]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/eeh_pe.c
openrisc: prefer memblock APIs returning virtual address
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / eeh_pe.c
1 /*
2 * The file intends to implement PE based on the information from
3 * platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
4 * All the PEs should be organized as hierarchy tree. The first level
5 * of the tree will be associated to existing PHBs since the particular
6 * PE is only meaningful in one PHB domain.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/pci.h>
30 #include <linux/string.h>
31
32 #include <asm/pci-bridge.h>
33 #include <asm/ppc-pci.h>
34
35 static int eeh_pe_aux_size = 0;
36 static LIST_HEAD(eeh_phb_pe);
37
38 /**
39 * eeh_set_pe_aux_size - Set PE auxillary data size
40 * @size: PE auxillary data size
41 *
42 * Set PE auxillary data size
43 */
44 void eeh_set_pe_aux_size(int size)
45 {
46 if (size < 0)
47 return;
48
49 eeh_pe_aux_size = size;
50 }
51
52 /**
53 * eeh_pe_alloc - Allocate PE
54 * @phb: PCI controller
55 * @type: PE type
56 *
57 * Allocate PE instance dynamically.
58 */
59 static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
60 {
61 struct eeh_pe *pe;
62 size_t alloc_size;
63
64 alloc_size = sizeof(struct eeh_pe);
65 if (eeh_pe_aux_size) {
66 alloc_size = ALIGN(alloc_size, cache_line_size());
67 alloc_size += eeh_pe_aux_size;
68 }
69
70 /* Allocate PHB PE */
71 pe = kzalloc(alloc_size, GFP_KERNEL);
72 if (!pe) return NULL;
73
74 /* Initialize PHB PE */
75 pe->type = type;
76 pe->phb = phb;
77 INIT_LIST_HEAD(&pe->child_list);
78 INIT_LIST_HEAD(&pe->edevs);
79
80 pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
81 cache_line_size());
82 return pe;
83 }
84
85 /**
86 * eeh_phb_pe_create - Create PHB PE
87 * @phb: PCI controller
88 *
89 * The function should be called while the PHB is detected during
90 * system boot or PCI hotplug in order to create PHB PE.
91 */
92 int eeh_phb_pe_create(struct pci_controller *phb)
93 {
94 struct eeh_pe *pe;
95
96 /* Allocate PHB PE */
97 pe = eeh_pe_alloc(phb, EEH_PE_PHB);
98 if (!pe) {
99 pr_err("%s: out of memory!\n", __func__);
100 return -ENOMEM;
101 }
102
103 /* Put it into the list */
104 list_add_tail(&pe->child, &eeh_phb_pe);
105
106 pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
107
108 return 0;
109 }
110
111 /**
112 * eeh_wait_state - Wait for PE state
113 * @pe: EEH PE
114 * @max_wait: maximal period in millisecond
115 *
116 * Wait for the state of associated PE. It might take some time
117 * to retrieve the PE's state.
118 */
119 int eeh_wait_state(struct eeh_pe *pe, int max_wait)
120 {
121 int ret;
122 int mwait;
123
124 /*
125 * According to PAPR, the state of PE might be temporarily
126 * unavailable. Under the circumstance, we have to wait
127 * for indicated time determined by firmware. The maximal
128 * wait time is 5 minutes, which is acquired from the original
129 * EEH implementation. Also, the original implementation
130 * also defined the minimal wait time as 1 second.
