]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/kernel/exceptions-64s.S
f7d748b887059e26842270e94bf44d23f1f59d3b
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / kernel / exceptions-64s.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16 #include <asm/hw_irq.h>
17 #include <asm/exception-64s.h>
18 #include <asm/ptrace.h>
19 #include <asm/cpuidle.h>
20 #include <asm/head-64.h>
21 #include <asm/feature-fixups.h>
22 #include <asm/kup.h>
23
24 /* PACA save area offsets (exgen, exmc, etc) */
25 #define EX_R9 0
26 #define EX_R10 8
27 #define EX_R11 16
28 #define EX_R12 24
29 #define EX_R13 32
30 #define EX_DAR 40
31 #define EX_DSISR 48
32 #define EX_CCR 52
33 #define EX_CFAR 56
34 #define EX_PPR 64
35 #define EX_CTR 72
36 .if EX_SIZE != 10
37 .error "EX_SIZE is wrong"
38 .endif
39
40 /*
41 * Following are fixed section helper macros.
42 *
43 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors
44 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
45 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
46 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
47 * EXC_COMMON - After switching to virtual, relocated mode.
48 */
49
50 #define EXC_REAL_BEGIN(name, start, size) \
51 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
52
53 #define EXC_REAL_END(name, start, size) \
54 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
55
56 #define EXC_VIRT_BEGIN(name, start, size) \
57 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
58
59 #define EXC_VIRT_END(name, start, size) \
60 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
61
62 #define EXC_COMMON_BEGIN(name) \
63 USE_TEXT_SECTION(); \
64 .balign IFETCH_ALIGN_BYTES; \
65 .global name; \
66 _ASM_NOKPROBE_SYMBOL(name); \
67 DEFINE_FIXED_SYMBOL(name); \
68 name:
69
70 #define TRAMP_REAL_BEGIN(name) \
71 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
72
73 #define TRAMP_VIRT_BEGIN(name) \
74 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
75
76 #define EXC_REAL_NONE(start, size) \
77 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
78 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
79
80 #define EXC_VIRT_NONE(start, size) \
81 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
82 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
83
84 /*
85 * We're short on space and time in the exception prolog, so we can't
86 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
87 * Instead we get the base of the kernel from paca->kernelbase and or in the low
88 * part of label. This requires that the label be within 64KB of kernelbase, and
89 * that kernelbase be 64K aligned.
90 */
91 #define LOAD_HANDLER(reg, label) \
92 ld reg,PACAKBASE(r13); /* get high part of &label */ \
93 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
94
95 #define __LOAD_HANDLER(reg, label) \
96 ld reg,PACAKBASE(r13); \
97 ori reg,reg,(ABS_ADDR(label))@l
98
99 /*
100 * Branches from unrelocated code (e.g., interrupts) to labels outside
101 * head-y require >64K offsets.
102 */
103 #define __LOAD_FAR_HANDLER(reg, label) \
104 ld reg,PACAKBASE(r13); \
105 ori reg,reg,(ABS_ADDR(label))@l; \
106 addis reg,reg,(ABS_ADDR(label))@h
107
108 /*
109 * Branch to label using its 0xC000 address. This results in instruction
110 * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
111 * on using mtmsr rather than rfid.
112 *
113 * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
114 * load KBASE for a slight optimisation.
115 */
116 #define BRANCH_TO_C000(reg, label) \
117 __LOAD_FAR_HANDLER(reg, label); \
118 mtctr reg; \
119 bctr
120
121 /*
122 * Interrupt code generation macros
123 */
124 #define IVEC .L_IVEC_\name\() /* Interrupt vector address */
125 #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
126 #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
127 #define IAREA .L_IAREA_\name\() /* PACA save area */
128 #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
129 #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
130 #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
131 #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
132 #define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
133 #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
134 #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
135 #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
136 #define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
137 #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
138 #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
139 #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
140 #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
141 #define __ISTACK(name) .L_ISTACK_ ## name
142 #define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
143 #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
144
145 #define INT_DEFINE_BEGIN(n) \
146 .macro int_define_ ## n name
147
148 #define INT_DEFINE_END(n) \
149 .endm ; \
150 int_define_ ## n n ; \
151 do_define_int n
152
153 .macro do_define_int name
154 .ifndef IVEC
155 .error "IVEC not defined"
156 .endif
157 .ifndef IHSRR
158 IHSRR=0
159 .endif
160 .ifndef IHSRR_IF_HVMODE
161 IHSRR_IF_HVMODE=0
162 .endif
163 .ifndef IAREA
164 IAREA=PACA_EXGEN
165 .endif
166 .ifndef IVIRT
167 IVIRT=1
168 .endif
169 .ifndef IISIDE
170 IISIDE=0
171 .endif
172 .ifndef IDAR
173 IDAR=0
174 .endif
175 .ifndef IDSISR
176 IDSISR=0
177 .endif
178 .ifndef ISET_RI
179 ISET_RI=1
180 .endif
181 .ifndef IBRANCH_TO_COMMON
182 IBRANCH_TO_COMMON=1
183 .endif
184 .ifndef IREALMODE_COMMON
185 IREALMODE_COMMON=0
186 .else
187 .if ! IBRANCH_TO_COMMON
188 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
189 .endif
190 .endif
191 .ifndef IMASK
192 IMASK=0
193 .endif
194 .ifndef IKVM_SKIP
195 IKVM_SKIP=0
196 .endif
197 .ifndef IKVM_REAL
198 IKVM_REAL=0
199 .endif
200 .ifndef IKVM_VIRT
201 IKVM_VIRT=0
202 .endif
203 .ifndef ISTACK
204 ISTACK=1
205 .endif
206 .ifndef IRECONCILE
207 IRECONCILE=1
208 .endif
209 .ifndef IKUAP
210 IKUAP=1
211 .endif
212 .endm
213
214 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
216 /*
217 * All interrupts which set HSRR registers, as well as SRESET and MCE and
218 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
219 * so they all generally need to test whether they were taken in guest context.
220 *
221 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
222 * taken with MSR[HV]=0.
223 *
224 * Interrupts which set SRR registers (with the above exceptions) do not
225 * elevate to MSR[HV]=1 mode, though most can be taken when running with
226 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
227 * not need to test whether a guest is running because they get delivered to
228 * the guest directly, including nested HV KVM guests.
229 *
230 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
231 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
232 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
233 * delivered to the real-mode entry point, therefore such interrupts only test
234 * KVM in their real mode handlers, and only when PR KVM is possible.
235 *
236 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
237 * delivered in real-mode when the MMU is in hash mode because the MMU
238 * registers are not set appropriately to translate host addresses. In nested
239 * radix mode these can be delivered in virt-mode as the host translations are
240 * used implicitly (see: effective LPID, effective PID).
241 */
242
243 /*
244 * If an interrupt is taken while a guest is running, it is immediately routed
245 * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
246 * to kvmppc_interrupt_hv, which handles the PR guest case.
247 */
248 #define kvmppc_interrupt kvmppc_interrupt_hv
249 #else
250 #define kvmppc_interrupt kvmppc_interrupt_pr
251 #endif
252
253 .macro KVMTEST name
254 lbz r10,HSTATE_IN_GUEST(r13)
255 cmpwi r10,0
256 bne \name\()_kvm
257 .endm
258
259 .macro GEN_KVM name
260 .balign IFETCH_ALIGN_BYTES
261 \name\()_kvm:
262
263 .if IKVM_SKIP
264 cmpwi r10,KVM_GUEST_MODE_SKIP
265 beq 89f
266 .else
267 BEGIN_FTR_SECTION
268 ld r10,IAREA+EX_CFAR(r13)
269 std r10,HSTATE_CFAR(r13)
270 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
271 .endif
272
273 ld r10,IAREA+EX_CTR(r13)
274 mtctr r10
275 BEGIN_FTR_SECTION
276 ld r10,IAREA+EX_PPR(r13)
277 std r10,HSTATE_PPR(r13)
278 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
279 ld r11,IAREA+EX_R11(r13)
280 ld r12,IAREA+EX_R12(r13)
281 std r12,HSTATE_SCRATCH0(r13)
282 sldi r12,r9,32
283 ld r9,IAREA+EX_R9(r13)
284 ld r10,IAREA+EX_R10(r13)
285 /* HSRR variants have the 0x2 bit added to their trap number */
286 .if IHSRR_IF_HVMODE
287 BEGIN_FTR_SECTION
288 ori r12,r12,(IVEC + 0x2)
289 FTR_SECTION_ELSE
290 ori r12,r12,(IVEC)
291 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
292 .elseif IHSRR
293 ori r12,r12,(IVEC+ 0x2)
294 .else
295 ori r12,r12,(IVEC)
296 .endif
297 b kvmppc_interrupt
298
299 .if IKVM_SKIP
300 89: mtocrf 0x80,r9
301 ld r10,IAREA+EX_CTR(r13)
302 mtctr r10
303 ld r9,IAREA+EX_R9(r13)
304 ld r10,IAREA+EX_R10(r13)
305 ld r11,IAREA+EX_R11(r13)
306 ld r12,IAREA+EX_R12(r13)
307 .if IHSRR_IF_HVMODE
308 BEGIN_FTR_SECTION
309 b kvmppc_skip_Hinterrupt
310 FTR_SECTION_ELSE
311 b kvmppc_skip_interrupt
312 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
313 .elseif IHSRR
314 b kvmppc_skip_Hinterrupt
315 .else
316 b kvmppc_skip_interrupt
317 .endif
318 .endif
319 .endm
320
321 #else
322 .macro KVMTEST name
323 .endm
324 .macro GEN_KVM name
325 .endm
326 #endif
327
328 /*
329 * This is the BOOK3S interrupt entry code macro.
330 *
331 * This can result in one of several things happening:
332 * - Branch to the _common handler, relocated, in virtual mode.
333 * These are normal interrupts (synchronous and asynchronous) handled by
334 * the kernel.
335 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
336 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
337 * / intended for host or guest kernel, but KVM must always be involved
338 * because the machine state is set for guest execution.
339 * - Branch to the masked handler, unrelocated.
340 * These occur when maskable asynchronous interrupts are taken with the
341 * irq_soft_mask set.
342 * - Branch to an "early" handler in real mode but relocated.
343 * This is done if early=1. MCE and HMI use these to handle errors in real
344 * mode.
345 * - Fall through and continue executing in real, unrelocated mode.
346 * This is done if early=2.
347 */
348
349 .macro GEN_BRANCH_TO_COMMON name, virt
350 .if IREALMODE_COMMON
351 LOAD_HANDLER(r10, \name\()_common)
352 mtctr r10
353 bctr
354 .else
355 .if \virt
356 #ifndef CONFIG_RELOCATABLE
357 b \name\()_common_virt
358 #else
359 LOAD_HANDLER(r10, \name\()_common_virt)
360 mtctr r10
361 bctr
362 #endif
363 .else
364 LOAD_HANDLER(r10, \name\()_common_real)
365 mtctr r10
366 bctr
367 .endif
368 .endif
369 .endm
370
371 .macro GEN_INT_ENTRY name, virt, ool=0
372 SET_SCRATCH0(r13) /* save r13 */
373 GET_PACA(r13)
374 std r9,IAREA+EX_R9(r13) /* save r9 */
375 BEGIN_FTR_SECTION
376 mfspr r9,SPRN_PPR
377 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
378 HMT_MEDIUM
379 std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
380 BEGIN_FTR_SECTION
381 mfspr r10,SPRN_CFAR
382 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
383 .if \ool
384 .if !\virt
385 b tramp_real_\name
386 .pushsection .text
387 TRAMP_REAL_BEGIN(tramp_real_\name)
388 .else
389 b tramp_virt_\name
390 .pushsection .text
391 TRAMP_VIRT_BEGIN(tramp_virt_\name)
392 .endif
393 .endif
394
395 BEGIN_FTR_SECTION
396 std r9,IAREA+EX_PPR(r13)
397 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
398 BEGIN_FTR_SECTION
399 std r10,IAREA+EX_CFAR(r13)
400 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
401 INTERRUPT_TO_KERNEL
402 mfctr r10
403 std r10,IAREA+EX_CTR(r13)
404 mfcr r9
405 std r11,IAREA+EX_R11(r13)
406 std r12,IAREA+EX_R12(r13)
407
408 /*
409 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
410 * because a d-side MCE will clobber those registers so is
411 * not recoverable if they are live.
412 */
413 GET_SCRATCH0(r10)
414 std r10,IAREA+EX_R13(r13)
415 .if IDAR && !IISIDE
416 .if IHSRR
417 mfspr r10,SPRN_HDAR
418 .else
419 mfspr r10,SPRN_DAR
420 .endif
421 std r10,IAREA+EX_DAR(r13)
422 .endif
423 .if IDSISR && !IISIDE
424 .if IHSRR
425 mfspr r10,SPRN_HDSISR
426 .else
427 mfspr r10,SPRN_DSISR
428 .endif
429 stw r10,IAREA+EX_DSISR(r13)
430 .endif
431
432 .if IHSRR_IF_HVMODE
433 BEGIN_FTR_SECTION
434 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
435 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
436 FTR_SECTION_ELSE
437 mfspr r11,SPRN_SRR0 /* save SRR0 */
438 mfspr r12,SPRN_SRR1 /* and SRR1 */
439 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
440 .elseif IHSRR
441 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
442 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
443 .else
444 mfspr r11,SPRN_SRR0 /* save SRR0 */
445 mfspr r12,SPRN_SRR1 /* and SRR1 */
446 .endif
447
448 .if IBRANCH_TO_COMMON
449 GEN_BRANCH_TO_COMMON \name \virt
450 .endif
451
452 .if \ool
453 .popsection
454 .endif
455 .endm
456
457 /*
458 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
459 * entry, except in the case of the real-mode handlers which require
460 * __GEN_REALMODE_COMMON_ENTRY.
461 *
462 * This switches to virtual mode and sets MSR[RI].
