_buf, loglen);
328 }
329
330 /**
331 * eeh_token_to_phys - Convert EEH address token to phys address
332 * @token: I/O token, should be address in the form 0xA....
333 *
334 * This routine should be called to convert virtual I/O address
335 * to physical one.
336 */
337 static inline unsigned long eeh_token_to_phys(unsigned long token)
338 {
339 pte_t *ptep;
340 unsigned long pa;
341 int hugepage_shift;
342
343 /*
344 * We won't find hugepages here(this is iomem). Hence we are not
345 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
346 * page table free, because of init_mm.
347 */
348 ptep = __find_linux_pte_or_hugepte(init_mm.pgd, token,
349 NULL, &hugepage_shift);
350 if (!ptep)
351 return token;
352 WARN_ON(hugepage_shift);
353 pa = pte_pfn(*ptep) << PAGE_SHIFT;
354
355 return pa | (token & (PAGE_SIZE-1));
356 }
357
358 /*
359 * On PowerNV platform, we might already have fenced PHB there.
360 * For that case, it's meaningless to recover frozen PE. Intead,
361 * We have to handle fenced PHB firstly.
362 */
363 static int eeh_phb_check_failure(struct eeh_pe *pe)
364 {
365 struct eeh_pe *phb_pe;
366 unsigned long flags;
367 int ret;
368
369 if (!eeh_has_flag(EEH_PROBE_MODE_DEV))
370 return -EPERM;
371
372 /* Find the PHB PE */
373 phb_pe = eeh_phb_pe_get(pe->phb);
374 if (!phb_pe) {
375 pr_warn("%s Can't find PE for PHB#%d\n",
376 __func__, pe->phb->global_number);
377 return -EEXIST;
378 }
379
380 /* If the PHB has been in problematic state */
381 eeh_serialize_lock(&flags);
382 if (phb_pe->state & EEH_PE_ISOLATED) {
383 ret = 0;
384 goto out;
385 }
386
387 /* Check PHB state */
388 ret = eeh_ops->get_state(phb_pe, NULL);
389 if ((ret < 0) ||
390 (ret == EEH_STATE_NOT_SUPPORT) ||
391 (ret & (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) ==
392 (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE)) {
393 ret = 0;
394 goto out;
395 }
396
397 /* Isolate the PHB and send event */
398 eeh_pe_state_mark(phb_pe, EEH_PE_ISOLATED);
399 eeh_serialize_unlock(flags);
400
401 pr_err("EEH: PHB#%x failure detected, location: %s\n",
402 phb_pe->phb->global_number, eeh_pe_loc_get(phb_pe));
403 dump_stack();
404 eeh_send_failure_event(phb_pe);
405
406 return 1;
407 out:
408 eeh_serialize_unlock(flags);
409 return ret;
410 }
411
412 /**
413 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
414 * @edev: eeh device
415 *
416 * Check for an EEH failure for the given device node. Call this
417 * routine if the result of a read was all 0xff's and you want to
418 * find out if this is due to an EEH slot freeze. This routine
419 * will query firmware for the EEH status.
420 *
421 * Returns 0 if there has not been an EEH error; otherwise returns
422 * a non-zero value and queues up a slot isolation event notification.
423 *
424 * It is safe to call this routine in an interrupt context.
425 */
426 int eeh_dev_check_failure(struct eeh_dev *edev)
427 {
428 int ret;
429 int active_flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
430 unsigned long flags;
431 struct pci_dn *pdn;
432 struct pci_dev *dev;
433 struct eeh_pe *pe, *parent_pe, *phb_pe;
434 int rc = 0;
435 const char *location = NULL;
436
437 eeh_stats.total_mmio_ffs++;
438
439 if (!eeh_enabled())
440 return 0;
441
442 if (!edev) {
443 eeh_stats.no_dn++;
444 return 0;
445 }
446 dev = eeh_dev_to_pci_dev(edev);
447 pe = eeh_dev_to_pe(edev);
448
449 /* Access to IO BARs might get this far and still not want checking. */
450 if (!pe) {
451 eeh_stats.ignored_check++;
452 pr_debug("EEH: Ignored check for %s\n",
453 eeh_pci_name(dev));
454 return 0;
455 }
456
457 if (!pe->addr && !pe->config_addr) {
458 eeh_stats.no_cfg_addr++;
459 return 0;
460 }
461
462 /*
463 * On PowerNV platform, we might already have fenced PHB
464 * there and we need take care of that firstly.
465 */
466 ret = eeh_phb_check_failure(pe);
467 if (ret > 0)
468 return ret;
469
470 /*
471 * If the PE isn't owned by us, we shouldn't check the
472 * state. Instead, let the owner handle it if the PE has
473 * been frozen.
474 */
475 if (eeh_pe_passed(pe))
476 return 0;
477
478 /* If we already have a pending isolation event for this
479 * slot, we know it's bad already, we don't need to check.
480 * Do this checking under a lock; as multiple PCI devices
481 * in one slot might report errors simultaneously, and we
482 * only want one error recovery routine running.
483 */
484 eeh_serialize_lock(&flags);
485 rc = 1;
486 if (pe->state & EEH_PE_ISOLATED) {
487 pe->check_count++;
488 if (pe->check_count % EEH_MAX_FAILS == 0) {
489 pdn = eeh_dev_to_pdn(edev);
490 if (pdn->node)
491 location = of_get_property(pdn->node, "ibm,loc-code", NULL);
492 printk(KERN_ERR "EEH: %d reads ignored for recovering device at "
493 "location=%s driver=%s pci addr=%s\n",
494 pe->check_count,
495 location ? location : "unknown",
496 eeh_driver_name(dev), eeh_pci_name(dev));
497 printk(KERN_ERR "EEH: Might be infinite loop in %s driver\n",
498 eeh_driver_name(dev));
499 dump_stack();
500 }
501 goto dn_unlock;
502 }
503
504 /*
505 * Now test for an EEH failure. This is VERY expensive.
506 * Note that the eeh_config_addr may be a parent device
507 * in the case of a device behind a bridge, or it may be
508 * function zero of a multi-function device.
509 * In any case they must share a common PHB.