131 */
132 #define EEH_STATE_MIN_WAIT_TIME (1000)
133 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
134
135 while (1) {
136 ret = eeh_ops->get_state(pe, &mwait);
137
138 if (ret != EEH_STATE_UNAVAILABLE)
139 return ret;
140
141 if (max_wait <= 0) {
142 pr_warn("%s: Timeout when getting PE's state (%d)\n",
143 __func__, max_wait);
144 return EEH_STATE_NOT_SUPPORT;
145 }
146
147 if (mwait < EEH_STATE_MIN_WAIT_TIME) {
148 pr_warn("%s: Firmware returned bad wait value %d\n",
149 __func__, mwait);
150 mwait = EEH_STATE_MIN_WAIT_TIME;
151 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
152 pr_warn("%s: Firmware returned too long wait value %d\n",
153 __func__, mwait);
154 mwait = EEH_STATE_MAX_WAIT_TIME;
155 }
156
157 msleep(min(mwait, max_wait));
158 max_wait -= mwait;
159 }
160 }
161
162 /**
163 * eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
164 * @phb: PCI controller
165 *
166 * The overall PEs form hierarchy tree. The first layer of the
167 * hierarchy tree is composed of PHB PEs. The function is used
168 * to retrieve the corresponding PHB PE according to the given PHB.
169 */
170 struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
171 {
172 struct eeh_pe *pe;
173
174 list_for_each_entry(pe, &eeh_phb_pe, child) {
175 /*
176 * Actually, we needn't check the type since
177 * the PE for PHB has been determined when that
178 * was created.
179 */
180 if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
181 return pe;
182 }
183
184 return NULL;
185 }
186
187 /**
188 * eeh_pe_next - Retrieve the next PE in the tree
189 * @pe: current PE
190 * @root: root PE
191 *
192 * The function is used to retrieve the next PE in the
193 * hierarchy PE tree.
194 */
195 struct eeh_pe *eeh_pe_next(struct eeh_pe *pe, struct eeh_pe *root)
196 {
197 struct list_head *next = pe->child_list.next;
198
199 if (next == &pe->child_list) {
200 while (1) {
201 if (pe == root)
202 return NULL;
203 next = pe->child.next;
204 if (next != &pe->parent->child_list)
205 break;
206 pe = pe->parent;
207 }
208 }
209
210 return list_entry(next, struct eeh_pe, child);
211 }
212
213 /**
214 * eeh_pe_traverse - Traverse PEs in the specified PHB
215 * @root: root PE
216 * @fn: callback
217 * @flag: extra parameter to callback
218 *
219 * The function is used to traverse the specified PE and its
220 * child PEs. The traversing is to be terminated once the
221 * callback returns something other than NULL, or no more PEs
222 * to be traversed.
223 */
224 void *eeh_pe_traverse(struct eeh_pe *root,
225 eeh_pe_traverse_func fn, void *flag)
226 {
227 struct eeh_pe *pe;
228 void *ret;
229
230 eeh_for_each_pe(root, pe) {
231 ret = fn(pe, flag);
232 if (ret) return ret;
233 }
234
235 return NULL;
236 }
237
238 /**
239 * eeh_pe_dev_traverse - Traverse the devices from the PE
240 * @root: EEH PE
241 * @fn: function callback
242 * @flag: extra parameter to callback
243 *
244 * The function is used to traverse the devices of the specified
245 * PE and its child PEs.
246 */
247 void *eeh_pe_dev_traverse(struct eeh_pe *root,
248 eeh_edev_traverse_func fn, void *flag)
249 {
250 struct eeh_pe *pe;
251 struct eeh_dev *edev, *tmp;
252 void *ret;
253
254 if (!root) {
255 pr_warn("%s: Invalid PE %p\n",
256 __func__, root);
257 return NULL;
258 }
259
260 /* Traverse root PE */
261 eeh_for_each_pe(root, pe) {
262 eeh_pe_for_each_dev(pe, edev, tmp) {
263 ret = fn(edev, flag);
264 if (ret)
265 return ret;
266 }
267 }
268
269 return NULL;
270 }
271
272 /**
273 * __eeh_pe_get - Check the PE address
274 * @data: EEH PE
275 * @flag: EEH device
276 *
277 * For one particular PE, it can be identified by PE address
278 * or tranditional BDF address. BDF address is composed of
279 * Bus/Device/Function number. The extra data referred by flag
280 * indicates which type of address should be used.