463 */
464 .macro __GEN_COMMON_ENTRY name
465 DEFINE_FIXED_SYMBOL(\name\()_common_real)
466 \name\()_common_real:
467 .if IKVM_REAL
468 KVMTEST \name
469 .endif
470
471 ld r10,PACAKMSR(r13) /* get MSR value for kernel */
472 /* MSR[RI] is clear iff using SRR regs */
473 .if IHSRR == EXC_HV_OR_STD
474 BEGIN_FTR_SECTION
475 xori r10,r10,MSR_RI
476 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
477 .elseif ! IHSRR
478 xori r10,r10,MSR_RI
479 .endif
480 mtmsrd r10
481
482 .if IVIRT
483 .if IKVM_VIRT
484 b 1f /* skip the virt test coming from real */
485 .endif
486
487 .balign IFETCH_ALIGN_BYTES
488 DEFINE_FIXED_SYMBOL(\name\()_common_virt)
489 \name\()_common_virt:
490 .if IKVM_VIRT
491 KVMTEST \name
492 1:
493 .endif
494 .endif /* IVIRT */
495 .endm
496
497 /*
498 * Don't switch to virt mode. Used for early MCE and HMI handlers that
499 * want to run in real mode.
500 */
501 .macro __GEN_REALMODE_COMMON_ENTRY name
502 DEFINE_FIXED_SYMBOL(\name\()_common_real)
503 \name\()_common_real:
504 .if IKVM_REAL
505 KVMTEST \name
506 .endif
507 .endm
508
509 .macro __GEN_COMMON_BODY name
510 .if IMASK
511 .if ! ISTACK
512 .error "No support for masked interrupt to use custom stack"
513 .endif
514
515 /* If coming from user, skip soft-mask tests. */
516 andi. r10,r12,MSR_PR
517 bne 2f
518
519 /* Kernel code running below __end_interrupts is implicitly
520 * soft-masked */
521 LOAD_HANDLER(r10, __end_interrupts)
522 cmpld r11,r10
523 li r10,IMASK
524 blt- 1f
525
526 /* Test the soft mask state against our interrupt's bit */
527 lbz r10,PACAIRQSOFTMASK(r13)
528 1: andi. r10,r10,IMASK
529 /* Associate vector numbers with bits in paca->irq_happened */
530 .if IVEC == 0x500 || IVEC == 0xea0
531 li r10,PACA_IRQ_EE
532 .elseif IVEC == 0x900
533 li r10,PACA_IRQ_DEC
534 .elseif IVEC == 0xa00 || IVEC == 0xe80
535 li r10,PACA_IRQ_DBELL
536 .elseif IVEC == 0xe60
537 li r10,PACA_IRQ_HMI
538 .elseif IVEC == 0xf00
539 li r10,PACA_IRQ_PMI
540 .else
541 .abort "Bad maskable vector"
542 .endif
543
544 .if IHSRR_IF_HVMODE
545 BEGIN_FTR_SECTION
546 bne masked_Hinterrupt
547 FTR_SECTION_ELSE
548 bne masked_interrupt
549 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
550 .elseif IHSRR
551 bne masked_Hinterrupt
552 .else
553 bne masked_interrupt
554 .endif
555 .endif
556
557 .if ISTACK
558 andi. r10,r12,MSR_PR /* See if coming from user */
559 2: mr r10,r1 /* Save r1 */
560 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
561 beq- 100f
562 ld r1,PACAKSAVE(r13) /* kernel stack to use */
563 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
564 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
565 .endif
566
567 std r9,_CCR(r1) /* save CR in stackframe */
568 std r11,_NIP(r1) /* save SRR0 in stackframe */
569 std r12,_MSR(r1) /* save SRR1 in stackframe */
570 std r10,0(r1) /* make stack chain pointer */
571 std r0,GPR0(r1) /* save r0 in stackframe */
572 std r10,GPR1(r1) /* save r1 in stackframe */
573
574 .if ISET_RI
575 li r10,MSR_RI
576 mtmsrd r10,1 /* Set MSR_RI */
577 .endif
578
579 .if ISTACK
580 .if IKUAP
581 kuap_save_amr_and_lock r9, r10, cr1, cr0
582 .endif
583 beq 101f /* if from kernel mode */
584 ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
585 BEGIN_FTR_SECTION
586 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
587 std r9,_PPR(r1)
588 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
589 101:
590 .else
591 .if IKUAP
592 kuap_save_amr_and_lock r9, r10, cr1
593 .endif
594 .endif
595
596 /* Save original regs values from save area to stack frame. */
597 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
598 ld r10,IAREA+EX_R10(r13)
599 std r9,GPR9(r1)
600 std r10,GPR10(r1)
601 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
602 ld r10,IAREA+EX_R12(r13)
603 ld r11,IAREA+EX_R13(r13)
604 std r9,GPR11(r1)
605 std r10,GPR12(r1)
606 std r11,GPR13(r1)
607
608 SAVE_NVGPRS(r1)
609
610 .if IDAR
611 .if IISIDE
612 ld r10,_NIP(r1)
613 .else
614 ld r10,IAREA+EX_DAR(r13)
615 .endif
616 std r10,_DAR(r1)
617 .endif
618
619 .if IDSISR
620 .if IISIDE
621 ld r10,_MSR(r1)
622 lis r11,DSISR_SRR1_MATCH_64S@h
623 and r10,r10,r11
624 .else
625 lwz r10,IAREA+EX_DSISR(r13)
626 .endif
627 std r10,_DSISR(r1)
628 .endif
629
630 BEGIN_FTR_SECTION
631 ld r10,IAREA+EX_CFAR(r13)
632 std r10,ORIG_GPR3(r1)
633 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
634 ld r10,IAREA+EX_CTR(r13)
635 std r10,_CTR(r1)
636 std r2,GPR2(r1) /* save r2 in stackframe */
637 SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
638 SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
639 mflr r9 /* Get LR, later save to stack */
640 ld r2,PACATOC(r13) /* get kernel TOC into r2 */
641 std r9,_LINK(r1)
642 lbz r10,PACAIRQSOFTMASK(r13)
643 mfspr r11,SPRN_XER /* save XER in stackframe */
644 std r10,SOFTE(r1)
645 std r11,_XER(r1)
646 li r9,IVEC
647 std r9,_TRAP(r1) /* set trap number */
648 li r10,0
649 ld r11,exception_marker@toc(r2)
650 std r10,RESULT(r1) /* clear regs->result */
651 std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
652
653 .if ISTACK
654 ACCOUNT_STOLEN_TIME
655 .endif
656
657 .if IRECONCILE
658 RECONCILE_IRQ_STATE(r10, r11)
659 .endif
660 .endm
661
662 /*
663 * On entry r13 points to the paca, r9-r13 are saved in the paca,
664 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
665 * SRR1, and relocation is on.
666 *
667 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
668 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
669 */
670 .macro GEN_COMMON name
671 __GEN_COMMON_ENTRY \name
672 __GEN_COMMON_BODY \name
673 .endm
674
675 /*
676 * Restore all registers including H/SRR0/1 saved in a stack frame of a
677 * standard exception.
678 */
679 .macro EXCEPTION_RESTORE_REGS hsrr=0
680 /* Move original SRR0 and SRR1 into the respective regs */
681 ld r9,_MSR(r1)
682 .if \hsrr
683 mtspr SPRN_HSRR1,r9
684 .else
685 mtspr SPRN_SRR1,r9
686 .endif
687 ld r9,_NIP(r1)
688 .if \hsrr
689 mtspr SPRN_HSRR0,r9
690 .else
691 mtspr SPRN_SRR0,r9
692 .endif
693 ld r9,_CTR(r1)
694 mtctr r9
695 ld r9,_XER(r1)
696 mtxer r9
697 ld r9,_LINK(r1)
698 mtlr r9
699 ld r9,_CCR(r1)
700 mtcr r9
701 REST_8GPRS(2, r1)
702 REST_4GPRS(10, r1)
703 REST_GPR(0, r1)
704 /* restore original r1. */
705 ld r1,GPR1(r1)
706 .endm
707
708 #define RUNLATCH_ON \
709 BEGIN_FTR_SECTION \
710 ld r3, PACA_THREAD_INFO(r13); \
711 ld r4,TI_LOCAL_FLAGS(r3); \
712 andi. r0,r4,_TLF_RUNLATCH; \
713 beql ppc64_runlatch_on_trampoline; \
714 END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
715
716 /*
717 * When the idle code in power4_idle puts the CPU into NAP mode,
718 * it has to do so in a loop, and relies on the external interrupt
719 * and decrementer interrupt entry code to get it out of the loop.
720 * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
721 * to signal that it is in the loop and needs help to get out.
722 */
723 #ifdef CONFIG_PPC_970_NAP
724 #define FINISH_NAP \
725 BEGIN_FTR_SECTION \
726 ld r11, PACA_THREAD_INFO(r13); \
727 ld r9,TI_LOCAL_FLAGS(r11); \
728 andi. r10,r9,_TLF_NAPPING; \
729 bnel power4_fixup_nap; \
730 END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
731 #else
732 #define FINISH_NAP
733 #endif
734
735 /*
736 * There are a few constraints to be concerned with.
737 * - Real mode exceptions code/data must be located at their physical location.
738 * - Virtual mode exceptions must be mapped at their 0xc000... location.
739 * - Fixed location code must not call directly beyond the __end_interrupts
740 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
741 * must be used.
742 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
743 * virtual 0xc00...
744 * - Conditional branch targets must be within +/-32K of caller.
745 *
746 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
747 * therefore don't have to run in physically located code or rfid to
748 * virtual mode kernel code. However on relocatable kernels they do have
749 * to branch to KERNELBASE offset because the rest of the kernel (outside
750 * the exception vectors) may be located elsewhere.
751 *
752 * Virtual exceptions correspond with physical, except their entry points
753 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
754 * offset applied. Virtual exceptions are enabled with the Alternate
755 * Interrupt Location (AIL) bit set in the LPCR. However this does not
756 * guarantee they will be delivered virtually. Some conditions (see the ISA)
757 * cause exceptions to be delivered in real mode.
758 *
759 * The scv instructions are a special case. They get a 0x3000 offset applied.
760 * scv exceptions have unique reentrancy properties, see below.
761 *
762 * It's impossible to receive interrupts below 0x300 via AIL.
763 *
764 * KVM: None of the virtual exceptions are from the guest. Anything that
765 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
766 *
767 *
768 * We layout physical memory as follows:
769 * 0x0000 - 0x00ff : Secondary processor spin code
770 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
771 * 0x1900 - 0x2fff : Real mode trampolines
772 * 0x3000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
773 * 0x5900 - 0x6fff : Relon mode trampolines
774 * 0x7000 - 0x7fff : FWNMI data area
775 * 0x8000 - .... : Common interrupt handlers, remaining early
776 * setup code, rest of kernel.
777 *
778 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
779 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
780 * vectors there.
781 */
782 OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
783 OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x3000)
784 OPEN_FIXED_SECTION(virt_vectors, 0x3000, 0x5900)
785 OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
786
787 #ifdef CONFIG_PPC_POWERNV
788 .globl start_real_trampolines
789 .globl end_real_trampolines
790 .globl start_virt_trampolines
791 .globl end_virt_trampolines
792 #endif
793
794 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
795 /*
796 * Data area reserved for FWNMI option.
797 * This address (0x7000) is fixed by the RPA.
798 * pseries and powernv need to keep the whole page from
799 * 0x7000 to 0x8000 free for use by the firmware
800 */
801 ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
802 OPEN_TEXT_SECTION(0x8000)
803 #else
804 OPEN_TEXT_SECTION(0x7000)
805 #endif
806
807 USE_FIXED_SECTION(real_vectors)
808
809 /*
810 * This is the start of the interrupt handlers for pSeries
811 * This code runs with relocation off.
812 * Code from here to __end_interrupts gets copied down to real
813 * address 0x100 when we are running a relocatable kernel.
814 * Therefore any relative branches in this section must only
815 * branch to labels in this section.
816 */
817 .globl __start_interrupts
818 __start_interrupts:
819
820 /**
821 * Interrupt 0x3000 - System Call Vectored Interrupt (syscall).
822 * This is a synchronous interrupt invoked with the "scv" instruction. The
823 * system call does not alter the HV bit, so it is directed to the OS.
824 *
825 * Handling:
826 * scv instructions enter the kernel without changing EE, RI, ME, or HV.
827 * In particular, this means we can take a maskable interrupt at any point
828 * in the scv handler, which is unlike any other interrupt. This is solved
829 * by treating the instruction addresses below __end_interrupts as being
830 * soft-masked.
831 *
832 * AIL-0 mode scv exceptions go to 0x17000-0x17fff, but we set AIL-3 and
833 * ensure scv is never executed with relocation off, which means AIL-0
834 * should never happen.
835 *
836 * Before leaving the below __end_interrupts text, at least of the following
837 * must be true:
838 * - MSR[PR]=1 (i.e., return to userspace)
839 * - MSR_EE|MSR_RI is set (no reentrant exceptions)
840 * - Standard kernel environment is set up (stack, paca, etc)
841 *
842 * Call convention:
843 *
844 * syscall register convention is in Documentation/powerpc/syscall64-abi.rst
845 */
846 EXC_VIRT_BEGIN(system_call_vectored, 0x3000, 0x1000)
847 /* SCV 0 */
848 mr r9,r13
849 GET_PACA(r13)
850 mflr r11
851 mfctr r12
852 li r10,IRQS_ALL_DISABLED
853 stb r10,PACAIRQSOFTMASK(r13)
854 #ifdef CONFIG_RELOCATABLE
855 b system_call_vectored_tramp
856 #else
857 b system_call_vectored_common
858 #endif
859 nop
860
861 /* SCV 1 - 127 */
862 .rept 127
863 mr r9,r13
864 GET_PACA(r13)
865 mflr r11
866 mfctr r12
867 li r10,IRQS_ALL_DISABLED
868 stb r10,PACAIRQSOFTMASK(r13)
869 li r0,-1 /* cause failure */
870 #ifdef CONFIG_RELOCATABLE
871 b system_call_vectored_sigill_tramp
872 #else
873 b system_call_vectored_sigill
874 #endif
875 .endr
876 EXC_VIRT_END(system_call_vectored, 0x3000, 0x1000)
877
878 #ifdef CONFIG_RELOCATABLE
879 TRAMP_VIRT_BEGIN(system_call_vectored_tramp)
880 __LOAD_HANDLER(r10, system_call_vectored_common)
881 mtctr r10
882 bctr
883
884 TRAMP_VIRT_BEGIN(system_call_vectored_sigill_tramp)
885 __LOAD_HANDLER(r10, system_call_vectored_sigill)
886 mtctr r10
887 bctr
888 #endif
889
890
891 /* No virt vectors corresponding with 0x0..0x100 */
892 EXC_VIRT_NONE(0x4000, 0x100)
893
894
895 /**
896 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
897 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
898 * It is caused by:
899 * - Wake from power-saving state, on powernv.
