]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/kprobes.c
powerpc/kprobes: Optimize kprobe in kretprobe_trampoline()
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2002, 2004
19 *
20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21 * Probes initial implementation ( includes contributions from
22 * Rusty Russell).
23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24 * interface to access function arguments.
25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26 * for PPC64
27 */
28
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <linux/uaccess.h>
39
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
44
45 int __kprobes arch_prepare_kprobe(struct kprobe *p)
46 {
47 int ret = 0;
48 kprobe_opcode_t insn = *p->addr;
49
50 if ((unsigned long)p->addr & 0x03) {
51 printk("Attempt to register kprobe at an unaligned address\n");
52 ret = -EINVAL;
53 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
54 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
55 ret = -EINVAL;
56 }
57
58 /* insn must be on a special executable page on ppc64. This is
59 * not explicitly required on ppc32 (right now), but it doesn't hurt */
60 if (!ret) {
61 p->ainsn.insn = get_insn_slot();
62 if (!p->ainsn.insn)
63 ret = -ENOMEM;
64 }
65
66 if (!ret) {
67 memcpy(p->ainsn.insn, p->addr,
68 MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
69 p->opcode = *p->addr;
70 flush_icache_range((unsigned long)p->ainsn.insn,
71 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
72 }
73
74 p->ainsn.boostable = 0;
75 return ret;
76 }
77
78 void __kprobes arch_arm_kprobe(struct kprobe *p)
79 {
80 *p->addr = BREAKPOINT_INSTRUCTION;
81 flush_icache_range((unsigned long) p->addr,
82 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
83 }
84
85 void __kprobes arch_disarm_kprobe(struct kprobe *p)
86 {
87 *p->addr = p->opcode;
88 flush_icache_range((unsigned long) p->addr,
89 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
90 }
91
92 void __kprobes arch_remove_kprobe(struct kprobe *p)
93 {
94 if (p->ainsn.insn) {
95 free_insn_slot(p->ainsn.insn, 0);
96 p->ainsn.insn = NULL;
97 }
98 }
99
100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
101 {
102 enable_single_step(regs);
103
104 /*
105 * On powerpc we should single step on the original
106 * instruction even if the probed insn is a trap
107 * variant as values in regs could play a part in
108 * if the trap is taken or not
109 */
110 regs->nip = (unsigned long)p->ainsn.insn;
111 }
112
113 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
114 {
115 kcb->prev_kprobe.kp = kprobe_running();
116 kcb->prev_kprobe.status = kcb->kprobe_status;
117 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
118 }
119
120 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
121 {
122 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
123 kcb->kprobe_status = kcb->prev_kprobe.status;
124 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
125 }
126
127 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
128 struct kprobe_ctlblk *kcb)
129 {
130 __this_cpu_write(current_kprobe, p);
131 kcb->kprobe_saved_msr = regs->msr;
132 }
133
134 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
135 struct pt_regs *regs)
136 {
137 ri->ret_addr = (kprobe_opcode_t *)regs->link;
138
139 /* Replace the return addr with trampoline addr */
140 regs->link = (unsigned long)kretprobe_trampoline;
141 }
142
143 int __kprobes kprobe_handler(struct pt_regs *regs)
144 {
145 struct kprobe *p;
146 int ret = 0;
147 unsigned int *addr = (unsigned int *)regs->nip;
148 struct kprobe_ctlblk *kcb;
149
150 if (user_mode(regs))
151 return 0;
152
153 /*
154 * We don't want to be preempted for the entire
155 * duration of kprobe processing
156 */
157 preempt_disable();
158 kcb = get_kprobe_ctlblk();
159
160 /* Check we're not actually recursing */
161 if (kprobe_running()) {
162 p = get_kprobe(addr);
163 if (p) {
164 kprobe_opcode_t insn = *p->ainsn.insn;
165 if (kcb->kprobe_status == KPROBE_HIT_SS &&
166 is_trap(insn)) {
167 /* Turn off 'trace' bits */
168 regs->msr &= ~MSR_SINGLESTEP;
169 regs->msr |= kcb->kprobe_saved_msr;
170 goto no_kprobe;
171 }
172 /* We have reentered the kprobe_handler(), since
173 * another probe was hit while within the handler.
174 * We here save the original kprobes variables and
175 * just single step on the instruction of the new probe
176 * without calling any user handlers.