281 */
282 struct eeh_pe_get_flag {
283 int pe_no;
284 int config_addr;
285 };
286
287 static void *__eeh_pe_get(struct eeh_pe *pe, void *flag)
288 {
289 struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
290
291 /* Unexpected PHB PE */
292 if (pe->type & EEH_PE_PHB)
293 return NULL;
294
295 /*
296 * We prefer PE address. For most cases, we should
297 * have non-zero PE address
298 */
299 if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
300 if (tmp->pe_no == pe->addr)
301 return pe;
302 } else {
303 if (tmp->pe_no &&
304 (tmp->pe_no == pe->addr))
305 return pe;
306 }
307
308 /* Try BDF address */
309 if (tmp->config_addr &&
310 (tmp->config_addr == pe->config_addr))
311 return pe;
312
313 return NULL;
314 }
315
316 /**
317 * eeh_pe_get - Search PE based on the given address
318 * @phb: PCI controller
319 * @pe_no: PE number
320 * @config_addr: Config address
321 *
322 * Search the corresponding PE based on the specified address which
323 * is included in the eeh device. The function is used to check if
324 * the associated PE has been created against the PE address. It's
325 * notable that the PE address has 2 format: traditional PE address
326 * which is composed of PCI bus/device/function number, or unified
327 * PE address.
328 */
329 struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
330 int pe_no, int config_addr)
331 {
332 struct eeh_pe *root = eeh_phb_pe_get(phb);
333 struct eeh_pe_get_flag tmp = { pe_no, config_addr };
334 struct eeh_pe *pe;
335
336 pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
337
338 return pe;
339 }
340
341 /**
342 * eeh_pe_get_parent - Retrieve the parent PE
343 * @edev: EEH device
344 *
345 * The whole PEs existing in the system are organized as hierarchy
346 * tree. The function is used to retrieve the parent PE according
347 * to the parent EEH device.
348 */
349 static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
350 {
351 struct eeh_dev *parent;
352 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
353
354 /*
355 * It might have the case for the indirect parent
356 * EEH device already having associated PE, but
357 * the direct parent EEH device doesn't have yet.
358 */
359 if (edev->physfn)
360 pdn = pci_get_pdn(edev->physfn);
361 else
362 pdn = pdn ? pdn->parent : NULL;
363 while (pdn) {
364 /* We're poking out of PCI territory */
365 parent = pdn_to_eeh_dev(pdn);
366 if (!parent)
367 return NULL;
368
369 if (parent->pe)
370 return parent->pe;
371
372 pdn = pdn->parent;
373 }
374
375 return NULL;
376 }
377
378 /**
379 * eeh_add_to_parent_pe - Add EEH device to parent PE
380 * @edev: EEH device
381 *
382 * Add EEH device to the parent PE. If the parent PE already
383 * exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
384 * we have to create new PE to hold the EEH device and the new
385 * PE will be linked to its parent PE as well.
386 */
387 int eeh_add_to_parent_pe(struct eeh_dev *edev)
388 {
389 struct eeh_pe *pe, *parent;
390 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
391 int config_addr = (pdn->busno << 8) | (pdn->devfn);
392
393 /* Check if the PE number is valid */
394 if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
395 pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
396 __func__, config_addr, pdn->phb->global_number);
397 return -EINVAL;
398 }
399
400 /*
401 * Search the PE has been existing or not according
402 * to the PE address. If that has been existing, the
403 * PE should be composed of PCI bus and its subordinate
404 * components.
405 */
406 pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
407 if (pe && !(pe->type & EEH_PE_INVALID)) {
408 /* Mark the PE as type of PCI bus */
409 pe->type = EEH_PE_BUS;
410 edev->pe = pe;
411
412 /* Put the edev to PE */
413 list_add_tail(&edev->entry, &pe->edevs);
414 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
415 pdn->phb->global_number,
416 pdn->busno,
417 PCI_SLOT(pdn->devfn),
418 PCI_FUNC(pdn->devfn),
419 pe->addr);
420 return 0;
421 } else if (pe && (pe->type & EEH_PE_INVALID)) {
422 list_add_tail(&edev->entry, &pe->edevs);
423 edev->pe = pe;
424 /*
425 * We're running to here because of PCI hotplug caused by
426 * EEH recovery. We need clear EEH_PE_INVALID until the top.