900 * - An NMI from another CPU, triggered by firmware or hypercall.
901 * - As crash/debug signal injected from BMC, firmware or hypervisor.
902 *
903 * Handling:
904 * Power-save wakeup is the only performance critical path, so this is
905 * determined quickly as possible first. In this case volatile registers
906 * can be discarded and SPRs like CFAR don't need to be read.
907 *
908 * If not a powersave wakeup, then it's run as a regular interrupt, however
909 * it uses its own stack and PACA save area to preserve the regular kernel
910 * environment for debugging.
911 *
912 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
913 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
914 * correct to switch to virtual mode to run the regular interrupt handler
915 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
916 * is clear).
917 *
918 * FWNMI:
919 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
920 * entry point with a different register set up. Some hypervisors will
921 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
922 *
923 * KVM:
924 * Unlike most SRR interrupts, this may be taken by the host while executing
925 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
926 * mode and then raise the sreset.
927 */
928 INT_DEFINE_BEGIN(system_reset)
929 IVEC=0x100
930 IAREA=PACA_EXNMI
931 IVIRT=0 /* no virt entry point */
932 /*
933 * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
934 * being used, so a nested NMI exception would corrupt it.
935 */
936 ISET_RI=0
937 ISTACK=0
938 IRECONCILE=0
939 IKVM_REAL=1
940 INT_DEFINE_END(system_reset)
941
942 EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
943 #ifdef CONFIG_PPC_P7_NAP
944 /*
945 * If running native on arch 2.06 or later, check if we are waking up
946 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
947 * bits 46:47. A non-0 value indicates that we are coming from a power
948 * saving state. The idle wakeup handler initially runs in real mode,
949 * but we branch to the 0xc000... address so we can turn on relocation
950 * with mtmsrd later, after SPRs are restored.
951 *
952 * Careful to minimise cost for the fast path (idle wakeup) while
953 * also avoiding clobbering CFAR for the debug path (non-idle).
954 *
955 * For the idle wake case volatile registers can be clobbered, which
956 * is why we use those initially. If it turns out to not be an idle
957 * wake, carefully put everything back the way it was, so we can use
958 * common exception macros to handle it.
959 */
960 BEGIN_FTR_SECTION
961 SET_SCRATCH0(r13)
962 GET_PACA(r13)
963 std r3,PACA_EXNMI+0*8(r13)
964 std r4,PACA_EXNMI+1*8(r13)
965 std r5,PACA_EXNMI+2*8(r13)
966 mfspr r3,SPRN_SRR1
967 mfocrf r4,0x80
968 rlwinm. r5,r3,47-31,30,31
969 bne+ system_reset_idle_wake
970 /* Not powersave wakeup. Restore regs for regular interrupt handler. */
971 mtocrf 0x80,r4
972 ld r3,PACA_EXNMI+0*8(r13)
973 ld r4,PACA_EXNMI+1*8(r13)
974 ld r5,PACA_EXNMI+2*8(r13)
975 GET_SCRATCH0(r13)
976 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
977 #endif
978
979 GEN_INT_ENTRY system_reset, virt=0
980 /*
981 * In theory, we should not enable relocation here if it was disabled
982 * in SRR1, because the MMU may not be configured to support it (e.g.,
983 * SLB may have been cleared). In practice, there should only be a few
984 * small windows where that's the case, and sreset is considered to
985 * be dangerous anyway.
986 */
987 EXC_REAL_END(system_reset, 0x100, 0x100)
988 EXC_VIRT_NONE(0x4100, 0x100)
989
990 #ifdef CONFIG_PPC_P7_NAP
991 TRAMP_REAL_BEGIN(system_reset_idle_wake)
992 /* We are waking up from idle, so may clobber any volatile register */
993 cmpwi cr1,r5,2
994 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
995 BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
996 #endif
997
998 #ifdef CONFIG_PPC_PSERIES
999 /*
1000 * Vectors for the FWNMI option. Share common code.
1001 */
1002 TRAMP_REAL_BEGIN(system_reset_fwnmi)
1003 /* XXX: fwnmi guest could run a nested/PR guest, so why no test? */
1004 __IKVM_REAL(system_reset)=0
1005 GEN_INT_ENTRY system_reset, virt=0
1006
1007 #endif /* CONFIG_PPC_PSERIES */
1008
1009 EXC_COMMON_BEGIN(system_reset_common)
1010 __GEN_COMMON_ENTRY system_reset
1011 /*
1012 * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
1013 * to recover, but nested NMI will notice in_nmi and not recover
1014 * because of the use of the NMI stack. in_nmi reentrancy is tested in
1015 * system_reset_exception.
1016 */
1017 lhz r10,PACA_IN_NMI(r13)
1018 addi r10,r10,1
1019 sth r10,PACA_IN_NMI(r13)
1020 li r10,MSR_RI
1021 mtmsrd r10,1
1022
1023 mr r10,r1
1024 ld r1,PACA_NMI_EMERG_SP(r13)
1025 subi r1,r1,INT_FRAME_SIZE
1026 __GEN_COMMON_BODY system_reset
1027 /*
1028 * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
1029 * the right thing. We do not want to reconcile because that goes
1030 * through irq tracing which we don't want in NMI.
1031 *
1032 * Save PACAIRQHAPPENED to RESULT (otherwise unused), and set HARD_DIS
1033 * as we are running with MSR[EE]=0.
1034 */
1035 li r10,IRQS_ALL_DISABLED
1036 stb r10,PACAIRQSOFTMASK(r13)
1037 lbz r10,PACAIRQHAPPENED(r13)
1038 std r10,RESULT(r1)
1039 ori r10,r10,PACA_IRQ_HARD_DIS
1040 stb r10,PACAIRQHAPPENED(r13)
1041
1042 addi r3,r1,STACK_FRAME_OVERHEAD
1043 bl system_reset_exception
1044
1045 /* Clear MSR_RI before setting SRR0 and SRR1. */
1046 li r9,0
1047 mtmsrd r9,1
1048
1049 /*
1050 * MSR_RI is clear, now we can decrement paca->in_nmi.
1051 */
1052 lhz r10,PACA_IN_NMI(r13)
1053 subi r10,r10,1
1054 sth r10,PACA_IN_NMI(r13)
1055
1056 /*
1057 * Restore soft mask settings.
1058 */
1059 ld r10,RESULT(r1)
1060 stb r10,PACAIRQHAPPENED(r13)
1061 ld r10,SOFTE(r1)
1062 stb r10,PACAIRQSOFTMASK(r13)
1063
1064 kuap_restore_amr r9, r10
1065 EXCEPTION_RESTORE_REGS
1066 RFI_TO_USER_OR_KERNEL
1067
1068 GEN_KVM system_reset
1069
1070
1071 /**
1072 * Interrupt 0x200 - Machine Check Interrupt (MCE).
1073 * This is a non-maskable interrupt always taken in real-mode. It can be
1074 * synchronous or asynchronous, caused by hardware or software, and it may be
1075 * taken in a power-saving state.
1076 *
1077 * Handling:
1078 * Similarly to system reset, this uses its own stack and PACA save area,
1079 * the difference is re-entrancy is allowed on the machine check stack.
1080 *
1081 * machine_check_early is run in real mode, and carefully decodes the
1082 * machine check and tries to handle it (e.g., flush the SLB if there was an
1083 * error detected there), determines if it was recoverable and logs the
1084 * event.
1085 *
1086 * This early code does not "reconcile" irq soft-mask state like SRESET or
1087 * regular interrupts do, so irqs_disabled() among other things may not work
1088 * properly (irq disable/enable already doesn't work because irq tracing can
1089 * not work in real mode).
1090 *
1091 * Then, depending on the execution context when the interrupt is taken, there
1092 * are 3 main actions:
1093 * - Executing in kernel mode. The event is queued with irq_work, which means
1094 * it is handled when it is next safe to do so (i.e., the kernel has enabled
1095 * interrupts), which could be immediately when the interrupt returns. This
1096 * avoids nasty issues like switching to virtual mode when the MMU is in a
1097 * bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1098 * but it has different priorities). Check to see if the CPU was in power
1099 * save, and return via the wake up code if it was.
1100 *
1101 * - Executing in user mode. machine_check_exception is run like a normal
1102 * interrupt handler, which processes the data generated by the early handler.
1103 *
1104 * - Executing in guest mode. The interrupt is run with its KVM test, and
1105 * branches to KVM to deal with. KVM may queue the event for the host
1106 * to report later.
1107 *
1108 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1109 * or SCRATCH0 is in use, it may cause a crash.
1110 *
1111 * KVM:
1112 * See SRESET.
1113 */
1114 INT_DEFINE_BEGIN(machine_check_early)
1115 IVEC=0x200
1116 IAREA=PACA_EXMC
1117 IVIRT=0 /* no virt entry point */
1118 IREALMODE_COMMON=1
1119 /*
1120 * MSR_RI is not enabled, because PACA_EXMC is being used, so a
1121 * nested machine check corrupts it. machine_check_common enables
1122 * MSR_RI.
1123 */
1124 ISET_RI=0
1125 ISTACK=0
1126 IDAR=1
1127 IDSISR=1
1128 IRECONCILE=0
1129 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1130 INT_DEFINE_END(machine_check_early)
1131
1132 INT_DEFINE_BEGIN(machine_check)
1133 IVEC=0x200
1134 IAREA=PACA_EXMC
1135 IVIRT=0 /* no virt entry point */
1136 ISET_RI=0
1137 IDAR=1
1138 IDSISR=1
1139 IKVM_SKIP=1
1140 IKVM_REAL=1
1141 INT_DEFINE_END(machine_check)
1142
1143 EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1144 GEN_INT_ENTRY machine_check_early, virt=0
1145 EXC_REAL_END(machine_check, 0x200, 0x100)
1146 EXC_VIRT_NONE(0x4200, 0x100)
1147
1148 #ifdef CONFIG_PPC_PSERIES
1149 TRAMP_REAL_BEGIN(machine_check_fwnmi)
1150 /* See comment at machine_check exception, don't turn on RI */
1151 GEN_INT_ENTRY machine_check_early, virt=0
1152 #endif
1153
1154 #define MACHINE_CHECK_HANDLER_WINDUP \
1155 /* Clear MSR_RI before setting SRR0 and SRR1. */\
1156 li r9,0; \
1157 mtmsrd r9,1; /* Clear MSR_RI */ \
1158 /* Decrement paca->in_mce now RI is clear. */ \
1159 lhz r12,PACA_IN_MCE(r13); \
1160 subi r12,r12,1; \
1161 sth r12,PACA_IN_MCE(r13); \
1162 EXCEPTION_RESTORE_REGS
1163
1164 EXC_COMMON_BEGIN(machine_check_early_common)
1165 __GEN_REALMODE_COMMON_ENTRY machine_check_early
1166
1167 /*
1168 * Switch to mc_emergency stack and handle re-entrancy (we limit
1169 * the nested MCE upto level 4 to avoid stack overflow).
1170 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1171 *
1172 * We use paca->in_mce to check whether this is the first entry or
1173 * nested machine check. We increment paca->in_mce to track nested
1174 * machine checks.
1175 *
1176 * If this is the first entry then set stack pointer to
1177 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1178 * stack frame on mc_emergency stack.
1179 *
1180 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1181 * checkstop if we get another machine check exception before we do
1182 * rfid with MSR_ME=1.
1183 *
1184 * This interrupt can wake directly from idle. If that is the case,
1185 * the machine check is handled then the idle wakeup code is called
1186 * to restore state.
1187 */
1188 lhz r10,PACA_IN_MCE(r13)
1189 cmpwi r10,0 /* Are we in nested machine check */
1190 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
1191 addi r10,r10,1 /* increment paca->in_mce */
1192 sth r10,PACA_IN_MCE(r13)
1193
1194 mr r10,r1 /* Save r1 */
1195 bne 1f
1196 /* First machine check entry */
1197 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1198 1: /* Limit nested MCE to level 4 to avoid stack overflow */
1199 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
1200 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1201
1202 __GEN_COMMON_BODY machine_check_early
1203
1204 BEGIN_FTR_SECTION
1205 bl enable_machine_check
1206 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1207 li r10,MSR_RI
1208 mtmsrd r10,1
1209
1210 /*
1211 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
1212 * system_reset_common)
1213 */
1214 li r10,IRQS_ALL_DISABLED
1215 stb r10,PACAIRQSOFTMASK(r13)
1216 lbz r10,PACAIRQHAPPENED(r13)
1217 std r10,RESULT(r1)
1218 ori r10,r10,PACA_IRQ_HARD_DIS
1219 stb r10,PACAIRQHAPPENED(r13)
1220
1221 addi r3,r1,STACK_FRAME_OVERHEAD
1222 bl machine_check_early
1223 std r3,RESULT(r1) /* Save result */
1224 ld r12,_MSR(r1)
1225
1226 /*
1227 * Restore soft mask settings.
1228 */
1229 ld r10,RESULT(r1)
1230 stb r10,PACAIRQHAPPENED(r13)
1231 ld r10,SOFTE(r1)
1232 stb r10,PACAIRQSOFTMASK(r13)
1233
1234 #ifdef CONFIG_PPC_P7_NAP
1235 /*
1236 * Check if thread was in power saving mode. We come here when any
1237 * of the following is true:
1238 * a. thread wasn't in power saving mode
1239 * b. thread was in power saving mode with no state loss,
1240 * supervisor state loss or hypervisor state loss.
1241 *
1242 * Go back to nap/sleep/winkle mode again if (b) is true.
1243 */
1244 BEGIN_FTR_SECTION
1245 rlwinm. r11,r12,47-31,30,31
1246 bne machine_check_idle_common
1247 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1248 #endif
1249
1250 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1251 /*
1252 * Check if we are coming from guest. If yes, then run the normal
1253 * exception handler which will take the
1254 * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
1255 * to guest.