510 */
511 ret = eeh_ops->get_state(pe, NULL);
512
513 /* Note that config-io to empty slots may fail;
514 * they are empty when they don't have children.
515 * We will punt with the following conditions: Failure to get
516 * PE's state, EEH not support and Permanently unavailable
517 * state, PE is in good state.
518 */
519 if ((ret < 0) ||
520 (ret == EEH_STATE_NOT_SUPPORT) ||
521 ((ret & active_flags) == active_flags)) {
522 eeh_stats.false_positives++;
523 pe->false_positives++;
524 rc = 0;
525 goto dn_unlock;
526 }
527
528 /*
529 * It should be corner case that the parent PE has been
530 * put into frozen state as well. We should take care
531 * that at first.
532 */
533 parent_pe = pe->parent;
534 while (parent_pe) {
535 /* Hit the ceiling ? */
536 if (parent_pe->type & EEH_PE_PHB)
537 break;
538
539 /* Frozen parent PE ? */
540 ret = eeh_ops->get_state(parent_pe, NULL);
541 if (ret > 0 &&
542 (ret & active_flags) != active_flags)
543 pe = parent_pe;
544
545 /* Next parent level */
546 parent_pe = parent_pe->parent;
547 }
548
549 eeh_stats.slot_resets++;
550
551 /* Avoid repeated reports of this failure, including problems
552 * with other functions on this device, and functions under
553 * bridges.
554 */
555 eeh_pe_state_mark(pe, EEH_PE_ISOLATED);
556 eeh_serialize_unlock(flags);
557
558 /* Most EEH events are due to device driver bugs. Having
559 * a stack trace will help the device-driver authors figure
560 * out what happened. So print that out.
561 */
562 phb_pe = eeh_phb_pe_get(pe->phb);
563 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
564 pe->phb->global_number, pe->addr);
565 pr_err("EEH: PE location: %s, PHB location: %s\n",
566 eeh_pe_loc_get(pe), eeh_pe_loc_get(phb_pe));
567 dump_stack();
568
569 eeh_send_failure_event(pe);
570
571 return 1;
572
573 dn_unlock:
574 eeh_serialize_unlock(flags);
575 return rc;
576 }
577
578 EXPORT_SYMBOL_GPL(eeh_dev_check_failure);
579
580 /**
581 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
582 * @token: I/O address
583 *
584 * Check for an EEH failure at the given I/O address. Call this
585 * routine if the result of a read was all 0xff's and you want to
586 * find out if this is due to an EEH slot freeze event. This routine
587 * will query firmware for the EEH status.
588 *
589 * Note this routine is safe to call in an interrupt context.
590 */
591 int eeh_check_failure(const volatile void __iomem *token)
592 {
593 unsigned long addr;
594 struct eeh_dev *edev;
595
596 /* Finding the phys addr + pci device; this is pretty quick. */
597 addr = eeh_token_to_phys((unsigned long __force) token);
598 edev = eeh_addr_cache_get_dev(addr);
599 if (!edev) {
600 eeh_stats.no_device++;
601 return 0;
602 }
603
604 return eeh_dev_check_failure(edev);
605 }
606 EXPORT_SYMBOL(eeh_check_failure);
607
608
609 /**
610 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
611 * @pe: EEH PE
612 *
613 * This routine should be called to reenable frozen MMIO or DMA
614 * so that it would work correctly again. It's useful while doing
615 * recovery or log collection on the indicated device.
616 */
617 int eeh_pci_enable(struct eeh_pe *pe, int function)
618 {
619 int active_flag, rc;
620
621 /*
622 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
623 * Also, it's pointless to enable them on unfrozen PE. So
624 * we have to check before enabling IO or DMA.
625 */
626 switch (function) {
627 case EEH_OPT_THAW_MMIO:
628 active_flag = EEH_STATE_MMIO_ACTIVE | EEH_STATE_MMIO_ENABLED;
629 break;
630 case EEH_OPT_THAW_DMA:
631 active_flag = EEH_STATE_DMA_ACTIVE;
632 break;
633 case EEH_OPT_DISABLE:
634 case EEH_OPT_ENABLE:
635 case EEH_OPT_FREEZE_PE:
636 active_flag = 0;
637 break;
638 default:
639 pr_warn("%s: Invalid function %d\n",
640 __func__, function);
641 return -EINVAL;
642 }
643
644 /*
645 * Check if IO or DMA has been enabled before
646 * enabling them.