427 */
428 parent = pe;
429 while (parent) {
430 if (!(parent->type & EEH_PE_INVALID))
431 break;
432 parent->type &= ~EEH_PE_INVALID;
433 parent = parent->parent;
434 }
435
436 pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
437 "PE#%x, Parent PE#%x\n",
438 pdn->phb->global_number,
439 pdn->busno,
440 PCI_SLOT(pdn->devfn),
441 PCI_FUNC(pdn->devfn),
442 pe->addr, pe->parent->addr);
443 return 0;
444 }
445
446 /* Create a new EEH PE */
447 if (edev->physfn)
448 pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
449 else
450 pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
451 if (!pe) {
452 pr_err("%s: out of memory!\n", __func__);
453 return -ENOMEM;
454 }
455 pe->addr = edev->pe_config_addr;
456 pe->config_addr = config_addr;
457
458 /*
459 * Put the new EEH PE into hierarchy tree. If the parent
460 * can't be found, the newly created PE will be attached
461 * to PHB directly. Otherwise, we have to associate the
462 * PE with its parent.
463 */
464 parent = eeh_pe_get_parent(edev);
465 if (!parent) {
466 parent = eeh_phb_pe_get(pdn->phb);
467 if (!parent) {
468 pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
469 __func__, pdn->phb->global_number);
470 edev->pe = NULL;
471 kfree(pe);
472 return -EEXIST;
473 }
474 }
475 pe->parent = parent;
476
477 /*
478 * Put the newly created PE into the child list and
479 * link the EEH device accordingly.
480 */
481 list_add_tail(&pe->child, &parent->child_list);
482 list_add_tail(&edev->entry, &pe->edevs);
483 edev->pe = pe;
484 pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
485 "Device PE#%x, Parent PE#%x\n",
486 pdn->phb->global_number,
487 pdn->busno,
488 PCI_SLOT(pdn->devfn),
489 PCI_FUNC(pdn->devfn),
490 pe->addr, pe->parent->addr);
491
492 return 0;
493 }
494
495 /**
496 * eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
497 * @edev: EEH device
498 *
499 * The PE hierarchy tree might be changed when doing PCI hotplug.
500 * Also, the PCI devices or buses could be removed from the system
501 * during EEH recovery. So we have to call the function remove the
502 * corresponding PE accordingly if necessary.
503 */
504 int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
505 {
506 struct eeh_pe *pe, *parent, *child;
507 int cnt;
508 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
509
510 pe = eeh_dev_to_pe(edev);
511 if (!pe) {
512 pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
513 __func__, pdn->phb->global_number,
514 pdn->busno,
515 PCI_SLOT(pdn->devfn),
516 PCI_FUNC(pdn->devfn));
517 return -EEXIST;
518 }
519
520 /* Remove the EEH device */
521 edev->pe = NULL;
522 list_del(&edev->entry);
523
524 /*
525 * Check if the parent PE includes any EEH devices.
526 * If not, we should delete that. Also, we should
527 * delete the parent PE if it doesn't have associated
528 * child PEs and EEH devices.
529 */
530 while (1) {
531 parent = pe->parent;
532 if (pe->type & EEH_PE_PHB)
533 break;
534
535 if (!(pe->state & EEH_PE_KEEP)) {
536 if (list_empty(&pe->edevs) &&
537 list_empty(&pe->child_list)) {
538 list_del(&pe->child);
539 kfree(pe);
540 } else {
541 break;
542 }
543 } else {
544 if (list_empty(&pe->edevs)) {
545 cnt = 0;
546 list_for_each_entry(child, &pe->child_list, child) {
547 if (!(child->type & EEH_PE_INVALID)) {
548 cnt++;
549 break;
550 }
551 }
552
553 if (!cnt)
554 pe->type |= EEH_PE_INVALID;
555 else
556 break;
557 }
558 }
559
560 pe = parent;
561 }
562
563 return 0;
564 }
565
566 /**
567 * eeh_pe_update_time_stamp - Update PE's frozen time stamp
568 * @pe: EEH PE
569 *
570 * We have time stamp for each PE to trace its time of getting
571 * frozen in last hour. The function should be called to update
572 * the time stamp on first error of the specific PE. On the other
573 * handle, we needn't account for errors happened in last hour.