1256 */
1257 lbz r11,HSTATE_IN_GUEST(r13)
1258 cmpwi r11,0 /* Check if coming from guest */
1259 bne mce_deliver /* continue if we are. */
1260 #endif
1261
1262 /*
1263 * Check if we are coming from userspace. If yes, then run the normal
1264 * exception handler which will deliver the MC event to this kernel.
1265 */
1266 andi. r11,r12,MSR_PR /* See if coming from user. */
1267 bne mce_deliver /* continue in V mode if we are. */
1268
1269 /*
1270 * At this point we are coming from kernel context.
1271 * Queue up the MCE event and return from the interrupt.
1272 * But before that, check if this is an un-recoverable exception.
1273 * If yes, then stay on emergency stack and panic.
1274 */
1275 andi. r11,r12,MSR_RI
1276 beq unrecoverable_mce
1277
1278 /*
1279 * Check if we have successfully handled/recovered from error, if not
1280 * then stay on emergency stack and panic.
1281 */
1282 ld r3,RESULT(r1) /* Load result */
1283 cmpdi r3,0 /* see if we handled MCE successfully */
1284 beq unrecoverable_mce /* if !handled then panic */
1285
1286 /*
1287 * Return from MC interrupt.
1288 * Queue up the MCE event so that we can log it later, while
1289 * returning from kernel or opal call.
1290 */
1291 bl machine_check_queue_event
1292 MACHINE_CHECK_HANDLER_WINDUP
1293 RFI_TO_KERNEL
1294
1295 mce_deliver:
1296 /*
1297 * This is a host user or guest MCE. Restore all registers, then
1298 * run the "late" handler. For host user, this will run the
1299 * machine_check_exception handler in virtual mode like a normal
1300 * interrupt handler. For guest, this will trigger the KVM test
1301 * and branch to the KVM interrupt similarly to other interrupts.
1302 */
1303 BEGIN_FTR_SECTION
1304 ld r10,ORIG_GPR3(r1)
1305 mtspr SPRN_CFAR,r10
1306 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1307 MACHINE_CHECK_HANDLER_WINDUP
1308 GEN_INT_ENTRY machine_check, virt=0
1309
1310 EXC_COMMON_BEGIN(machine_check_common)
1311 /*
1312 * Machine check is different because we use a different
1313 * save area: PACA_EXMC instead of PACA_EXGEN.
1314 */
1315 GEN_COMMON machine_check
1316
1317 FINISH_NAP
1318 /* Enable MSR_RI when finished with PACA_EXMC */
1319 li r10,MSR_RI
1320 mtmsrd r10,1
1321 addi r3,r1,STACK_FRAME_OVERHEAD
1322 bl machine_check_exception
1323 b interrupt_return
1324
1325 GEN_KVM machine_check
1326
1327
1328 #ifdef CONFIG_PPC_P7_NAP
1329 /*
1330 * This is an idle wakeup. Low level machine check has already been
1331 * done. Queue the event then call the idle code to do the wake up.
1332 */
1333 EXC_COMMON_BEGIN(machine_check_idle_common)
1334 bl machine_check_queue_event
1335
1336 /*
1337 * GPR-loss wakeups are relatively straightforward, because the
1338 * idle sleep code has saved all non-volatile registers on its
1339 * own stack, and r1 in PACAR1.
1340 *
1341 * For no-loss wakeups the r1 and lr registers used by the
1342 * early machine check handler have to be restored first. r2 is
1343 * the kernel TOC, so no need to restore it.
1344 *
1345 * Then decrement MCE nesting after finishing with the stack.
1346 */
1347 ld r3,_MSR(r1)
1348 ld r4,_LINK(r1)
1349 ld r1,GPR1(r1)
1350
1351 lhz r11,PACA_IN_MCE(r13)
1352 subi r11,r11,1
1353 sth r11,PACA_IN_MCE(r13)
1354
1355 mtlr r4
1356 rlwinm r10,r3,47-31,30,31
1357 cmpwi cr1,r10,2
1358 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
1359 b idle_return_gpr_loss
1360 #endif
1361
1362 EXC_COMMON_BEGIN(unrecoverable_mce)
1363 /*
1364 * We are going down. But there are chances that we might get hit by
1365 * another MCE during panic path and we may run into unstable state
1366 * with no way out. Hence, turn ME bit off while going down, so that
1367 * when another MCE is hit during panic path, system will checkstop
1368 * and hypervisor will get restarted cleanly by SP.
1369 */
1370 BEGIN_FTR_SECTION
1371 li r10,0 /* clear MSR_RI */
1372 mtmsrd r10,1
1373 bl disable_machine_check
1374 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1375 ld r10,PACAKMSR(r13)
1376 li r3,MSR_ME
1377 andc r10,r10,r3
1378 mtmsrd r10
1379
1380 lhz r12,PACA_IN_MCE(r13)
1381 subi r12,r12,1
1382 sth r12,PACA_IN_MCE(r13)
1383
1384 /* Invoke machine_check_exception to print MCE event and panic. */
1385 addi r3,r1,STACK_FRAME_OVERHEAD
1386 bl machine_check_exception
1387
1388 /*
1389 * We will not reach here. Even if we did, there is no way out.
1390 * Call unrecoverable_exception and die.
1391 */
1392 addi r3,r1,STACK_FRAME_OVERHEAD
1393 bl unrecoverable_exception
1394 b .
1395
1396
1397 /**
1398 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1399 * This is a synchronous interrupt generated due to a data access exception,
1400 * e.g., a load orstore which does not have a valid page table entry with
1401 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1402 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1403 *
1404 * Handling:
1405 * - Hash MMU
1406 * Go to do_hash_page first to see if the HPT can be filled from an entry in
1407 * the Linux page table. Hash faults can hit in kernel mode in a fairly
1408 * arbitrary state (e.g., interrupts disabled, locks held) when accessing
1409 * "non-bolted" regions, e.g., vmalloc space. However these should always be
1410 * backed by Linux page tables.
1411 *
1412 * If none is found, do a Linux page fault. Linux page faults can happen in
1413 * kernel mode due to user copy operations of course.
1414 *
1415 * - Radix MMU
1416 * The hardware loads from the Linux page table directly, so a fault goes
1417 * immediately to Linux page fault.
1418 *
1419 * Conditions like DAWR match are handled on the way in to Linux page fault.
1420 */
1421 INT_DEFINE_BEGIN(data_access)
1422 IVEC=0x300
1423 IDAR=1
1424 IDSISR=1
1425 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1426 IKVM_SKIP=1
1427 IKVM_REAL=1
1428 #endif
1429 INT_DEFINE_END(data_access)
1430
1431 EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1432 GEN_INT_ENTRY data_access, virt=0
1433 EXC_REAL_END(data_access, 0x300, 0x80)
1434 EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1435 GEN_INT_ENTRY data_access, virt=1
1436 EXC_VIRT_END(data_access, 0x4300, 0x80)
1437 EXC_COMMON_BEGIN(data_access_common)
1438 GEN_COMMON data_access
1439 ld r4,_DAR(r1)
1440 ld r5,_DSISR(r1)
1441 BEGIN_MMU_FTR_SECTION
1442 ld r6,_MSR(r1)
1443 li r3,0x300
1444 b do_hash_page /* Try to handle as hpte fault */
1445 MMU_FTR_SECTION_ELSE
1446 b handle_page_fault
1447 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1448
1449 GEN_KVM data_access
1450
1451
1452 /**
1453 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1454 * This is a synchronous interrupt in response to an MMU fault missing SLB
1455 * entry for HPT, or an address outside RPT translation range.
1456 *
1457 * Handling:
1458 * - HPT:
1459 * This refills the SLB, or reports an access fault similarly to a bad page
1460 * fault. When coming from user-mode, the SLB handler may access any kernel
1461 * data, though it may itself take a DSLB. When coming from kernel mode,
1462 * recursive faults must be avoided so access is restricted to the kernel
1463 * image text/data, kernel stack, and any data allocated below
1464 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1465 * on user-handler data structures.
1466 *
1467 * A dedicated save area EXSLB is used (XXX: but it actually need not be
1468 * these days, we could use EXGEN).
1469 */
1470 INT_DEFINE_BEGIN(data_access_slb)
1471 IVEC=0x380
1472 IAREA=PACA_EXSLB
1473 IRECONCILE=0
1474 IDAR=1
1475 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1476 IKVM_SKIP=1
1477 IKVM_REAL=1
1478 #endif
1479 INT_DEFINE_END(data_access_slb)
1480
1481 EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1482 GEN_INT_ENTRY data_access_slb, virt=0
1483 EXC_REAL_END(data_access_slb, 0x380, 0x80)
1484 EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1485 GEN_INT_ENTRY data_access_slb, virt=1
1486 EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1487 EXC_COMMON_BEGIN(data_access_slb_common)
1488 GEN_COMMON data_access_slb
1489 ld r4,_DAR(r1)
1490 addi r3,r1,STACK_FRAME_OVERHEAD
1491 BEGIN_MMU_FTR_SECTION
1492 /* HPT case, do SLB fault */
1493 bl do_slb_fault
1494 cmpdi r3,0
1495 bne- 1f
1496 b fast_interrupt_return
1497 1: /* Error case */
1498 MMU_FTR_SECTION_ELSE
1499 /* Radix case, access is outside page table range */
1500 li r3,-EFAULT
1501 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1502 std r3,RESULT(r1)
1503 RECONCILE_IRQ_STATE(r10, r11)
1504 ld r4,_DAR(r1)
1505 ld r5,RESULT(r1)
1506 addi r3,r1,STACK_FRAME_OVERHEAD
1507 bl do_bad_slb_fault
1508 b interrupt_return
1509
1510 GEN_KVM data_access_slb
1511
1512
1513 /**
1514 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1515 * This is a synchronous interrupt in response to an MMU fault due to an
1516 * instruction fetch.
1517 *
1518 * Handling:
1519 * Similar to DSI, though in response to fetch. The faulting address is found
1520 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1521 */
1522 INT_DEFINE_BEGIN(instruction_access)
1523 IVEC=0x400
1524 IISIDE=1
1525 IDAR=1
1526 IDSISR=1
1527 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1528 IKVM_REAL=1
1529 #endif
1530 INT_DEFINE_END(instruction_access)
1531
1532 EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1533 GEN_INT_ENTRY instruction_access, virt=0
1534 EXC_REAL_END(instruction_access, 0x400, 0x80)
1535 EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1536 GEN_INT_ENTRY instruction_access, virt=1
1537 EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1538 EXC_COMMON_BEGIN(instruction_access_common)
1539 GEN_COMMON instruction_access
1540 ld r4,_DAR(r1)
1541 ld r5,_DSISR(r1)
1542 BEGIN_MMU_FTR_SECTION
1543 ld r6,_MSR(r1)
1544 li r3,0x400
1545 b do_hash_page /* Try to handle as hpte fault */
1546 MMU_FTR_SECTION_ELSE
1547 b handle_page_fault
1548 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1549
1550 GEN_KVM instruction_access
1551
1552
1553 /**
1554 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1555 * This is a synchronous interrupt in response to an MMU fault due to an
1556 * instruction fetch.
1557 *
1558 * Handling:
1559 * Similar to DSLB, though in response to fetch. The faulting address is found
1560 * in SRR0 (rather than DAR).
1561 */
1562 INT_DEFINE_BEGIN(instruction_access_slb)
1563 IVEC=0x480
1564 IAREA=PACA_EXSLB
1565 IRECONCILE=0
1566 IISIDE=1
1567 IDAR=1
1568 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1569 IKVM_REAL=1
1570 #endif
1571 INT_DEFINE_END(instruction_access_slb)
1572
1573 EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1574 GEN_INT_ENTRY instruction_access_slb, virt=0
1575 EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1576 EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1577 GEN_INT_ENTRY instruction_access_slb, virt=1
1578 EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1579 EXC_COMMON_BEGIN(instruction_access_slb_common)
1580 GEN_COMMON instruction_access_slb
1581 ld r4,_DAR(r1)
1582 addi r3,r1,STACK_FRAME_OVERHEAD
1583 BEGIN_MMU_FTR_SECTION
1584 /* HPT case, do SLB fault */
1585 bl do_slb_fault
1586 cmpdi r3,0
1587 bne- 1f
1588 b fast_interrupt_return
1589 1: /* Error case */
1590 MMU_FTR_SECTION_ELSE
1591 /* Radix case, access is outside page table range */
1592 li r3,-EFAULT
1593 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1594 std r3,RESULT(r1)
1595 RECONCILE_IRQ_STATE(r10, r11)
1596 ld r4,_DAR(r1)
1597 ld r5,RESULT(r1)
1598 addi r3,r1,STACK_FRAME_OVERHEAD
1599 bl do_bad_slb_fault
1600 b interrupt_return
1601
1602 GEN_KVM instruction_access_slb
1603
1604
1605 /**
1606 * Interrupt 0x500 - External Interrupt.
1607 * This is an asynchronous maskable interrupt in response to an "external
1608 * exception" from the interrupt controller or hypervisor (e.g., device
1609 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1610 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1611 *
1612 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1613 * interrupts are delivered with HSRR registers, guests use SRRs, which
1614 * reqiures IHSRR_IF_HVMODE.
1615 *
1616 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1617 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1618 * rather than External Interrupts.
1619 *
1620 * Handling:
1621 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1622 * because registers at the time of the interrupt are not so important as it is
1623 * asynchronous.
1624 *
1625 * If soft masked, the masked handler will note the pending interrupt for
1626 * replay, and clear MSR[EE] in the interrupted context.
1627 */
1628 INT_DEFINE_BEGIN(hardware_interrupt)
1629 IVEC=0x500
1630 IHSRR_IF_HVMODE=1
1631 IMASK=IRQS_DISABLED
1632 IKVM_REAL=1
1633 IKVM_VIRT=1
1634 INT_DEFINE_END(hardware_interrupt)
1635
1636 EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1637 GEN_INT_ENTRY hardware_interrupt, virt=0
1638 EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1639 EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1640 GEN_INT_ENTRY hardware_interrupt, virt=1
1641 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1642 EXC_COMMON_BEGIN(hardware_interrupt_common)
1643 GEN_COMMON hardware_interrupt
1644 FINISH_NAP
1645 RUNLATCH_ON
1646 addi r3,r1,STACK_FRAME_OVERHEAD
1647 bl do_IRQ
1648 b interrupt_return
1649
1650 GEN_KVM hardware_interrupt
1651
1652
1653 /**
1654 * Interrupt 0x600 - Alignment Interrupt
1655 * This is a synchronous interrupt in response to data alignment fault.