647 */
648 if (active_flag) {
649 rc = eeh_ops->get_state(pe, NULL);
650 if (rc < 0)
651 return rc;
652
653 /* Needn't enable it at all */
654 if (rc == EEH_STATE_NOT_SUPPORT)
655 return 0;
656
657 /* It's already enabled */
658 if (rc & active_flag)
659 return 0;
660 }
661
662
663 /* Issue the request */
664 rc = eeh_ops->set_option(pe, function);
665 if (rc)
666 pr_warn("%s: Unexpected state change %d on "
667 "PHB#%d-PE#%x, err=%d\n",
668 __func__, function, pe->phb->global_number,
669 pe->addr, rc);
670
671 /* Check if the request is finished successfully */
672 if (active_flag) {
673 rc = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
674 if (rc < 0)
675 return rc;
676
677 if (rc & active_flag)
678 return 0;
679
680 return -EIO;
681 }
682
683 return rc;
684 }
685
686 static void *eeh_disable_and_save_dev_state(void *data, void *userdata)
687 {
688 struct eeh_dev *edev = data;
689 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
690 struct pci_dev *dev = userdata;
691
692 /*
693 * The caller should have disabled and saved the
694 * state for the specified device
695 */
696 if (!pdev || pdev == dev)
697 return NULL;
698
699 /* Ensure we have D0 power state */
700 pci_set_power_state(pdev, PCI_D0);
701
702 /* Save device state */
703 pci_save_state(pdev);
704
705 /*
706 * Disable device to avoid any DMA traffic and
707 * interrupt from the device
708 */
709 pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
710
711 return NULL;
712 }
713
714 static void *eeh_restore_dev_state(void *data, void *userdata)
715 {
716 struct eeh_dev *edev = data;
717 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
718 struct pci_dev *pdev = eeh_dev_to_pci_dev(edev);
719 struct pci_dev *dev = userdata;
720
721 if (!pdev)
722 return NULL;
723
724 /* Apply customization from firmware */
725 if (pdn && eeh_ops->restore_config)
726 eeh_ops->restore_config(pdn);
727
728 /* The caller should restore state for the specified device */
729 if (pdev != dev)
730 pci_restore_state(pdev);
731
732 return NULL;
733 }
734
735 /**
736 * pcibios_set_pcie_reset_state - Set PCI-E reset state
737 * @dev: pci device struct
738 * @state: reset state to enter
739 *
740 * Return value:
741 * 0 if success
742 */
743 int pcibios_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
744 {
745 struct eeh_dev *edev = pci_dev_to_eeh_dev(dev);
746 struct eeh_pe *pe = eeh_dev_to_pe(edev);
747
748 if (!pe) {
749 pr_err("%s: No PE found on PCI device %s\n",
750 __func__, pci_name(dev));
751 return -EINVAL;
752 }
753
754 switch (state) {
755 case pcie_deassert_reset:
756 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
757 eeh_unfreeze_pe(pe, false);
758 if (!(pe->type & EEH_PE_VF))
759 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
760 eeh_pe_dev_traverse(pe, eeh_restore_dev_state, dev);
761 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
762 break;
763 case pcie_hot_reset:
764 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
765 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
766 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
767 if (!(pe->type & EEH_PE_VF))
768 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
769 eeh_ops->reset(pe, EEH_RESET_HOT);
770 break;
771 case pcie_warm_reset:
772 eeh_pe_state_mark_with_cfg(pe, EEH_PE_ISOLATED);
773 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
774 eeh_pe_dev_traverse(pe, eeh_disable_and_save_dev_state, dev);
775 if (!(pe->type & EEH_PE_VF))
776 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
777 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
778 break;
779 default:
780 eeh_pe_state_clear(pe, EEH_PE_ISOLATED | EEH_PE_CFG_BLOCKED);
781 return -EINVAL;
782 };
783
784 return 0;
785 }
786
787 /**
788 * eeh_set_pe_freset - Check the required reset for the indicated device
789 * @data: EEH device
790 * @flag: return value
791 *
792 * Each device might have its preferred reset type: fundamental or
793 * hot reset. The routine is used to collected the information for
794 * the indicated device and its children so that the bunch of the
795 * devices could be reset properly.
796 */
797 static void *eeh_set_dev_freset(void *data, void *flag)
798 {
799 struct pci_dev *dev;
800 unsigned int *freset = (unsigned int *)flag;
801 struct eeh_dev *edev = (struct eeh_dev *)data;
802
803 dev = eeh_dev_to_pci_dev(edev);
804 if (dev)
805 *freset |= dev->needs_freset;
806
807 return NULL;
808 }
809
810 /**
811 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
812 * @pe: EEH PE
813 *
814 * Assert the PCI #RST line for 1/4 second.
815 */
816 static void eeh_reset_pe_once(struct eeh_pe *pe)
817 {
818 unsigned int freset = 0;
819
820 /* Determine type of EEH reset required for
821 * Partitionable Endpoint, a hot-reset (1)
822 * or a fundamental reset (3).
823 * A fundamental reset required by any device under
824 * Partitionable Endpoint trumps hot-reset.
825 */
826 eeh_pe_dev_traverse(pe, eeh_set_dev_freset, &freset);
827
828 if (freset)
829 eeh_ops->reset(pe, EEH_RESET_FUNDAMENTAL);
830 else
831 eeh_ops->reset(pe, EEH_RESET_HOT);
832
833 eeh_ops->reset(pe, EEH_RESET_DEACTIVATE);
834 }
835
836 /**
837 * eeh_reset_pe - Reset the indicated PE
838 * @pe: EEH PE
839 *
840 * This routine should be called to reset indicated device, including
841 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
842 * might be involved as well.
843 */
844 int eeh_reset_pe(struct eeh_pe *pe)
845 {
846 int flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
847 int i, state, ret;
848
849 /* Mark as reset and block config space */
850 eeh_pe_state_mark(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
851
852 /* Take three shots at resetting the bus */
853 for (i = 0; i < 3; i++) {
854 eeh_reset_pe_once(pe);
855
856 /*
857 * EEH_PE_ISOLATED is expected to be removed after
858 * BAR restore.
859 */
860 state = eeh_ops->wait_state(pe, PCI_BUS_RESET_WAIT_MSEC);
861 if ((state & flags) == flags) {
862 ret = 0;
863 goto out;
864 }
865
866 if (state < 0) {
867 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
868 __func__, pe->phb->global_number, pe->addr);
869 ret = -ENOTRECOVERABLE;
870 goto out;
871 }
872
873 /* We might run out of credits */
874 ret = -EIO;
875 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
876 __func__, state, pe->phb->global_number, pe->addr, (i + 1));
877 }
878
879 out:
880 eeh_pe_state_clear(pe, EEH_PE_RESET | EEH_PE_CFG_BLOCKED);
881 return ret;
882 }
883
884 /**
885 * eeh_save_bars - Save device bars
886 * @edev: PCI device associated EEH device
887 *
888 * Save the values of the device bars. Unlike the restore
889 * routine, this routine is *not* recursive. This is because
890 * PCI devices are added individually; but, for the restore,
891 * an entire slot is reset at a time.
892 */
893 void eeh_save_bars(struct eeh_dev *edev)
894 {
895 struct pci_dn *pdn;
896 int i;
897
898 pdn = eeh_dev_to_pdn(edev);
899 if (!pdn)
900 return;
901
902 for (i = 0; i < 16; i++)
903 eeh_ops->read_config(pdn, i * 4, 4, &edev->config_space[i]);
904
905 /*
906 * For PCI bridges including root port, we need enable bus
907 * master explicitly. Otherwise, it can't fetch IODA table
908 * entries correctly. So we cache the bit in advance so that
909 * we can restore it after reset, either PHB range or PE range.