574 */
575 void eeh_pe_update_time_stamp(struct eeh_pe *pe)
576 {
577 time64_t tstamp;
578
579 if (!pe) return;
580
581 if (pe->freeze_count <= 0) {
582 pe->freeze_count = 0;
583 pe->tstamp = ktime_get_seconds();
584 } else {
585 tstamp = ktime_get_seconds();
586 if (tstamp - pe->tstamp > 3600) {
587 pe->tstamp = tstamp;
588 pe->freeze_count = 0;
589 }
590 }
591 }
592
593 /**
594 * eeh_pe_state_mark - Mark specified state for PE and its associated device
595 * @pe: EEH PE
596 *
597 * EEH error affects the current PE and its child PEs. The function
598 * is used to mark appropriate state for the affected PEs and the
599 * associated devices.
600 */
601 void eeh_pe_state_mark(struct eeh_pe *root, int state)
602 {
603 struct eeh_pe *pe;
604
605 eeh_for_each_pe(root, pe)
606 if (!(pe->state & EEH_PE_REMOVED))
607 pe->state |= state;
608 }
609 EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
610
611 /**
612 * eeh_pe_mark_isolated
613 * @pe: EEH PE
614 *
615 * Record that a PE has been isolated by marking the PE and it's children as
616 * EEH_PE_ISOLATED (and EEH_PE_CFG_BLOCKED, if required) and their PCI devices
617 * as pci_channel_io_frozen.
618 */
619 void eeh_pe_mark_isolated(struct eeh_pe *root)
620 {
621 struct eeh_pe *pe;
622 struct eeh_dev *edev;
623 struct pci_dev *pdev;
624
625 eeh_pe_state_mark(root, EEH_PE_ISOLATED);
626 eeh_for_each_pe(root, pe) {
627 list_for_each_entry(edev, &pe->edevs, entry) {
628 pdev = eeh_dev_to_pci_dev(edev);
629 if (pdev)
630 pdev->error_state = pci_channel_io_frozen;
631 }
632 /* Block PCI config access if required */
633 if (pe->state & EEH_PE_CFG_RESTRICTED)
634 pe->state |= EEH_PE_CFG_BLOCKED;
635 }
636 }
637 EXPORT_SYMBOL_GPL(eeh_pe_mark_isolated);
638
639 static void *__eeh_pe_dev_mode_mark(struct eeh_dev *edev, void *flag)
640 {
641 int mode = *((int *)flag);
642
643 edev->mode |= mode;
644
645 return NULL;
646 }
647
648 /**
649 * eeh_pe_dev_state_mark - Mark state for all device under the PE
650 * @pe: EEH PE
651 *
652 * Mark specific state for all child devices of the PE.
653 */
654 void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
655 {
656 eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
657 }
658
659 /**
660 * eeh_pe_state_clear - Clear state for the PE
661 * @data: EEH PE
662 * @state: state
663 * @include_passed: include passed-through devices?
664 *
665 * The function is used to clear the indicated state from the
666 * given PE. Besides, we also clear the check count of the PE
667 * as well.
668 */
669 void eeh_pe_state_clear(struct eeh_pe *root, int state, bool include_passed)
670 {
671 struct eeh_pe *pe;
672 struct eeh_dev *edev, *tmp;
673 struct pci_dev *pdev;
674
675 eeh_for_each_pe(root, pe) {
676 /* Keep the state of permanently removed PE intact */
677 if (pe->state & EEH_PE_REMOVED)
678 continue;
679
680 if (!include_passed && eeh_pe_passed(pe))
681 continue;
682
683 pe->state &= ~state;
684
685 /*
686 * Special treatment on clearing isolated state. Clear
687 * check count since last isolation and put all affected
688 * devices to normal state.