1656 */
1657 INT_DEFINE_BEGIN(alignment)
1658 IVEC=0x600
1659 IDAR=1
1660 IDSISR=1
1661 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1662 IKVM_REAL=1
1663 #endif
1664 INT_DEFINE_END(alignment)
1665
1666 EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1667 GEN_INT_ENTRY alignment, virt=0
1668 EXC_REAL_END(alignment, 0x600, 0x100)
1669 EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1670 GEN_INT_ENTRY alignment, virt=1
1671 EXC_VIRT_END(alignment, 0x4600, 0x100)
1672 EXC_COMMON_BEGIN(alignment_common)
1673 GEN_COMMON alignment
1674 addi r3,r1,STACK_FRAME_OVERHEAD
1675 bl alignment_exception
1676 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1677 b interrupt_return
1678
1679 GEN_KVM alignment
1680
1681
1682 /**
1683 * Interrupt 0x700 - Program Interrupt (program check).
1684 * This is a synchronous interrupt in response to various instruction faults:
1685 * traps, privilege errors, TM errors, floating point exceptions.
1686 *
1687 * Handling:
1688 * This interrupt may use the "emergency stack" in some cases when being taken
1689 * from kernel context, which complicates handling.
1690 */
1691 INT_DEFINE_BEGIN(program_check)
1692 IVEC=0x700
1693 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1694 IKVM_REAL=1
1695 #endif
1696 INT_DEFINE_END(program_check)
1697
1698 EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1699 GEN_INT_ENTRY program_check, virt=0
1700 EXC_REAL_END(program_check, 0x700, 0x100)
1701 EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1702 GEN_INT_ENTRY program_check, virt=1
1703 EXC_VIRT_END(program_check, 0x4700, 0x100)
1704 EXC_COMMON_BEGIN(program_check_common)
1705 __GEN_COMMON_ENTRY program_check
1706
1707 /*
1708 * It's possible to receive a TM Bad Thing type program check with
1709 * userspace register values (in particular r1), but with SRR1 reporting
1710 * that we came from the kernel. Normally that would confuse the bad
1711 * stack logic, and we would report a bad kernel stack pointer. Instead
1712 * we switch to the emergency stack if we're taking a TM Bad Thing from
1713 * the kernel.
1714 */
1715
1716 andi. r10,r12,MSR_PR
1717 bne 2f /* If userspace, go normal path */
1718
1719 andis. r10,r12,(SRR1_PROGTM)@h
1720 bne 1f /* If TM, emergency */
1721
1722 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
1723 blt 2f /* normal path if not */
1724
1725 /* Use the emergency stack */
1726 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
1727 /* 3 in EXCEPTION_PROLOG_COMMON */
1728 mr r10,r1 /* Save r1 */
1729 ld r1,PACAEMERGSP(r13) /* Use emergency stack */
1730 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1731 __ISTACK(program_check)=0
1732 __GEN_COMMON_BODY program_check
1733 b 3f
1734 2:
1735 __ISTACK(program_check)=1
1736 __GEN_COMMON_BODY program_check
1737 3:
1738 addi r3,r1,STACK_FRAME_OVERHEAD
1739 bl program_check_exception
1740 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1741 b interrupt_return
1742
1743 GEN_KVM program_check
1744
1745
1746 /*
1747 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1748 * This is a synchronous interrupt in response to executing an fp instruction
1749 * with MSR[FP]=0.
1750 *
1751 * Handling:
1752 * This will load FP registers and enable the FP bit if coming from userspace,
1753 * otherwise report a bad kernel use of FP.
1754 */
1755 INT_DEFINE_BEGIN(fp_unavailable)
1756 IVEC=0x800
1757 IRECONCILE=0
1758 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1759 IKVM_REAL=1
1760 #endif
1761 INT_DEFINE_END(fp_unavailable)
1762
1763 EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1764 GEN_INT_ENTRY fp_unavailable, virt=0
1765 EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1766 EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1767 GEN_INT_ENTRY fp_unavailable, virt=1
1768 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1769 EXC_COMMON_BEGIN(fp_unavailable_common)
1770 GEN_COMMON fp_unavailable
1771 bne 1f /* if from user, just load it up */
1772 RECONCILE_IRQ_STATE(r10, r11)
1773 addi r3,r1,STACK_FRAME_OVERHEAD
1774 bl kernel_fp_unavailable_exception
1775 0: trap
1776 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1777 1:
1778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1779 BEGIN_FTR_SECTION
1780 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
1781 * transaction), go do TM stuff
1782 */
1783 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
1784 bne- 2f
1785 END_FTR_SECTION_IFSET(CPU_FTR_TM)
1786 #endif
1787 bl load_up_fpu
1788 b fast_interrupt_return
1789 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1790 2: /* User process was in a transaction */
1791 RECONCILE_IRQ_STATE(r10, r11)
1792 addi r3,r1,STACK_FRAME_OVERHEAD
1793 bl fp_unavailable_tm
1794 b interrupt_return
1795 #endif
1796
1797 GEN_KVM fp_unavailable
1798
1799
1800 /**
1801 * Interrupt 0x900 - Decrementer Interrupt.
1802 * This is an asynchronous interrupt in response to a decrementer exception
1803 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1804 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1805 * local_irq_disable()).
1806 *
1807 * Handling:
1808 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1809 *
1810 * If soft masked, the masked handler will note the pending interrupt for
1811 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1812 * in the interrupted context.
1813 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1814 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1815 * on the emergency stack.
1816 */
1817 INT_DEFINE_BEGIN(decrementer)
1818 IVEC=0x900
1819 IMASK=IRQS_DISABLED
1820 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1821 IKVM_REAL=1
1822 #endif
1823 INT_DEFINE_END(decrementer)
1824
1825 EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1826 GEN_INT_ENTRY decrementer, virt=0
1827 EXC_REAL_END(decrementer, 0x900, 0x80)
1828 EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1829 GEN_INT_ENTRY decrementer, virt=1
1830 EXC_VIRT_END(decrementer, 0x4900, 0x80)
1831 EXC_COMMON_BEGIN(decrementer_common)
1832 GEN_COMMON decrementer
1833 FINISH_NAP
1834 RUNLATCH_ON
1835 addi r3,r1,STACK_FRAME_OVERHEAD
1836 bl timer_interrupt
1837 b interrupt_return
1838
1839 GEN_KVM decrementer
1840
1841
1842 /**
1843 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1844 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1845 * register.
1846 *
1847 * Handling:
1848 * Linux does not use this outside KVM where it's used to keep a host timer
1849 * while the guest is given control of DEC. It should normally be caught by
1850 * the KVM test and routed there.
1851 */
1852 INT_DEFINE_BEGIN(hdecrementer)
1853 IVEC=0x980
1854 IHSRR=1
1855 ISTACK=0
1856 IRECONCILE=0
1857 IKVM_REAL=1
1858 IKVM_VIRT=1
1859 INT_DEFINE_END(hdecrementer)
1860
1861 EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1862 GEN_INT_ENTRY hdecrementer, virt=0
1863 EXC_REAL_END(hdecrementer, 0x980, 0x80)
1864 EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1865 GEN_INT_ENTRY hdecrementer, virt=1
1866 EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1867 EXC_COMMON_BEGIN(hdecrementer_common)
1868 __GEN_COMMON_ENTRY hdecrementer
1869 /*
1870 * Hypervisor decrementer interrupts not caught by the KVM test
1871 * shouldn't occur but are sometimes left pending on exit from a KVM
1872 * guest. We don't need to do anything to clear them, as they are
1873 * edge-triggered.
1874 *
1875 * Be careful to avoid touching the kernel stack.
1876 */
1877 ld r10,PACA_EXGEN+EX_CTR(r13)
1878 mtctr r10
1879 mtcrf 0x80,r9
1880 ld r9,PACA_EXGEN+EX_R9(r13)
1881 ld r10,PACA_EXGEN+EX_R10(r13)
1882 ld r11,PACA_EXGEN+EX_R11(r13)
1883 ld r12,PACA_EXGEN+EX_R12(r13)
1884 ld r13,PACA_EXGEN+EX_R13(r13)
1885 HRFI_TO_KERNEL
1886
1887 GEN_KVM hdecrementer
1888
1889
1890 /**
1891 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1892 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1893 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1894 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1895 *
1896 * Handling:
1897 * Guests may use this for IPIs between threads in a core if the
1898 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1899 *
1900 * If soft masked, the masked handler will note the pending interrupt for
1901 * replay, leaving MSR[EE] enabled in the interrupted context because the
1902 * doorbells are edge triggered.
1903 */
1904 INT_DEFINE_BEGIN(doorbell_super)
1905 IVEC=0xa00
1906 IMASK=IRQS_DISABLED
1907 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1908 IKVM_REAL=1
1909 #endif
1910 INT_DEFINE_END(doorbell_super)
1911
1912 EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1913 GEN_INT_ENTRY doorbell_super, virt=0
1914 EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1915 EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1916 GEN_INT_ENTRY doorbell_super, virt=1
1917 EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1918 EXC_COMMON_BEGIN(doorbell_super_common)
1919 GEN_COMMON doorbell_super
1920 FINISH_NAP
1921 RUNLATCH_ON
1922 addi r3,r1,STACK_FRAME_OVERHEAD
1923 #ifdef CONFIG_PPC_DOORBELL
1924 bl doorbell_exception
1925 #else
1926 bl unknown_exception
1927 #endif
1928 b interrupt_return
1929
1930 GEN_KVM doorbell_super
1931
1932
1933 EXC_REAL_NONE(0xb00, 0x100)
1934 EXC_VIRT_NONE(0x4b00, 0x100)
1935
1936 /**
1937 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1938 * This is a synchronous interrupt invoked with the "sc" instruction. The
1939 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1940 * is directed to the currently running OS. The hypercall is invoked with
1941 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1942 *
1943 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1944 * 0x4c00 virtual mode.
1945 *
1946 * Handling:
1947 * If the KVM test fires then it was due to a hypercall and is accordingly
1948 * routed to KVM. Otherwise this executes a normal Linux system call.
1949 *
1950 * Call convention:
1951 *
1952 * syscall and hypercalls register conventions are documented in
1953 * Documentation/powerpc/syscall64-abi.rst and
1954 * Documentation/powerpc/papr_hcalls.rst respectively.
1955 *
1956 * The intersection of volatile registers that don't contain possible
1957 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1958 * without saving, though xer is not a good idea to use, as hardware may
1959 * interpret some bits so it may be costly to change them.
1960 */
1961 INT_DEFINE_BEGIN(system_call)
1962 IVEC=0xc00
1963 IKVM_REAL=1
1964 IKVM_VIRT=1
1965 INT_DEFINE_END(system_call)
1966
1967 .macro SYSTEM_CALL virt
1968 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1969 /*
1970 * There is a little bit of juggling to get syscall and hcall
1971 * working well. Save r13 in ctr to avoid using SPRG scratch
1972 * register.
1973 *
1974 * Userspace syscalls have already saved the PPR, hcalls must save
1975 * it before setting HMT_MEDIUM.
1976 */
1977 mtctr r13
1978 GET_PACA(r13)
1979 std r10,PACA_EXGEN+EX_R10(r13)
1980 INTERRUPT_TO_KERNEL
1981 KVMTEST system_call /* uses r10, branch to system_call_kvm */
1982 mfctr r9
1983 #else
1984 mr r9,r13
1985 GET_PACA(r13)
1986 INTERRUPT_TO_KERNEL
1987 #endif
1988
1989 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1990 BEGIN_FTR_SECTION
1991 cmpdi r0,0x1ebe
1992 beq- 1f
1993 END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1994 #endif
1995
1996 /* We reach here with PACA in r13, r13 in r9. */
1997 mfspr r11,SPRN_SRR0
1998 mfspr r12,SPRN_SRR1
1999
2000 HMT_MEDIUM
2001
2002 .if ! \virt
2003 __LOAD_HANDLER(r10, system_call_common)
2004 mtspr SPRN_SRR0,r10
2005 ld r10,PACAKMSR(r13)
2006 mtspr SPRN_SRR1,r10
2007 RFI_TO_KERNEL
2008 b . /* prevent speculative execution */
2009 .else
2010 li r10,MSR_RI
2011 mtmsrd r10,1 /* Set RI (EE=0) */
2012 #ifdef CONFIG_RELOCATABLE
2013 __LOAD_HANDLER(r10, system_call_common)
2014 mtctr r10
2015 bctr
2016 #else
2017 b system_call_common
2018 #endif
2019 .endif
2020
2021 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
2022 /* Fast LE/BE switch system call */
2023 1: mfspr r12,SPRN_SRR1
2024 xori r12,r12,MSR_LE
2025 mtspr SPRN_SRR1,r12
2026 mr r13,r9
2027 RFI_TO_USER /* return to userspace */
2028 b . /* prevent speculative execution */
2029 #endif
2030 .endm
2031
2032 EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
2033 SYSTEM_CALL 0
2034 EXC_REAL_END(system_call, 0xc00, 0x100)
2035 EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
2036 SYSTEM_CALL 1
2037 EXC_VIRT_END(system_call, 0x4c00, 0x100)
2038
2039 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2040 TRAMP_REAL_BEGIN(system_call_kvm)
2041 /*
2042 * This is a hcall, so register convention is as above, with these
2043 * differences:
2044 * r13 = PACA
2045 * ctr = orig r13
2046 * orig r10 saved in PACA
2047 */
2048 /*
2049 * Save the PPR (on systems that support it) before changing to
2050 * HMT_MEDIUM. That allows the KVM code to save that value into the
2051 * guest state (it is the guest's PPR value).
2052 */
2053 BEGIN_FTR_SECTION
2054 mfspr r10,SPRN_PPR
2055 std r10,HSTATE_PPR(r13)
2056 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2057 HMT_MEDIUM
2058 mfctr r10
2059 SET_SCRATCH0(r10)
2060 mfcr r10
2061 std r12,HSTATE_SCRATCH0(r13)
2062 sldi r12,r10,32
2063 ori r12,r12,0xc00
2064 #ifdef CONFIG_RELOCATABLE
2065 /*
2066 * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
2067 * outside the head section.