910 */
911 if (edev->mode & EEH_DEV_BRIDGE)
912 edev->config_space[1] |= PCI_COMMAND_MASTER;
913 }
914
915 /**
916 * eeh_ops_register - Register platform dependent EEH operations
917 * @ops: platform dependent EEH operations
918 *
919 * Register the platform dependent EEH operation callback
920 * functions. The platform should call this function before
921 * any other EEH operations.
922 */
923 int __init eeh_ops_register(struct eeh_ops *ops)
924 {
925 if (!ops->name) {
926 pr_warn("%s: Invalid EEH ops name for %p\n",
927 __func__, ops);
928 return -EINVAL;
929 }
930
931 if (eeh_ops && eeh_ops != ops) {
932 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
933 __func__, eeh_ops->name, ops->name);
934 return -EEXIST;
935 }
936
937 eeh_ops = ops;
938
939 return 0;
940 }
941
942 /**
943 * eeh_ops_unregister - Unreigster platform dependent EEH operations
944 * @name: name of EEH platform operations
945 *
946 * Unregister the platform dependent EEH operation callback
947 * functions.
948 */
949 int __exit eeh_ops_unregister(const char *name)
950 {
951 if (!name || !strlen(name)) {
952 pr_warn("%s: Invalid EEH ops name\n",
953 __func__);
954 return -EINVAL;
955 }
956
957 if (eeh_ops && !strcmp(eeh_ops->name, name)) {
958 eeh_ops = NULL;
959 return 0;
960 }
961
962 return -EEXIST;
963 }
964
965 static int eeh_reboot_notifier(struct notifier_block *nb,
966 unsigned long action, void *unused)
967 {
968 eeh_clear_flag(EEH_ENABLED);
969 return NOTIFY_DONE;
970 }
971
972 static struct notifier_block eeh_reboot_nb = {
973 .notifier_call = eeh_reboot_notifier,
974 };
975
976 /**
977 * eeh_init - EEH initialization
978 *
979 * Initialize EEH by trying to enable it for all of the adapters in the system.
980 * As a side effect we can determine here if eeh is supported at all.
981 * Note that we leave EEH on so failed config cycles won't cause a machine
982 * check. If a user turns off EEH for a particular adapter they are really
983 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
984 * grant access to a slot if EEH isn't enabled, and so we always enable
985 * EEH for all slots/all devices.
986 *
987 * The eeh-force-off option disables EEH checking globally, for all slots.
988 * Even if force-off is set, the EEH hardware is still enabled, so that
989 * newer systems can boot.
990 */
991 int eeh_init(void)
992 {
993 struct pci_controller *hose, *tmp;
994 struct pci_dn *pdn;
995 static int cnt = 0;
996 int ret = 0;
997
998 /*
999 * We have to delay the initialization on PowerNV after
1000 * the PCI hierarchy tree has been built because the PEs
1001 * are figured out based on PCI devices instead of device
1002 * tree nodes
1003 */
1004 if (machine_is(powernv) && cnt++ <= 0)
1005 return ret;
1006
1007 /* Register reboot notifier */
1008 ret = register_reboot_notifier(&eeh_reboot_nb);
1009 if (ret) {
1010 pr_warn("%s: Failed to register notifier (%d)\n",
1011 __func__, ret);
1012 return ret;
1013 }
1014
1015 /* call platform initialization function */
1016 if (!eeh_ops) {
1017 pr_warn("%s: Platform EEH operation not found\n",
1018 __func__);
1019 return -EEXIST;
1020 } else if ((ret = eeh_ops->init()))
1021 return ret;
1022
1023 /* Initialize EEH event */
1024 ret = eeh_event_init();
1025 if (ret)
1026 return ret;
1027
1028 /* Enable EEH for all adapters */
1029 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1030 pdn = hose->pci_data;
1031 traverse_pci_dn(pdn, eeh_ops->probe, NULL);
1032 }
1033
1034 /*
1035 * Call platform post-initialization. Actually, It's good chance
1036 * to inform platform that EEH is ready to supply service if the
1037 * I/O cache stuff has been built up.
1038 */
1039 if (eeh_ops->post_init) {
1040 ret = eeh_ops->post_init();
1041 if (ret)
1042 return ret;
1043 }
1044
1045 if (eeh_enabled())
1046 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1047 else
1048 pr_info("EEH: No capable adapters found\n");
1049
1050 return ret;
1051 }
1052
1053 core_initcall_sync(eeh_init);
1054
1055 /**
1056 * eeh_add_device_early - Enable EEH for the indicated device node
1057 * @pdn: PCI device node for which to set up EEH
1058 *
1059 * This routine must be used to perform EEH initialization for PCI
1060 * devices that were added after system boot (e.g. hotplug, dlpar).
1061 * This routine must be called before any i/o is performed to the
1062 * adapter (inluding any config-space i/o).
1063 * Whether this actually enables EEH or not for this device depends
1064 * on the CEC architecture, type of the device, on earlier boot
1065 * command-line arguments & etc.
1066 */
1067 void eeh_add_device_early(struct pci_dn *pdn)
1068 {
1069 struct pci_controller *phb;
1070 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
1071
1072 if (!edev)
1073 return;
1074
1075 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE))
1076 return;
1077
1078 /* USB Bus children of PCI devices will not have BUID's */
1079 phb = edev->phb;
1080 if (NULL == phb ||
1081 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE) && 0 == phb->buid))
1082 return;
1083
1084 eeh_ops->probe(pdn, NULL);
1085 }
1086
1087 /**
1088 * eeh_add_device_tree_early - Enable EEH for the indicated device
1089 * @pdn: PCI device node
1090 *
1091 * This routine must be used to perform EEH initialization for the
1092 * indicated PCI device that was added after system boot (e.g.
1093 * hotplug, dlpar).
1094 */
1095 void eeh_add_device_tree_early(struct pci_dn *pdn)
1096 {
1097 struct pci_dn *n;
1098
1099 if (!pdn)
1100 return;
1101
1102 list_for_each_entry(n, &pdn->child_list, list)
1103 eeh_add_device_tree_early(n);
1104 eeh_add_device_early(pdn);
1105 }
1106 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1107
1108 /**
1109 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1110 * @dev: pci device for which to set up EEH
1111 *
1112 * This routine must be used to complete EEH initialization for PCI
1113 * devices that were added after system boot (e.g. hotplug, dlpar).