689 */
690 if (!(state & EEH_PE_ISOLATED))
691 continue;
692
693 pe->check_count = 0;
694 eeh_pe_for_each_dev(pe, edev, tmp) {
695 pdev = eeh_dev_to_pci_dev(edev);
696 if (!pdev)
697 continue;
698
699 pdev->error_state = pci_channel_io_normal;
700 }
701
702 /* Unblock PCI config access if required */
703 if (pe->state & EEH_PE_CFG_RESTRICTED)
704 pe->state &= ~EEH_PE_CFG_BLOCKED;
705 }
706 }
707
708 /*
709 * Some PCI bridges (e.g. PLX bridges) have primary/secondary
710 * buses assigned explicitly by firmware, and we probably have
711 * lost that after reset. So we have to delay the check until
712 * the PCI-CFG registers have been restored for the parent
713 * bridge.
714 *
715 * Don't use normal PCI-CFG accessors, which probably has been
716 * blocked on normal path during the stage. So we need utilize
717 * eeh operations, which is always permitted.
718 */
719 static void eeh_bridge_check_link(struct eeh_dev *edev)
720 {
721 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
722 int cap;
723 uint32_t val;
724 int timeout = 0;
725
726 /*
727 * We only check root port and downstream ports of
728 * PCIe switches
729 */
730 if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
731 return;
732
733 pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
734 __func__, pdn->phb->global_number,
735 pdn->busno,
736 PCI_SLOT(pdn->devfn),
737 PCI_FUNC(pdn->devfn));
738
739 /* Check slot status */
740 cap = edev->pcie_cap;
741 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
742 if (!(val & PCI_EXP_SLTSTA_PDS)) {
743 pr_debug(" No card in the slot (0x%04x) !\n", val);
744 return;
745 }
746
747 /* Check power status if we have the capability */
748 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
749 if (val & PCI_EXP_SLTCAP_PCP) {
750 eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
751 if (val & PCI_EXP_SLTCTL_PCC) {
752 pr_debug(" In power-off state, power it on ...\n");
753 val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
754 val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
755 eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
756 msleep(2 * 1000);
757 }
758 }
759
760 /* Enable link */
761 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
762 val &= ~PCI_EXP_LNKCTL_LD;
763 eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
764
765 /* Check link */
766 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
767 if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
768 pr_debug(" No link reporting capability (0x%08x) \n", val);
769 msleep(1000);
770 return;
771 }
772
773 /* Wait the link is up until timeout (5s) */
774 timeout = 0;
775 while (timeout < 5000) {
776 msleep(20);
777 timeout += 20;
778
779 eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
780 if (val & PCI_EXP_LNKSTA_DLLLA)
781 break;
782 }
783
784 if (val & PCI_EXP_LNKSTA_DLLLA)
785 pr_debug(" Link up (%s)\n",
786 (val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
787 else
788 pr_debug(" Link not ready (0x%04x)\n", val);
789 }
790
791 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
792 #define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
793
794 static void eeh_restore_bridge_bars(struct eeh_dev *edev)
795 {
796 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
797 int i;
798
799 /*
800 * Device BARs: 0x10 - 0x18
801 * Bus numbers and windows: 0x18 - 0x30
802 */
803 for (i = 4; i < 13; i++)
804 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
805 /* Rom: 0x38 */
806 eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
807
808 /* Cache line & Latency timer: 0xC 0xD */
809 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
810 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
811 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
812 SAVED_BYTE(PCI_LATENCY_TIMER));
813 /* Max latency, min grant, interrupt ping and line: 0x3C */
814 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
815
816 /* PCI Command: 0x4 */
817 eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
818 PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
819
820 /* Check the PCIe link is ready */
821 eeh_bridge_check_link(edev);
822 }
823
824 static void eeh_restore_device_bars(struct eeh_dev *edev)
825 {
826 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
827 int i;
828 u32 cmd;
829
830 for (i = 4; i < 10; i++)
831 eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
832 /* 12 == Expansion ROM Address */
833 eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
834
835 eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
836 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
837 eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
838 SAVED_BYTE(PCI_LATENCY_TIMER));
839
840 /* max latency, min grant, interrupt pin and line */
841 eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
842
843 /*
844 * Restore PERR & SERR bits, some devices require it,
845 * don't touch the other command bits
846 */
847 eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
848 if (edev->config_space[1] & PCI_COMMAND_PARITY)
849 cmd |= PCI_COMMAND_PARITY;
850 else
851 cmd &= ~PCI_COMMAND_PARITY;
852 if (edev->config_space[1] & PCI_COMMAND_SERR)
853 cmd |= PCI_COMMAND_SERR;
854 else
855 cmd &= ~PCI_COMMAND_SERR;
856 eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
857 }
858
859 /**
860 * eeh_restore_one_device_bars - Restore the Base Address Registers for one device
861 * @data: EEH device
862 * @flag: Unused
863 *
864 * Loads the PCI configuration space base address registers,
865 * the expansion ROM base address, the latency timer, and etc.