2068 */
2069 __LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
2070 mtctr r10
2071 ld r10,PACA_EXGEN+EX_R10(r13)
2072 bctr
2073 #else
2074 ld r10,PACA_EXGEN+EX_R10(r13)
2075 b kvmppc_interrupt
2076 #endif
2077 #endif
2078
2079
2080 /**
2081 * Interrupt 0xd00 - Trace Interrupt.
2082 * This is a synchronous interrupt in response to instruction step or
2083 * breakpoint faults.
2084 */
2085 INT_DEFINE_BEGIN(single_step)
2086 IVEC=0xd00
2087 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2088 IKVM_REAL=1
2089 #endif
2090 INT_DEFINE_END(single_step)
2091
2092 EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
2093 GEN_INT_ENTRY single_step, virt=0
2094 EXC_REAL_END(single_step, 0xd00, 0x100)
2095 EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
2096 GEN_INT_ENTRY single_step, virt=1
2097 EXC_VIRT_END(single_step, 0x4d00, 0x100)
2098 EXC_COMMON_BEGIN(single_step_common)
2099 GEN_COMMON single_step
2100 addi r3,r1,STACK_FRAME_OVERHEAD
2101 bl single_step_exception
2102 b interrupt_return
2103
2104 GEN_KVM single_step
2105
2106
2107 /**
2108 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
2109 * This is a synchronous interrupt in response to an MMU fault caused by a
2110 * guest data access.
2111 *
2112 * Handling:
2113 * This should always get routed to KVM. In radix MMU mode, this is caused
2114 * by a guest nested radix access that can't be performed due to the
2115 * partition scope page table. In hash mode, this can be caused by guests
2116 * running with translation disabled (virtual real mode) or with VPM enabled.
2117 * KVM will update the page table structures or disallow the access.
2118 */
2119 INT_DEFINE_BEGIN(h_data_storage)
2120 IVEC=0xe00
2121 IHSRR=1
2122 IDAR=1
2123 IDSISR=1
2124 IKVM_SKIP=1
2125 IKVM_REAL=1
2126 IKVM_VIRT=1
2127 INT_DEFINE_END(h_data_storage)
2128
2129 EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2130 GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2131 EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2132 EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2133 GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2134 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2135 EXC_COMMON_BEGIN(h_data_storage_common)
2136 GEN_COMMON h_data_storage
2137 addi r3,r1,STACK_FRAME_OVERHEAD
2138 BEGIN_MMU_FTR_SECTION
2139 ld r4,_DAR(r1)
2140 li r5,SIGSEGV
2141 bl bad_page_fault
2142 MMU_FTR_SECTION_ELSE
2143 bl unknown_exception
2144 ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2145 b interrupt_return
2146
2147 GEN_KVM h_data_storage
2148
2149
2150 /**
2151 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2152 * This is a synchronous interrupt in response to an MMU fault caused by a
2153 * guest instruction fetch, similar to HDSI.
2154 */
2155 INT_DEFINE_BEGIN(h_instr_storage)
2156 IVEC=0xe20
2157 IHSRR=1
2158 IKVM_REAL=1
2159 IKVM_VIRT=1
2160 INT_DEFINE_END(h_instr_storage)
2161
2162 EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2163 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2164 EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2165 EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2166 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2167 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2168 EXC_COMMON_BEGIN(h_instr_storage_common)
2169 GEN_COMMON h_instr_storage
2170 addi r3,r1,STACK_FRAME_OVERHEAD
2171 bl unknown_exception
2172 b interrupt_return
2173
2174 GEN_KVM h_instr_storage
2175
2176
2177 /**
2178 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2179 */
2180 INT_DEFINE_BEGIN(emulation_assist)
2181 IVEC=0xe40
2182 IHSRR=1
2183 IKVM_REAL=1
2184 IKVM_VIRT=1
2185 INT_DEFINE_END(emulation_assist)
2186
2187 EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2188 GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2189 EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2190 EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2191 GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2192 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2193 EXC_COMMON_BEGIN(emulation_assist_common)
2194 GEN_COMMON emulation_assist
2195 addi r3,r1,STACK_FRAME_OVERHEAD
2196 bl emulation_assist_interrupt
2197 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2198 b interrupt_return
2199
2200 GEN_KVM emulation_assist
2201
2202
2203 /**
2204 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2205 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2206 * Exception. It is always taken in real mode but uses HSRR registers
2207 * unlike SRESET and MCE.
2208 *
2209 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2210 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2211 *
2212 * Handling:
2213 * This is a special case, this is handled similarly to machine checks, with an
2214 * initial real mode handler that is not soft-masked, which attempts to fix the
2215 * problem. Then a regular handler which is soft-maskable and reports the
2216 * problem.
2217 *
2218 * The emergency stack is used for the early real mode handler.
2219 *
2220 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2221 * either use soft-masking for the MCE, or use irq_work for the HMI.
2222 *
2223 * KVM:
2224 * Unlike MCE, this calls into KVM without calling the real mode handler
2225 * first.
2226 */
2227 INT_DEFINE_BEGIN(hmi_exception_early)
2228 IVEC=0xe60
2229 IHSRR=1
2230 IREALMODE_COMMON=1
2231 ISTACK=0
2232 IRECONCILE=0
2233 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2234 IKVM_REAL=1
2235 INT_DEFINE_END(hmi_exception_early)
2236
2237 INT_DEFINE_BEGIN(hmi_exception)
2238 IVEC=0xe60
2239 IHSRR=1
2240 IMASK=IRQS_DISABLED
2241 IKVM_REAL=1
2242 INT_DEFINE_END(hmi_exception)
2243
2244 EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2245 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2246 EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2247 EXC_VIRT_NONE(0x4e60, 0x20)
2248
2249 EXC_COMMON_BEGIN(hmi_exception_early_common)
2250 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2251
2252 mr r10,r1 /* Save r1 */
2253 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
2254 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
2255
2256 __GEN_COMMON_BODY hmi_exception_early
2257
2258 addi r3,r1,STACK_FRAME_OVERHEAD
2259 bl hmi_exception_realmode
2260 cmpdi cr0,r3,0
2261 bne 1f
2262
2263 EXCEPTION_RESTORE_REGS hsrr=1
2264 HRFI_TO_USER_OR_KERNEL
2265
2266 1:
2267 /*
2268 * Go to virtual mode and pull the HMI event information from
2269 * firmware.
2270 */
2271 EXCEPTION_RESTORE_REGS hsrr=1
2272 GEN_INT_ENTRY hmi_exception, virt=0
2273
2274 GEN_KVM hmi_exception_early
2275
2276 EXC_COMMON_BEGIN(hmi_exception_common)
2277 GEN_COMMON hmi_exception
2278 FINISH_NAP
2279 RUNLATCH_ON
2280 addi r3,r1,STACK_FRAME_OVERHEAD
2281 bl handle_hmi_exception
2282 b interrupt_return
2283
2284 GEN_KVM hmi_exception
2285
2286
2287 /**
2288 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2289 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2290 * Similar to the 0xa00 doorbell but for host rather than guest.
2291 */
2292 INT_DEFINE_BEGIN(h_doorbell)
2293 IVEC=0xe80
2294 IHSRR=1
2295 IMASK=IRQS_DISABLED
2296 IKVM_REAL=1
2297 IKVM_VIRT=1
2298 INT_DEFINE_END(h_doorbell)
2299
2300 EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2301 GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2302 EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2303 EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2304 GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2305 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2306 EXC_COMMON_BEGIN(h_doorbell_common)
2307 GEN_COMMON h_doorbell
2308 FINISH_NAP
2309 RUNLATCH_ON
2310 addi r3,r1,STACK_FRAME_OVERHEAD
2311 #ifdef CONFIG_PPC_DOORBELL
2312 bl doorbell_exception
2313 #else
2314 bl unknown_exception
2315 #endif
2316 b interrupt_return
2317
2318 GEN_KVM h_doorbell
2319
2320
2321 /**
2322 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2323 * This is an asynchronous interrupt in response to an "external exception".
2324 * Similar to 0x500 but for host only.
2325 */
2326 INT_DEFINE_BEGIN(h_virt_irq)
2327 IVEC=0xea0
2328 IHSRR=1
2329 IMASK=IRQS_DISABLED
2330 IKVM_REAL=1
2331 IKVM_VIRT=1
2332 INT_DEFINE_END(h_virt_irq)
2333
2334 EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2335 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2336 EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2337 EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2338 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2339 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2340 EXC_COMMON_BEGIN(h_virt_irq_common)
2341 GEN_COMMON h_virt_irq
2342 FINISH_NAP
2343 RUNLATCH_ON
2344 addi r3,r1,STACK_FRAME_OVERHEAD
2345 bl do_IRQ
2346 b interrupt_return
2347
2348 GEN_KVM h_virt_irq
2349
2350
2351 EXC_REAL_NONE(0xec0, 0x20)
2352 EXC_VIRT_NONE(0x4ec0, 0x20)
2353 EXC_REAL_NONE(0xee0, 0x20)
2354 EXC_VIRT_NONE(0x4ee0, 0x20)
2355
2356
2357 /*
2358 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2359 * This is an asynchronous interrupt in response to a PMU exception.
2360 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2361 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2362 *
2363 * Handling:
2364 * This calls into the perf subsystem.
2365 *
2366 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2367 * runs under local_irq_disable. However it may be soft-masked in
2368 * powerpc-specific code.
2369 *
2370 * If soft masked, the masked handler will note the pending interrupt for
2371 * replay, and clear MSR[EE] in the interrupted context.
2372 */
2373 INT_DEFINE_BEGIN(performance_monitor)
2374 IVEC=0xf00
2375 IMASK=IRQS_PMI_DISABLED
2376 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2377 IKVM_REAL=1
2378 #endif
2379 INT_DEFINE_END(performance_monitor)
2380
2381 EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2382 GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2383 EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2384 EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2385 GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2386 EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2387 EXC_COMMON_BEGIN(performance_monitor_common)
2388 GEN_COMMON performance_monitor
2389 FINISH_NAP
2390 RUNLATCH_ON
2391 addi r3,r1,STACK_FRAME_OVERHEAD
2392 bl performance_monitor_exception
2393 b interrupt_return
2394
2395 GEN_KVM performance_monitor
2396
2397
2398 /**
2399 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2400 * This is a synchronous interrupt in response to
2401 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2402 * Similar to FP unavailable.
2403 */
2404 INT_DEFINE_BEGIN(altivec_unavailable)
2405 IVEC=0xf20
2406 IRECONCILE=0
2407 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2408 IKVM_REAL=1
2409 #endif
2410 INT_DEFINE_END(altivec_unavailable)
2411
2412 EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2413 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2414 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2415 EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2416 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2417 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2418 EXC_COMMON_BEGIN(altivec_unavailable_common)
2419 GEN_COMMON altivec_unavailable
2420 #ifdef CONFIG_ALTIVEC
2421 BEGIN_FTR_SECTION
2422 beq 1f
2423 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2424 BEGIN_FTR_SECTION_NESTED(69)
2425 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2426 * transaction), go do TM stuff
2427 */
2428 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2429 bne- 2f
2430 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2431 #endif
2432 bl load_up_altivec
2433 b fast_interrupt_return
2434 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2435 2: /* User process was in a transaction */
2436 RECONCILE_IRQ_STATE(r10, r11)
2437 addi r3,r1,STACK_FRAME_OVERHEAD
2438 bl altivec_unavailable_tm
2439 b interrupt_return
2440 #endif
2441 1:
2442 END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2443 #endif
2444 RECONCILE_IRQ_STATE(r10, r11)
2445 addi r3,r1,STACK_FRAME_OVERHEAD
2446 bl altivec_unavailable_exception
2447 b interrupt_return
2448
2449 GEN_KVM altivec_unavailable
2450
2451
2452 /**
2453 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2454 * This is a synchronous interrupt in response to
2455 * executing a VSX instruction with MSR[VSX]=0.
2456 * Similar to FP unavailable.
2457 */
2458 INT_DEFINE_BEGIN(vsx_unavailable)
2459 IVEC=0xf40
2460 IRECONCILE=0
2461 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2462 IKVM_REAL=1
2463 #endif
2464 INT_DEFINE_END(vsx_unavailable)
2465
2466 EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2467 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2468 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2469 EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2470 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2471 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2472 EXC_COMMON_BEGIN(vsx_unavailable_common)
2473 GEN_COMMON vsx_unavailable
2474 #ifdef CONFIG_VSX
2475 BEGIN_FTR_SECTION
2476 beq 1f
2477 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2478 BEGIN_FTR_SECTION_NESTED(69)
2479 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2480 * transaction), go do TM stuff
2481 */
2482 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2483 bne- 2f
2484 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2485 #endif
2486 b load_up_vsx
2487 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2488 2: /* User process was in a transaction */
2489 RECONCILE_IRQ_STATE(r10, r11)
2490 addi r3,r1,STACK_FRAME_OVERHEAD
2491 bl vsx_unavailable_tm
2492 b interrupt_return
2493 #endif
2494 1:
2495 END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2496 #endif
2497 RECONCILE_IRQ_STATE(r10, r11)
2498 addi r3,r1,STACK_FRAME_OVERHEAD
2499 bl vsx_unavailable_exception
2500 b interrupt_return
2501
2502 GEN_KVM vsx_unavailable
2503
2504
2505 /**
2506 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2507 * This is a synchronous interrupt in response to
2508 * executing an instruction without access to the facility that can be
2509 * resolved by the OS (e.g., FSCR, MSR).
2510 * Similar to FP unavailable.
2511 */
2512 INT_DEFINE_BEGIN(facility_unavailable)
2513 IVEC=0xf60
2514 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2515 IKVM_REAL=1
2516 #endif
2517 INT_DEFINE_END(facility_unavailable)
2518
2519 EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2520 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2521 EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2522 EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2523 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2524 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2525 EXC_COMMON_BEGIN(facility_unavailable_common)
2526 GEN_COMMON facility_unavailable
2527 addi r3,r1,STACK_FRAME_OVERHEAD
2528 bl facility_unavailable_exception
2529 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2530 b interrupt_return
2531
2532 GEN_KVM facility_unavailable
2533
2534
2535 /**
2536 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2537 * This is a synchronous interrupt in response to
2538 * executing an instruction without access to the facility that can only
2539 * be resolved in HV mode (e.g., HFSCR).