1114 */
1115 void eeh_add_device_late(struct pci_dev *dev)
1116 {
1117 struct pci_dn *pdn;
1118 struct eeh_dev *edev;
1119
1120 if (!dev || !eeh_enabled())
1121 return;
1122
1123 pr_debug("EEH: Adding device %s\n", pci_name(dev));
1124
1125 pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
1126 edev = pdn_to_eeh_dev(pdn);
1127 if (edev->pdev == dev) {
1128 pr_debug("EEH: Already referenced !\n");
1129 return;
1130 }
1131
1132 /*
1133 * The EEH cache might not be removed correctly because of
1134 * unbalanced kref to the device during unplug time, which
1135 * relies on pcibios_release_device(). So we have to remove
1136 * that here explicitly.
1137 */
1138 if (edev->pdev) {
1139 eeh_rmv_from_parent_pe(edev);
1140 eeh_addr_cache_rmv_dev(edev->pdev);
1141 eeh_sysfs_remove_device(edev->pdev);
1142 edev->mode &= ~EEH_DEV_SYSFS;
1143
1144 /*
1145 * We definitely should have the PCI device removed
1146 * though it wasn't correctly. So we needn't call
1147 * into error handler afterwards.
1148 */
1149 edev->mode |= EEH_DEV_NO_HANDLER;
1150
1151 edev->pdev = NULL;
1152 dev->dev.archdata.edev = NULL;
1153 }
1154
1155 if (eeh_has_flag(EEH_PROBE_MODE_DEV))
1156 eeh_ops->probe(pdn, NULL);
1157
1158 edev->pdev = dev;
1159 dev->dev.archdata.edev = edev;
1160
1161 eeh_addr_cache_insert_dev(dev);
1162 }
1163
1164 /**
1165 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1166 * @bus: PCI bus
1167 *
1168 * This routine must be used to perform EEH initialization for PCI
1169 * devices which are attached to the indicated PCI bus. The PCI bus
1170 * is added after system boot through hotplug or dlpar.
1171 */
1172 void eeh_add_device_tree_late(struct pci_bus *bus)
1173 {
1174 struct pci_dev *dev;
1175
1176 list_for_each_entry(dev, &bus->devices, bus_list) {
1177 eeh_add_device_late(dev);
1178 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1179 struct pci_bus *subbus = dev->subordinate;
1180 if (subbus)
1181 eeh_add_device_tree_late(subbus);
1182 }
1183 }
1184 }
1185 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
1186
1187 /**
1188 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1189 * @bus: PCI bus
1190 *
1191 * This routine must be used to add EEH sysfs files for PCI
1192 * devices which are attached to the indicated PCI bus. The PCI bus
1193 * is added after system boot through hotplug or dlpar.
1194 */
1195 void eeh_add_sysfs_files(struct pci_bus *bus)
1196 {
1197 struct pci_dev *dev;
1198
1199 list_for_each_entry(dev, &bus->devices, bus_list) {
1200 eeh_sysfs_add_device(dev);
1201 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1202 struct pci_bus *subbus = dev->subordinate;
1203 if (subbus)
1204 eeh_add_sysfs_files(subbus);
1205 }
1206 }
1207 }
1208 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files);
1209
1210 /**
1211 * eeh_remove_device - Undo EEH setup for the indicated pci device
1212 * @dev: pci device to be removed
1213 *
1214 * This routine should be called when a device is removed from
1215 * a running system (e.g. by hotplug or dlpar). It unregisters
1216 * the PCI device from the EEH subsystem. I/O errors affecting
1217 * this device will no longer be detected after this call; thus,
1218 * i/o errors affecting this slot may leave this device unusable.
1219 */
1220 void eeh_remove_device(struct pci_dev *dev)
1221 {
1222 struct eeh_dev *edev;
1223
1224 if (!dev || !eeh_enabled())
1225 return;
1226 edev = pci_dev_to_eeh_dev(dev);
1227
1228 /* Unregister the device with the EEH/PCI address search system */
1229 pr_debug("EEH: Removing device %s\n", pci_name(dev));
1230
1231 if (!edev || !edev->pdev || !edev->pe) {
1232 pr_debug("EEH: Not referenced !\n");
1233 return;
1234 }
1235
1236 /*
1237 * During the hotplug for EEH error recovery, we need the EEH
1238 * device attached to the parent PE in order for BAR restore
1239 * a bit later. So we keep it for BAR restore and remove it
1240 * from the parent PE during the BAR resotre.
1241 */
1242 edev->pdev = NULL;
1243
1244 /*
1245 * The flag "in_error" is used to trace EEH devices for VFs
1246 * in error state or not. It's set in eeh_report_error(). If
1247 * it's not set, eeh_report_{reset,resume}() won't be called
1248 * for the VF EEH device.
1249 */
1250 edev->in_error = false;
1251 dev->dev.archdata.edev = NULL;
1252 if (!(edev->pe->state & EEH_PE_KEEP))
1253 eeh_rmv_from_parent_pe(edev);
1254 else
1255 edev->mode |= EEH_DEV_DISCONNECTED;
1256
1257 /*
1258 * We're removing from the PCI subsystem, that means
1259 * the PCI device driver can't support EEH or not
1260 * well. So we rely on hotplug completely to do recovery
1261 * for the specific PCI device.