866 * from the saved values in the device node.
867 */
868 static void *eeh_restore_one_device_bars(struct eeh_dev *edev, void *flag)
869 {
870 struct pci_dn *pdn = eeh_dev_to_pdn(edev);
871
872 /* Do special restore for bridges */
873 if (edev->mode & EEH_DEV_BRIDGE)
874 eeh_restore_bridge_bars(edev);
875 else
876 eeh_restore_device_bars(edev);
877
878 if (eeh_ops->restore_config && pdn)
879 eeh_ops->restore_config(pdn);
880
881 return NULL;
882 }
883
884 /**
885 * eeh_pe_restore_bars - Restore the PCI config space info
886 * @pe: EEH PE
887 *
888 * This routine performs a recursive walk to the children
889 * of this device as well.
890 */
891 void eeh_pe_restore_bars(struct eeh_pe *pe)
892 {
893 /*
894 * We needn't take the EEH lock since eeh_pe_dev_traverse()
895 * will take that.
896 */
897 eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
898 }
899
900 /**
901 * eeh_pe_loc_get - Retrieve location code binding to the given PE
902 * @pe: EEH PE
903 *
904 * Retrieve the location code of the given PE. If the primary PE bus
905 * is root bus, we will grab location code from PHB device tree node
906 * or root port. Otherwise, the upstream bridge's device tree node
907 * of the primary PE bus will be checked for the location code.
908 */
909 const char *eeh_pe_loc_get(struct eeh_pe *pe)
910 {
911 struct pci_bus *bus = eeh_pe_bus_get(pe);
912 struct device_node *dn;
913 const char *loc = NULL;
914
915 while (bus) {
916 dn = pci_bus_to_OF_node(bus);
917 if (!dn) {
918 bus = bus->parent;
919 continue;
920 }
921
922 if (pci_is_root_bus(bus))
923 loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
924 else
925 loc = of_get_property(dn, "ibm,slot-location-code",
926 NULL);
927
928 if (loc)
929 return loc;
930
931 bus = bus->parent;
932 }
933
934 return "N/A";
935 }
936
937 /**
938 * eeh_pe_bus_get - Retrieve PCI bus according to the given PE
939 * @pe: EEH PE
940 *
941 * Retrieve the PCI bus according to the given PE. Basically,
942 * there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
943 * primary PCI bus will be retrieved. The parent bus will be
944 * returned for BUS PE. However, we don't have associated PCI
945 * bus for DEVICE PE.
946 */
947 struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
948 {
949 struct eeh_dev *edev;
950 struct pci_dev *pdev;
951
952 if (pe->type & EEH_PE_PHB)
953 return pe->phb->bus;
954
955 /* The primary bus might be cached during probe time */
956 if (pe->state & EEH_PE_PRI_BUS)
957 return pe->bus;
958
959 /* Retrieve the parent PCI bus of first (top) PCI device */
960 edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
961 pdev = eeh_dev_to_pci_dev(edev);
962 if (pdev)
963 return pdev->bus;
964
965 return NULL;
966 }