2540 * Similar to FP unavailable.
2541 */
2542 INT_DEFINE_BEGIN(h_facility_unavailable)
2543 IVEC=0xf80
2544 IHSRR=1
2545 IKVM_REAL=1
2546 IKVM_VIRT=1
2547 INT_DEFINE_END(h_facility_unavailable)
2548
2549 EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2550 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2551 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2552 EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2553 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2554 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2555 EXC_COMMON_BEGIN(h_facility_unavailable_common)
2556 GEN_COMMON h_facility_unavailable
2557 addi r3,r1,STACK_FRAME_OVERHEAD
2558 bl facility_unavailable_exception
2559 REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2560 b interrupt_return
2561
2562 GEN_KVM h_facility_unavailable
2563
2564
2565 EXC_REAL_NONE(0xfa0, 0x20)
2566 EXC_VIRT_NONE(0x4fa0, 0x20)
2567 EXC_REAL_NONE(0xfc0, 0x20)
2568 EXC_VIRT_NONE(0x4fc0, 0x20)
2569 EXC_REAL_NONE(0xfe0, 0x20)
2570 EXC_VIRT_NONE(0x4fe0, 0x20)
2571
2572 EXC_REAL_NONE(0x1000, 0x100)
2573 EXC_VIRT_NONE(0x5000, 0x100)
2574 EXC_REAL_NONE(0x1100, 0x100)
2575 EXC_VIRT_NONE(0x5100, 0x100)
2576
2577 #ifdef CONFIG_CBE_RAS
2578 INT_DEFINE_BEGIN(cbe_system_error)
2579 IVEC=0x1200
2580 IHSRR=1
2581 IKVM_SKIP=1
2582 IKVM_REAL=1
2583 INT_DEFINE_END(cbe_system_error)
2584
2585 EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2586 GEN_INT_ENTRY cbe_system_error, virt=0
2587 EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2588 EXC_VIRT_NONE(0x5200, 0x100)
2589 EXC_COMMON_BEGIN(cbe_system_error_common)
2590 GEN_COMMON cbe_system_error
2591 addi r3,r1,STACK_FRAME_OVERHEAD
2592 bl cbe_system_error_exception
2593 b interrupt_return
2594
2595 GEN_KVM cbe_system_error
2596
2597 #else /* CONFIG_CBE_RAS */
2598 EXC_REAL_NONE(0x1200, 0x100)
2599 EXC_VIRT_NONE(0x5200, 0x100)
2600 #endif
2601
2602
2603 INT_DEFINE_BEGIN(instruction_breakpoint)
2604 IVEC=0x1300
2605 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2606 IKVM_SKIP=1
2607 IKVM_REAL=1
2608 #endif
2609 INT_DEFINE_END(instruction_breakpoint)
2610
2611 EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2612 GEN_INT_ENTRY instruction_breakpoint, virt=0
2613 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2614 EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2615 GEN_INT_ENTRY instruction_breakpoint, virt=1
2616 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2617 EXC_COMMON_BEGIN(instruction_breakpoint_common)
2618 GEN_COMMON instruction_breakpoint
2619 addi r3,r1,STACK_FRAME_OVERHEAD
2620 bl instruction_breakpoint_exception
2621 b interrupt_return
2622
2623 GEN_KVM instruction_breakpoint
2624
2625
2626 EXC_REAL_NONE(0x1400, 0x100)
2627 EXC_VIRT_NONE(0x5400, 0x100)
2628
2629 /**
2630 * Interrupt 0x1500 - Soft Patch Interrupt
2631 *
2632 * Handling:
2633 * This is an implementation specific interrupt which can be used for a
2634 * range of exceptions.
2635 *
2636 * This interrupt handler is unique in that it runs the denormal assist
2637 * code even for guests (and even in guest context) without going to KVM,
2638 * for speed. POWER9 does not raise denorm exceptions, so this special case
2639 * could be phased out in future to reduce special cases.
2640 */
2641 INT_DEFINE_BEGIN(denorm_exception)
2642 IVEC=0x1500
2643 IHSRR=1
2644 IBRANCH_TO_COMMON=0
2645 IKVM_REAL=1
2646 INT_DEFINE_END(denorm_exception)
2647
2648 EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2649 GEN_INT_ENTRY denorm_exception, virt=0
2650 #ifdef CONFIG_PPC_DENORMALISATION
2651 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2652 bne+ denorm_assist
2653 #endif
2654 GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2655 EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2656 #ifdef CONFIG_PPC_DENORMALISATION
2657 EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2658 GEN_INT_ENTRY denorm_exception, virt=1
2659 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2660 bne+ denorm_assist
2661 GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2662 EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2663 #else
2664 EXC_VIRT_NONE(0x5500, 0x100)
2665 #endif
2666
2667 #ifdef CONFIG_PPC_DENORMALISATION
2668 TRAMP_REAL_BEGIN(denorm_assist)
2669 BEGIN_FTR_SECTION
2670 /*
2671 * To denormalise we need to move a copy of the register to itself.
2672 * For POWER6 do that here for all FP regs.
2673 */
2674 mfmsr r10
2675 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2676 xori r10,r10,(MSR_FE0|MSR_FE1)
2677 mtmsrd r10
2678 sync
2679
2680 .Lreg=0
2681 .rept 32
2682 fmr .Lreg,.Lreg
2683 .Lreg=.Lreg+1
2684 .endr
2685
2686 FTR_SECTION_ELSE
2687 /*
2688 * To denormalise we need to move a copy of the register to itself.
2689 * For POWER7 do that here for the first 32 VSX registers only.
2690 */
2691 mfmsr r10
2692 oris r10,r10,MSR_VSX@h
2693 mtmsrd r10
2694 sync
2695
2696 .Lreg=0
2697 .rept 32
2698 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2699 .Lreg=.Lreg+1
2700 .endr
2701
2702 ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2703
2704 BEGIN_FTR_SECTION
2705 b denorm_done
2706 END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2707 /*
2708 * To denormalise we need to move a copy of the register to itself.
2709 * For POWER8 we need to do that for all 64 VSX registers
2710 */
2711 .Lreg=32
2712 .rept 32
2713 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2714 .Lreg=.Lreg+1
2715 .endr
2716
2717 denorm_done:
2718 mfspr r11,SPRN_HSRR0
2719 subi r11,r11,4
2720 mtspr SPRN_HSRR0,r11
2721 mtcrf 0x80,r9
2722 ld r9,PACA_EXGEN+EX_R9(r13)
2723 BEGIN_FTR_SECTION
2724 ld r10,PACA_EXGEN+EX_PPR(r13)
2725 mtspr SPRN_PPR,r10
2726 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2727 BEGIN_FTR_SECTION
2728 ld r10,PACA_EXGEN+EX_CFAR(r13)
2729 mtspr SPRN_CFAR,r10
2730 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2731 ld r10,PACA_EXGEN+EX_R10(r13)
2732 ld r11,PACA_EXGEN+EX_R11(r13)
2733 ld r12,PACA_EXGEN+EX_R12(r13)
2734 ld r13,PACA_EXGEN+EX_R13(r13)
2735 HRFI_TO_UNKNOWN
2736 b .
2737 #endif
2738
2739 EXC_COMMON_BEGIN(denorm_exception_common)
2740 GEN_COMMON denorm_exception
2741 addi r3,r1,STACK_FRAME_OVERHEAD
2742 bl unknown_exception
2743 b interrupt_return
2744
2745 GEN_KVM denorm_exception
2746
2747
2748 #ifdef CONFIG_CBE_RAS
2749 INT_DEFINE_BEGIN(cbe_maintenance)
2750 IVEC=0x1600
2751 IHSRR=1
2752 IKVM_SKIP=1
2753 IKVM_REAL=1
2754 INT_DEFINE_END(cbe_maintenance)
2755
2756 EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2757 GEN_INT_ENTRY cbe_maintenance, virt=0
2758 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2759 EXC_VIRT_NONE(0x5600, 0x100)
2760 EXC_COMMON_BEGIN(cbe_maintenance_common)
2761 GEN_COMMON cbe_maintenance
2762 addi r3,r1,STACK_FRAME_OVERHEAD
2763 bl cbe_maintenance_exception
2764 b interrupt_return
2765
2766 GEN_KVM cbe_maintenance
2767
2768 #else /* CONFIG_CBE_RAS */
2769 EXC_REAL_NONE(0x1600, 0x100)
2770 EXC_VIRT_NONE(0x5600, 0x100)
2771 #endif
2772
2773
2774 INT_DEFINE_BEGIN(altivec_assist)
2775 IVEC=0x1700
2776 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2777 IKVM_REAL=1
2778 #endif
2779 INT_DEFINE_END(altivec_assist)
2780
2781 EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2782 GEN_INT_ENTRY altivec_assist, virt=0
2783 EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2784 EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2785 GEN_INT_ENTRY altivec_assist, virt=1
2786 EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2787 EXC_COMMON_BEGIN(altivec_assist_common)
2788 GEN_COMMON altivec_assist
2789 addi r3,r1,STACK_FRAME_OVERHEAD
2790 #ifdef CONFIG_ALTIVEC
2791 bl altivec_assist_exception
2792 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2793 #else
2794 bl unknown_exception
2795 #endif
2796 b interrupt_return
2797
2798 GEN_KVM altivec_assist
2799
2800
2801 #ifdef CONFIG_CBE_RAS
2802 INT_DEFINE_BEGIN(cbe_thermal)
2803 IVEC=0x1800
2804 IHSRR=1
2805 IKVM_SKIP=1
2806 IKVM_REAL=1
2807 INT_DEFINE_END(cbe_thermal)
2808
2809 EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2810 GEN_INT_ENTRY cbe_thermal, virt=0
2811 EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2812 EXC_VIRT_NONE(0x5800, 0x100)
2813 EXC_COMMON_BEGIN(cbe_thermal_common)
2814 GEN_COMMON cbe_thermal
2815 addi r3,r1,STACK_FRAME_OVERHEAD
2816 bl cbe_thermal_exception
2817 b interrupt_return
2818
2819 GEN_KVM cbe_thermal
2820
2821 #else /* CONFIG_CBE_RAS */
2822 EXC_REAL_NONE(0x1800, 0x100)
2823 EXC_VIRT_NONE(0x5800, 0x100)
2824 #endif
2825
2826
2827 #ifdef CONFIG_PPC_WATCHDOG
2828
2829 INT_DEFINE_BEGIN(soft_nmi)
2830 IVEC=0x900
2831 ISTACK=0
2832 IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
2833 INT_DEFINE_END(soft_nmi)
2834
2835 /*
2836 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2837 * stack is one that is usable by maskable interrupts so long as MSR_EE
2838 * remains off. It is used for recovery when something has corrupted the
2839 * normal kernel stack, for example. The "soft NMI" must not use the process
2840 * stack because we want irq disabled sections to avoid touching the stack
2841 * at all (other than PMU interrupts), so use the emergency stack for this,
2842 * and run it entirely with interrupts hard disabled.
2843 */
2844 EXC_COMMON_BEGIN(soft_nmi_common)
2845 mfspr r11,SPRN_SRR0
2846 mr r10,r1
2847 ld r1,PACAEMERGSP(r13)
2848 subi r1,r1,INT_FRAME_SIZE
2849 __GEN_COMMON_BODY soft_nmi
2850
2851 /*
2852 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
2853 * system_reset_common)
2854 */
2855 li r10,IRQS_ALL_DISABLED
2856 stb r10,PACAIRQSOFTMASK(r13)
2857 lbz r10,PACAIRQHAPPENED(r13)
2858 std r10,RESULT(r1)
2859 ori r10,r10,PACA_IRQ_HARD_DIS
2860 stb r10,PACAIRQHAPPENED(r13)
2861
2862 addi r3,r1,STACK_FRAME_OVERHEAD
2863 bl soft_nmi_interrupt
2864
2865 /* Clear MSR_RI before setting SRR0 and SRR1. */
2866 li r9,0
2867 mtmsrd r9,1
2868
2869 /*
2870 * Restore soft mask settings.
2871 */
2872 ld r10,RESULT(r1)
2873 stb r10,PACAIRQHAPPENED(r13)
2874 ld r10,SOFTE(r1)
2875 stb r10,PACAIRQSOFTMASK(r13)
2876
2877 kuap_restore_amr r9, r10
2878 EXCEPTION_RESTORE_REGS hsrr=0
2879 RFI_TO_KERNEL
2880
2881 #endif /* CONFIG_PPC_WATCHDOG */
2882
2883 /*
2884 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2885 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2886 * - If it was a doorbell we return immediately since doorbells are edge
2887 * triggered and won't automatically refire.
2888 * - If it was a HMI we return immediately since we handled it in realmode
2889 * and it won't refire.
2890 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2891 * This is called with r10 containing the value to OR to the paca field.
2892 */
2893 .macro MASKED_INTERRUPT hsrr=0
2894 .if \hsrr
2895 masked_Hinterrupt:
2896 .else
2897 masked_interrupt:
2898 .endif
2899 lbz r11,PACAIRQHAPPENED(r13)
2900 or r11,r11,r10
2901 stb r11,PACAIRQHAPPENED(r13)
2902 cmpwi r10,PACA_IRQ_DEC
2903 bne 1f
2904 lis r10,0x7fff
2905 ori r10,r10,0xffff
2906 mtspr SPRN_DEC,r10
2907 #ifdef CONFIG_PPC_WATCHDOG
2908 b soft_nmi_common
2909 #else
2910 b 2f
2911 #endif
2912 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
2913 beq 2f
2914 xori r12,r12,MSR_EE /* clear MSR_EE */
2915 .if \hsrr
2916 mtspr SPRN_HSRR1,r12
2917 .else
2918 mtspr SPRN_SRR1,r12
2919 .endif
2920 ori r11,r11,PACA_IRQ_HARD_DIS
2921 stb r11,PACAIRQHAPPENED(r13)
2922 2: /* done */
2923 ld r10,PACA_EXGEN+EX_CTR(r13)
2924 mtctr r10
2925 mtcrf 0x80,r9
2926 std r1,PACAR1(r13)
2927 ld r9,PACA_EXGEN+EX_R9(r13)
2928 ld r10,PACA_EXGEN+EX_R10(r13)
2929 ld r11,PACA_EXGEN+EX_R11(r13)
2930 ld r12,PACA_EXGEN+EX_R12(r13)
2931 ld r13,PACA_EXGEN+EX_R13(r13)
2932 /* May return to masked low address where r13 is not set up */
2933 .if \hsrr
2934 HRFI_TO_KERNEL
2935 .else
2936 RFI_TO_KERNEL
2937 .endif
2938 b .