1262 */
1263 edev->mode |= EEH_DEV_NO_HANDLER;
1264
1265 eeh_addr_cache_rmv_dev(dev);
1266 eeh_sysfs_remove_device(dev);
1267 edev->mode &= ~EEH_DEV_SYSFS;
1268 }
1269
1270 int eeh_unfreeze_pe(struct eeh_pe *pe, bool sw_state)
1271 {
1272 int ret;
1273
1274 ret = eeh_pci_enable(pe, EEH_OPT_THAW_MMIO);
1275 if (ret) {
1276 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1277 __func__, ret, pe->phb->global_number, pe->addr);
1278 return ret;
1279 }
1280
1281 ret = eeh_pci_enable(pe, EEH_OPT_THAW_DMA);
1282 if (ret) {
1283 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1284 __func__, ret, pe->phb->global_number, pe->addr);
1285 return ret;
1286 }
1287
1288 /* Clear software isolated state */
1289 if (sw_state && (pe->state & EEH_PE_ISOLATED))
1290 eeh_pe_state_clear(pe, EEH_PE_ISOLATED);
1291
1292 return ret;
1293 }
1294
1295
1296 static struct pci_device_id eeh_reset_ids[] = {
1297 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1298 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1299 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1300 { 0 }
1301 };
1302
1303 static int eeh_pe_change_owner(struct eeh_pe *pe)
1304 {
1305 struct eeh_dev *edev, *tmp;
1306 struct pci_dev *pdev;
1307 struct pci_device_id *id;
1308 int flags, ret;
1309
1310 /* Check PE state */
1311 flags = (EEH_STATE_MMIO_ACTIVE | EEH_STATE_DMA_ACTIVE);
1312 ret = eeh_ops->get_state(pe, NULL);
1313 if (ret < 0 || ret == EEH_STATE_NOT_SUPPORT)
1314 return 0;
1315
1316 /* Unfrozen PE, nothing to do */
1317 if ((ret & flags) == flags)
1318 return 0;
1319
1320 /* Frozen PE, check if it needs PE level reset */
1321 eeh_pe_for_each_dev(pe, edev, tmp) {
1322 pdev = eeh_dev_to_pci_dev(edev);
1323 if (!pdev)
1324 continue;
1325
1326 for (id = &eeh_reset_ids[0]; id->vendor != 0; id++) {
1327 if (id->vendor != PCI_ANY_ID &&
1328 id->vendor != pdev->vendor)
1329 continue;
1330 if (id->device != PCI_ANY_ID &&
1331 id->device != pdev->device)
1332 continue;
1333 if (id->subvendor != PCI_ANY_ID &&
1334 id->subvendor != pdev->subsystem_vendor)
1335 continue;
1336 if (id->subdevice != PCI_ANY_ID &&
1337 id->subdevice != pdev->subsystem_device)
1338 continue;
1339
1340 return eeh_pe_reset_and_recover(pe);
1341 }
1342 }
1343
1344 return eeh_unfreeze_pe(pe, true);
1345 }
1346
1347 /**
1348 * eeh_dev_open - Increase count of pass through devices for PE
1349 * @pdev: PCI device
1350 *
1351 * Increase count of passed through devices for the indicated
1352 * PE. In the result, the EEH errors detected on the PE won't be
1353 * reported. The PE owner will be responsible for detection
1354 * and recovery.
1355 */
1356 int eeh_dev_open(struct pci_dev *pdev)
1357 {
1358 struct eeh_dev *edev;
1359 int ret = -ENODEV;
1360
1361 mutex_lock(&eeh_dev_mutex);
1362
1363 /* No PCI device ? */
1364 if (!pdev)
1365 goto out;
1366
1367 /* No EEH device or PE ? */
1368 edev = pci_dev_to_eeh_dev(pdev);
1369 if (!edev || !edev->pe)
1370 goto out;
1371
1372 /*
1373 * The PE might have been put into frozen state, but we
1374 * didn't detect that yet. The passed through PCI devices
1375 * in frozen PE won't work properly. Clear the frozen state
1376 * in advance.
1377 */
1378 ret = eeh_pe_change_owner(edev->pe);
1379 if (ret)
1380 goto out;
1381
1382 /* Increase PE's pass through count */
1383 atomic_inc(&edev->pe->pass_dev_cnt);
1384 mutex_unlock(&eeh_dev_mutex);
1385
1386 return 0;
1387 out:
1388 mutex_unlock(&eeh_dev_mutex);
1389 return ret;
1390 }
1391 EXPORT_SYMBOL_GPL(eeh_dev_open);
1392
1393 /**
1394 * eeh_dev_release - Decrease count of pass through devices for PE
1395 * @pdev: PCI device
1396 *
1397 * Decrease count of pass through devices for the indicated PE. If
1398 * there is no passed through device in PE, the EEH errors detected
1399 * on the PE will be reported and handled as usual.
1400 */
1401 void eeh_dev_release(struct pci_dev *pdev)
1402 {
1403 struct eeh_dev *edev;
1404
1405 mutex_lock(&eeh_dev_mutex);
1406
1407 /* No PCI device ? */
1408 if (!pdev)
1409 goto out;
1410
1411 /* No EEH device ? */
1412 edev = pci_dev_to_eeh_dev(pdev);
1413 if (!edev || !edev->pe || !eeh_pe_passed(edev->pe))
1414 goto out;
1415
1416 /* Decrease PE's pass through count */
1417 WARN_ON(atomic_dec_if_positive(&edev->pe->pass_dev_cnt) < 0);
1418 eeh_pe_change_owner(edev->pe);
1419 out:
1420 mutex_unlock(&eeh_dev_mutex);
1421 }
1422 EXPORT_SYMBOL(eeh_dev_release);
1423
1424 #ifdef CONFIG_IOMMU_API
1425
1426 static int dev_has_iommu_table(struct device *dev, void *data)
1427 {
1428 struct pci_dev *pdev = to_pci_dev(dev);
1429 struct pci_dev **ppdev = data;
1430
1431 if (!dev)
1432 return 0;
1433
1434 if (dev->iommu_group) {
1435 *ppdev = pdev;
1436 return 1;
1437 }
1438
1439 return 0;
1440 }
1441
1442 /**
1443 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1444 * @group: IOMMU group
1445 *
1446 * The routine is called to convert IOMMU group to EEH PE.
1447 */
1448 struct eeh_pe *eeh_iommu_group_to_pe(struct iommu_group *group)
1449 {
1450 struct pci_dev *pdev = NULL;
1451 struct eeh_dev *edev;
1452 int ret;
1453
1454 /* No IOMMU group ? */
1455 if (!group)
1456 return NULL;
1457
1458 ret = iommu_group_for_each_dev(group, &pdev, dev_has_iommu_table);
1459 if (!ret || !pdev)
1460 return NULL;
1461
1462 /* No EEH device or PE ? */
1463 edev = pci_dev_to_eeh_dev(pdev);
1464 if (!edev || !edev->pe)
1465 return NULL;
1466
1467 return edev->pe;
1468 }
1469 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe);
1470
1471 #endif /* CONFIG_IOMMU_API */
1472
1473 /**
1474 * eeh_pe_set_option - Set options for the indicated PE
1475 * @pe: EEH PE
1476 * @option: requested option
1477 *
1478 * The routine is called to enable or disable EEH functionality
1479 * on the indicated PE, to enable IO or DMA for the frozen PE.
1480 */
1481 int eeh_pe_set_option(struct eeh_pe *pe, int option)
1482 {
1483 int ret = 0;
1484
1485 /* Invalid PE ? */
1486 if (!pe)
1487 return -ENODEV;
1488
1489 /*
1490 * EEH functionality could possibly be disabled, just
1491 * return error for the case. And the EEH functinality
1492 * isn't expected to be disabled on one specific PE.
1493 */
1494 switch (option) {
1495 case EEH_OPT_ENABLE:
1496 if (eeh_enabled()) {
1497 ret = eeh_pe_change_owner(pe);
1498 break;
1499 }
1500 ret = -EIO;
1501 break;
1502 case EEH_OPT_DISABLE:
1503 break;
1504 case EEH_OPT_THAW_MMIO:
1505 case EEH_OPT_THAW_DMA:
1506 case EEH_OPT_FREEZE_PE:
1507 if (!eeh_ops || !eeh_ops->set_option) {
1508 ret = -ENOENT;
1509 break;
1510 }
1511
1512 ret = eeh_pci_enable(pe, option);
1513 break;
1514 default:
1515 pr_debug("%s: Option %d out of range (%d, %d)\n",
1516 __func__, option, EEH_OPT_DISABLE, EEH_OPT_THAW_DMA);
1517 ret = -EINVAL;
1518 }
1519
1520 return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(eeh_pe_set_option);
1523
1524 /**
1525 * eeh_pe_get_state - Retrieve PE's state
1526 * @pe: EEH PE
1527 *
1528 * Retrieve the PE's state, which includes 3 aspects: enabled
1529 * DMA, enabled IO and asserted reset.
1530 */
1531 int eeh_pe_get_state(struct eeh_pe *pe)
1532 {
1533 int result, ret = 0;
1534 bool rst_active, dma_en, mmio_en;
1535
1536 /* Existing PE ? */
1537 if (!pe)
1538 return -ENODEV;
1539
1540 if (!eeh_ops || !eeh_ops->get_state)
1541 return -ENOENT;
1542
1543 /*
1544 * If the parent PE is owned by the host kernel and is undergoing
1545 * error recovery, we should return the PE state as temporarily
1546 * unavailable so that the error recovery on the guest is suspended
1547 * until the recovery completes on the host.
1548 */
1549 if (pe->parent &&
1550 !(pe->state & EEH_PE_REMOVED) &&
1551 (pe->parent->state & (EEH_PE_ISOLATED | EEH_PE_RECOVERING)))
1552 return EEH_PE_STATE_UNAVAIL;
1553
1554 result = eeh_ops->get_state(pe, NULL);
1555 rst_active = !!(result & EEH_STATE_RESET_ACTIVE);
1556 dma_en = !!(result & EEH_STATE_DMA_ENABLED);
1557 mmio_en = !!(result & EEH_STATE_MMIO_ENABLED);
1558
1559 if (rst_active)
1560 ret = EEH_PE_STATE_RESET;
1561 else if (dma_en && mmio_en)
1562 ret = EEH_PE_STATE_NORMAL;
1563 else if (!dma_en && !mmio_en)
1564 ret = EEH_PE_STATE_STOPPED_IO_DMA;
1565 else if (!dma_en && mmio_en)
1566 ret = EEH_PE_STATE_STOPPED_DMA;
1567 else
1568 ret = EEH_PE_STATE_UNAVAIL;
1569
1570 return ret;
1571 }
1572 EXPORT_SYMBOL_GPL(eeh_pe_get_state);
1573
1574 static int eeh_pe_reenable_devices(struct eeh_pe *pe)
1575 {
1576 struct eeh_dev *edev, *tmp;
1577 struct pci_dev *pdev;
1578 int ret = 0;
1579
1580 /* Restore config space */
1581 eeh_pe_restore_bars(pe);
1582
1583 /*
1584 * Reenable PCI devices as the devices passed
1585 * through are always enabled before the reset.
1586 */
1587 eeh_pe_for_each_dev(pe, edev, tmp) {
1588 pdev = eeh_dev_to_pci_dev(edev);
1589 if (!pdev)
1590 continue;
1591
1592 ret = pci_reenable_device(pdev);
1593 if (ret) {
1594 pr_warn("%s: Failure %d reenabling %s\n",
1595 __func__, ret, pci_name(pdev));
1596 return ret;
1597 }
1598 }
1599
1600 /* The PE is still in frozen state */
1601 return eeh_unfreeze_pe(pe, true);
1602 }
1603
1604 /**
1605 * eeh_pe_reset - Issue PE reset according to specified type
1606 * @pe: EEH PE
1607 * @option: reset type
1608 *
1609 * The routine is called to reset the specified PE with the
1610 * indicated type, either fundamental reset or hot reset.
1611 * PE reset is the most important part for error recovery.
1612 */
1613 int eeh_pe_reset(struct eeh_pe *pe, int option)
1614 {
1615 int ret = 0;
1616
1617 /* Invalid PE ? */
1618 if (!pe)
1619 return -ENODEV;
1620
1621 if (!eeh_ops || !eeh_ops->set_option || !eeh_ops->reset)
1622 return -ENOENT;
1623
1624 switch (option) {
1625 case EEH_RESET_DEACTIVATE:
1626 ret = eeh_ops->reset(pe, option);
1627 eeh_pe_state_clear(pe, EEH_PE_CFG_BLOCKED);
1628 if (ret)
1629 break;
1630
1631 ret = eeh_pe_reenable_devices(pe);
1632 break;
1633 case EEH_RESET_HOT:
1634 case EEH_RESET_FUNDAMENTAL:
1635 /*
1636 * Proactively freeze the PE to drop all MMIO access
1637 * during reset, which should be banned as it's always
1638 * cause recursive EEH error.