2939 .endm
2940
2941 TRAMP_REAL_BEGIN(stf_barrier_fallback)
2942 std r9,PACA_EXRFI+EX_R9(r13)
2943 std r10,PACA_EXRFI+EX_R10(r13)
2944 sync
2945 ld r9,PACA_EXRFI+EX_R9(r13)
2946 ld r10,PACA_EXRFI+EX_R10(r13)
2947 ori 31,31,0
2948 .rept 14
2949 b 1f
2950 1:
2951 .endr
2952 blr
2953
2954 TRAMP_REAL_BEGIN(rfi_flush_fallback)
2955 SET_SCRATCH0(r13);
2956 GET_PACA(r13);
2957 std r1,PACA_EXRFI+EX_R12(r13)
2958 ld r1,PACAKSAVE(r13)
2959 std r9,PACA_EXRFI+EX_R9(r13)
2960 std r10,PACA_EXRFI+EX_R10(r13)
2961 std r11,PACA_EXRFI+EX_R11(r13)
2962 mfctr r9
2963 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2964 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2965 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2966 mtctr r11
2967 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2968
2969 /* order ld/st prior to dcbt stop all streams with flushing */
2970 sync
2971
2972 /*
2973 * The load adresses are at staggered offsets within cachelines,
2974 * which suits some pipelines better (on others it should not
2975 * hurt).
2976 */
2977 1:
2978 ld r11,(0x80 + 8)*0(r10)
2979 ld r11,(0x80 + 8)*1(r10)
2980 ld r11,(0x80 + 8)*2(r10)
2981 ld r11,(0x80 + 8)*3(r10)
2982 ld r11,(0x80 + 8)*4(r10)
2983 ld r11,(0x80 + 8)*5(r10)
2984 ld r11,(0x80 + 8)*6(r10)
2985 ld r11,(0x80 + 8)*7(r10)
2986 addi r10,r10,0x80*8
2987 bdnz 1b
2988
2989 mtctr r9
2990 ld r9,PACA_EXRFI+EX_R9(r13)
2991 ld r10,PACA_EXRFI+EX_R10(r13)
2992 ld r11,PACA_EXRFI+EX_R11(r13)
2993 ld r1,PACA_EXRFI+EX_R12(r13)
2994 GET_SCRATCH0(r13);
2995 rfid
2996
2997 TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2998 SET_SCRATCH0(r13);
2999 GET_PACA(r13);
3000 std r1,PACA_EXRFI+EX_R12(r13)
3001 ld r1,PACAKSAVE(r13)
3002 std r9,PACA_EXRFI+EX_R9(r13)
3003 std r10,PACA_EXRFI+EX_R10(r13)
3004 std r11,PACA_EXRFI+EX_R11(r13)
3005 mfctr r9
3006 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3007 ld r11,PACA_L1D_FLUSH_SIZE(r13)
3008 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3009 mtctr r11
3010 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3011
3012 /* order ld/st prior to dcbt stop all streams with flushing */
3013 sync
3014
3015 /*
3016 * The load adresses are at staggered offsets within cachelines,
3017 * which suits some pipelines better (on others it should not
3018 * hurt).
3019 */
3020 1:
3021 ld r11,(0x80 + 8)*0(r10)
3022 ld r11,(0x80 + 8)*1(r10)
3023 ld r11,(0x80 + 8)*2(r10)
3024 ld r11,(0x80 + 8)*3(r10)
3025 ld r11,(0x80 + 8)*4(r10)
3026 ld r11,(0x80 + 8)*5(r10)
3027 ld r11,(0x80 + 8)*6(r10)
3028 ld r11,(0x80 + 8)*7(r10)
3029 addi r10,r10,0x80*8
3030 bdnz 1b
3031
3032 mtctr r9
3033 ld r9,PACA_EXRFI+EX_R9(r13)
3034 ld r10,PACA_EXRFI+EX_R10(r13)
3035 ld r11,PACA_EXRFI+EX_R11(r13)
3036 ld r1,PACA_EXRFI+EX_R12(r13)
3037 GET_SCRATCH0(r13);
3038 hrfid
3039
3040 TRAMP_REAL_BEGIN(rfscv_flush_fallback)
3041 /* system call volatile */
3042 mr r7,r13
3043 GET_PACA(r13);
3044 mr r8,r1
3045 ld r1,PACAKSAVE(r13)
3046 mfctr r9
3047 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
3048 ld r11,PACA_L1D_FLUSH_SIZE(r13)
3049 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
3050 mtctr r11
3051 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
3052
3053 /* order ld/st prior to dcbt stop all streams with flushing */
3054 sync
3055
3056 /*
3057 * The load adresses are at staggered offsets within cachelines,
3058 * which suits some pipelines better (on others it should not
3059 * hurt).
3060 */
3061 1:
3062 ld r11,(0x80 + 8)*0(r10)
3063 ld r11,(0x80 + 8)*1(r10)
3064 ld r11,(0x80 + 8)*2(r10)
3065 ld r11,(0x80 + 8)*3(r10)
3066 ld r11,(0x80 + 8)*4(r10)
3067 ld r11,(0x80 + 8)*5(r10)
3068 ld r11,(0x80 + 8)*6(r10)
3069 ld r11,(0x80 + 8)*7(r10)
3070 addi r10,r10,0x80*8
3071 bdnz 1b
3072
3073 mtctr r9
3074 li r9,0
3075 li r10,0
3076 li r11,0
3077 mr r1,r8
3078 mr r13,r7
3079 RFSCV
3080
3081 USE_TEXT_SECTION()
3082 MASKED_INTERRUPT
3083 MASKED_INTERRUPT hsrr=1
3084
3085 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
3086 kvmppc_skip_interrupt:
3087 /*
3088 * Here all GPRs are unchanged from when the interrupt happened
3089 * except for r13, which is saved in SPRG_SCRATCH0.
3090 */
3091 mfspr r13, SPRN_SRR0
3092 addi r13, r13, 4
3093 mtspr SPRN_SRR0, r13
3094 GET_SCRATCH0(r13)
3095 RFI_TO_KERNEL
3096 b .
3097
3098 kvmppc_skip_Hinterrupt:
3099 /*
3100 * Here all GPRs are unchanged from when the interrupt happened
3101 * except for r13, which is saved in SPRG_SCRATCH0.
3102 */
3103 mfspr r13, SPRN_HSRR0
3104 addi r13, r13, 4
3105 mtspr SPRN_HSRR0, r13
3106 GET_SCRATCH0(r13)
3107 HRFI_TO_KERNEL
3108 b .
3109 #endif
3110
3111 /*
3112 * Relocation-on interrupts: A subset of the interrupts can be delivered
3113 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
3114 * it. Addresses are the same as the original interrupt addresses, but
3115 * offset by 0xc000000000004000.
3116 * It's impossible to receive interrupts below 0x300 via this mechanism.
3117 * KVM: None of these traps are from the guest ; anything that escalated
3118 * to HV=1 from HV=0 is delivered via real mode handlers.
3119 */
3120
3121 /*
3122 * This uses the standard macro, since the original 0x300 vector
3123 * only has extra guff for STAB-based processors -- which never
3124 * come here.
3125 */
3126
3127 EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
3128 b __ppc64_runlatch_on
3129
3130 USE_FIXED_SECTION(virt_trampolines)
3131 /*
3132 * All code below __end_interrupts is treated as soft-masked. If
3133 * any code runs here with MSR[EE]=1, it must then cope with pending
3134 * soft interrupt being raised (i.e., by ensuring it is replayed).
3135 *
3136 * The __end_interrupts marker must be past the out-of-line (OOL)
3137 * handlers, so that they are copied to real address 0x100 when running
3138 * a relocatable kernel. This ensures they can be reached from the short
3139 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
3140 * directly, without using LOAD_HANDLER().
3141 */
3142 .align 7
3143 .globl __end_interrupts
3144 __end_interrupts:
3145 DEFINE_FIXED_SYMBOL(__end_interrupts)
3146
3147 #ifdef CONFIG_PPC_970_NAP
3148 /*
3149 * Called by exception entry code if _TLF_NAPPING was set, this clears
3150 * the NAPPING flag, and redirects the exception exit to
3151 * power4_fixup_nap_return.
3152 */
3153 .globl power4_fixup_nap
3154 EXC_COMMON_BEGIN(power4_fixup_nap)
3155 andc r9,r9,r10
3156 std r9,TI_LOCAL_FLAGS(r11)
3157 LOAD_REG_ADDR(r10, power4_idle_nap_return)
3158 std r10,_NIP(r1)
3159 blr
3160
3161 power4_idle_nap_return:
3162 blr
3163 #endif
3164
3165 CLOSE_FIXED_SECTION(real_vectors);
3166 CLOSE_FIXED_SECTION(real_trampolines);
3167 CLOSE_FIXED_SECTION(virt_vectors);
3168 CLOSE_FIXED_SECTION(virt_trampolines);
3169
3170 USE_TEXT_SECTION()
3171
3172 /* MSR[RI] should be clear because this uses SRR[01] */
3173 enable_machine_check:
3174 mflr r0
3175 bcl 20,31,$+4
3176 0: mflr r3
3177 addi r3,r3,(1f - 0b)
3178 mtspr SPRN_SRR0,r3
3179 mfmsr r3
3180 ori r3,r3,MSR_ME
3181 mtspr SPRN_SRR1,r3
3182 RFI_TO_KERNEL
3183 1: mtlr r0
3184 blr
3185
3186 /* MSR[RI] should be clear because this uses SRR[01] */
3187 disable_machine_check:
3188 mflr r0
3189 bcl 20,31,$+4
3190 0: mflr r3
3191 addi r3,r3,(1f - 0b)
3192 mtspr SPRN_SRR0,r3
3193 mfmsr r3
3194 li r4,MSR_ME
3195 andc r3,r3,r4
3196 mtspr SPRN_SRR1,r3
3197 RFI_TO_KERNEL
3198 1: mtlr r0
3199 blr
3200
3201 /*
3202 * Hash table stuff
3203 */
3204 .balign IFETCH_ALIGN_BYTES
3205 do_hash_page:
3206 #ifdef CONFIG_PPC_BOOK3S_64
3207 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
3208 ori r0,r0,DSISR_BAD_FAULT_64S@l
3209 and. r0,r5,r0 /* weird error? */
3210 bne- handle_page_fault /* if not, try to insert a HPTE */
3211
3212 /*
3213 * If we are in an "NMI" (e.g., an interrupt when soft-disabled), then
3214 * don't call hash_page, just fail the fault. This is required to
3215 * prevent re-entrancy problems in the hash code, namely perf
3216 * interrupts hitting while something holds H_PAGE_BUSY, and taking a
3217 * hash fault. See the comment in hash_preload().
3218 */
3219 ld r11, PACA_THREAD_INFO(r13)
3220 lwz r0,TI_PREEMPT(r11)
3221 andis. r0,r0,NMI_MASK@h
3222 bne 77f
3223
3224 /*
3225 * r3 contains the trap number
3226 * r4 contains the faulting address
3227 * r5 contains dsisr
3228 * r6 msr
3229 *
3230 * at return r3 = 0 for success, 1 for page fault, negative for error
3231 */
3232 bl __hash_page /* build HPTE if possible */
3233 cmpdi r3,0 /* see if __hash_page succeeded */
3234
3235 /* Success */
3236 beq interrupt_return /* Return from exception on success */
3237
3238 /* Error */
3239 blt- 13f
3240
3241 /* Reload DAR/DSISR into r4/r5 for the DABR check below */
3242 ld r4,_DAR(r1)
3243 ld r5,_DSISR(r1)
3244 #endif /* CONFIG_PPC_BOOK3S_64 */
3245
3246 /* Here we have a page fault that hash_page can't handle. */
3247 handle_page_fault:
3248 11: andis. r0,r5,DSISR_DABRMATCH@h
3249 bne- handle_dabr_fault
3250 addi r3,r1,STACK_FRAME_OVERHEAD
3251 bl do_page_fault
3252 cmpdi r3,0
3253 beq+ interrupt_return
3254 mr r5,r3
3255 addi r3,r1,STACK_FRAME_OVERHEAD
3256 ld r4,_DAR(r1)
3257 bl bad_page_fault
3258 b interrupt_return
3259
3260 /* We have a data breakpoint exception - handle it */
3261 handle_dabr_fault:
3262 ld r4,_DAR(r1)
3263 ld r5,_DSISR(r1)
3264 addi r3,r1,STACK_FRAME_OVERHEAD
3265 bl do_break
3266 /*
3267 * do_break() may have changed the NV GPRS while handling a breakpoint.
3268 * If so, we need to restore them with their updated values.
3269 */
3270 REST_NVGPRS(r1)
3271 b interrupt_return
3272
3273
3274 #ifdef CONFIG_PPC_BOOK3S_64
3275 /* We have a page fault that hash_page could handle but HV refused
3276 * the PTE insertion
3277 */
3278 13: mr r5,r3
3279 addi r3,r1,STACK_FRAME_OVERHEAD
3280 ld r4,_DAR(r1)
3281 bl low_hash_fault
3282 b interrupt_return
3283 #endif
3284
3285 /*
3286 * We come here as a result of a DSI at a point where we don't want
3287 * to call hash_page, such as when we are accessing memory (possibly
3288 * user memory) inside a PMU interrupt that occurred while interrupts
3289 * were soft-disabled. We want to invoke the exception handler for
3290 * the access, or panic if there isn't a handler.
3291 */
3292 77: addi r3,r1,STACK_FRAME_OVERHEAD
3293 li r5,SIGSEGV
3294 bl bad_page_fault
3295 b interrupt_return