1639 */
1640 eeh_ops->set_option(pe, EEH_OPT_FREEZE_PE);
1641
1642 eeh_pe_state_mark(pe, EEH_PE_CFG_BLOCKED);
1643 ret = eeh_ops->reset(pe, option);
1644 break;
1645 default:
1646 pr_debug("%s: Unsupported option %d\n",
1647 __func__, option);
1648 ret = -EINVAL;
1649 }
1650
1651 return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(eeh_pe_reset);
1654
1655 /**
1656 * eeh_pe_configure - Configure PCI bridges after PE reset
1657 * @pe: EEH PE
1658 *
1659 * The routine is called to restore the PCI config space for
1660 * those PCI devices, especially PCI bridges affected by PE
1661 * reset issued previously.
1662 */
1663 int eeh_pe_configure(struct eeh_pe *pe)
1664 {
1665 int ret = 0;
1666
1667 /* Invalid PE ? */
1668 if (!pe)
1669 return -ENODEV;
1670
1671 return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(eeh_pe_configure);
1674
1675 /**
1676 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1677 * @pe: the indicated PE
1678 * @type: error type
1679 * @function: error function
1680 * @addr: address
1681 * @mask: address mask
1682 *
1683 * The routine is called to inject the specified PCI error, which
1684 * is determined by @type and @function, to the indicated PE for
1685 * testing purpose.
1686 */
1687 int eeh_pe_inject_err(struct eeh_pe *pe, int type, int func,
1688 unsigned long addr, unsigned long mask)
1689 {
1690 /* Invalid PE ? */
1691 if (!pe)
1692 return -ENODEV;
1693
1694 /* Unsupported operation ? */
1695 if (!eeh_ops || !eeh_ops->err_inject)
1696 return -ENOENT;
1697
1698 /* Check on PCI error type */
1699 if (type != EEH_ERR_TYPE_32 && type != EEH_ERR_TYPE_64)
1700 return -EINVAL;
1701
1702 /* Check on PCI error function */
1703 if (func < EEH_ERR_FUNC_MIN || func > EEH_ERR_FUNC_MAX)
1704 return -EINVAL;
1705
1706 return eeh_ops->err_inject(pe, type, func, addr, mask);
1707 }
1708 EXPORT_SYMBOL_GPL(eeh_pe_inject_err);
1709
1710 static int proc_eeh_show(struct seq_file *m, void *v)
1711 {
1712 if (!eeh_enabled()) {
1713 seq_printf(m, "EEH Subsystem is globally disabled\n");
1714 seq_printf(m, "eeh_total_mmio_ffs=%llu\n", eeh_stats.total_mmio_ffs);
1715 } else {
1716 seq_printf(m, "EEH Subsystem is enabled\n");
1717 seq_printf(m,
1718 "no device=%llu\n"
1719 "no device node=%llu\n"
1720 "no config address=%llu\n"
1721 "check not wanted=%llu\n"
1722 "eeh_total_mmio_ffs=%llu\n"
1723 "eeh_false_positives=%llu\n"
1724 "eeh_slot_resets=%llu\n",
1725 eeh_stats.no_device,
1726 eeh_stats.no_dn,
1727 eeh_stats.no_cfg_addr,
1728 eeh_stats.ignored_check,
1729 eeh_stats.total_mmio_ffs,
1730 eeh_stats.false_positives,
1731 eeh_stats.slot_resets);
1732 }
1733
1734 return 0;
1735 }
1736
1737 static int proc_eeh_open(struct inode *inode, struct file *file)
1738 {
1739 return single_open(file, proc_eeh_show, NULL);
1740 }
1741
1742 static const struct file_operations proc_eeh_operations = {
1743 .open = proc_eeh_open,
1744 .read = seq_read,
1745 .llseek = seq_lseek,
1746 .release = single_release,
1747 };
1748
1749 #ifdef CONFIG_DEBUG_FS
1750 static int eeh_enable_dbgfs_set(void *data, u64 val)
1751 {
1752 if (val)
1753 eeh_clear_flag(EEH_FORCE_DISABLED);
1754 else
1755 eeh_add_flag(EEH_FORCE_DISABLED);
1756
1757 /* Notify the backend */
1758 if (eeh_ops->post_init)
1759 eeh_ops->post_init();
1760
1761 return 0;
1762 }
1763
1764 static int eeh_enable_dbgfs_get(void *data, u64 *val)
1765 {
1766 if (eeh_enabled())
1767 *val = 0x1ul;
1768 else
1769 *val = 0x0ul;
1770 return 0;
1771 }
1772
1773 static int eeh_freeze_dbgfs_set(void *data, u64 val)
1774 {
1775 eeh_max_freezes = val;
1776 return 0;
1777 }
1778
1779 static int eeh_freeze_dbgfs_get(void *data, u64 *val)
1780 {
1781 *val = eeh_max_freezes;
1782 return 0;
1783 }
1784
1785 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops, eeh_enable_dbgfs_get,
1786 eeh_enable_dbgfs_set, "0x%llx\n");
1787 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops, eeh_freeze_dbgfs_get,
1788 eeh_freeze_dbgfs_set, "0x%llx\n");
1789 #endif
1790
1791 static int __init eeh_init_proc(void)
1792 {
1793 if (machine_is(pseries) || machine_is(powernv)) {
1794 proc_create("powerpc/eeh", 0, NULL, &proc_eeh_operations);
1795 #ifdef CONFIG_DEBUG_FS
1796 debugfs_create_file("eeh_enable", 0600,
1797 powerpc_debugfs_root, NULL,
1798 &eeh_enable_dbgfs_ops);
1799 debugfs_create_file("eeh_max_freezes", 0600,
1800 powerpc_debugfs_root, NULL,
1801 &eeh_freeze_dbgfs_ops);
1802 #endif
1803 }
1804
1805 return 0;
1806 }
1807 __initcall(eeh_init_proc);