177 */
178 save_previous_kprobe(kcb);
179 set_current_kprobe(p, regs, kcb);
180 kcb->kprobe_saved_msr = regs->msr;
181 kprobes_inc_nmissed_count(p);
182 prepare_singlestep(p, regs);
183 kcb->kprobe_status = KPROBE_REENTER;
184 return 1;
185 } else {
186 if (*addr != BREAKPOINT_INSTRUCTION) {
187 /* If trap variant, then it belongs not to us */
188 kprobe_opcode_t cur_insn = *addr;
189 if (is_trap(cur_insn))
190 goto no_kprobe;
191 /* The breakpoint instruction was removed by
192 * another cpu right after we hit, no further
193 * handling of this interrupt is appropriate
194 */
195 ret = 1;
196 goto no_kprobe;
197 }
198 p = __this_cpu_read(current_kprobe);
199 if (p->break_handler && p->break_handler(p, regs)) {
200 goto ss_probe;
201 }
202 }
203 goto no_kprobe;
204 }
205
206 p = get_kprobe(addr);
207 if (!p) {
208 if (*addr != BREAKPOINT_INSTRUCTION) {
209 /*
210 * PowerPC has multiple variants of the "trap"
211 * instruction. If the current instruction is a
212 * trap variant, it could belong to someone else
213 */
214 kprobe_opcode_t cur_insn = *addr;
215 if (is_trap(cur_insn))
216 goto no_kprobe;
217 /*
218 * The breakpoint instruction was removed right
219 * after we hit it. Another cpu has removed
220 * either a probepoint or a debugger breakpoint
221 * at this address. In either case, no further
222 * handling of this interrupt is appropriate.
223 */
224 ret = 1;
225 }
226 /* Not one of ours: let kernel handle it */
227 goto no_kprobe;
228 }
229
230 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
231 set_current_kprobe(p, regs, kcb);
232 if (p->pre_handler && p->pre_handler(p, regs))
233 /* handler has already set things up, so skip ss setup */
234 return 1;
235
236 ss_probe:
237 if (p->ainsn.boostable >= 0) {
238 unsigned int insn = *p->ainsn.insn;
239
240 /* regs->nip is also adjusted if emulate_step returns 1 */
241 ret = emulate_step(regs, insn);
242 if (ret > 0) {
243 /*
244 * Once this instruction has been boosted
245 * successfully, set the boostable flag
246 */
247 if (unlikely(p->ainsn.boostable == 0))
248 p->ainsn.boostable = 1;
249
250 if (p->post_handler)
251 p->post_handler(p, regs, 0);
252
253 kcb->kprobe_status = KPROBE_HIT_SSDONE;
254 reset_current_kprobe();
255 preempt_enable_no_resched();
256 return 1;
257 } else if (ret < 0) {
258 /*
259 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
260 * So, we should never get here... but, its still
261 * good to catch them, just in case...
262 */
263 printk("Can't step on instruction %x\n", insn);
264 BUG();
265 } else if (ret == 0)
266 /* This instruction can't be boosted */
267 p->ainsn.boostable = -1;
268 }
269 prepare_singlestep(p, regs);
270 kcb->kprobe_status = KPROBE_HIT_SS;
271 return 1;
272
273 no_kprobe:
274 preempt_enable_no_resched();
275 return ret;
276 }
277
278 /*
279 * Function return probe trampoline:
280 * - init_kprobes() establishes a probepoint here
281 * - When the probed function returns, this probe
282 * causes the handlers to fire
283 */
284 asm(".global kretprobe_trampoline\n"
285 ".type kretprobe_trampoline, @function\n"
286 "kretprobe_trampoline:\n"
287 "nop\n"
288 "blr\n"
289 ".size kretprobe_trampoline, .-kretprobe_trampoline\n");
290
291 /*
292 * Called when the probe at kretprobe trampoline is hit
293 */
294 static int __kprobes trampoline_probe_handler(struct kprobe *p,
295 struct pt_regs *regs)
296 {
297 struct kretprobe_instance *ri = NULL;
298 struct hlist_head *head, empty_rp;
299 struct hlist_node *tmp;
300 unsigned long flags, orig_ret_address = 0;
301 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
302
303 INIT_HLIST_HEAD(&empty_rp);
304 kretprobe_hash_lock(current, &head, &flags);
305
306 /*
307 * It is possible to have multiple instances associated with a given
308 * task either because an multiple functions in the call path
309 * have a return probe installed on them, and/or more than one return
310 * return probe was registered for a target function.
311 *
312 * We can handle this because:
313 * - instances are always inserted at the head of the list
314 * - when multiple return probes are registered for the same
315 * function, the first instance's ret_addr will point to the
316 * real return address, and all the rest will point to
317 * kretprobe_trampoline
318 */
319 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
320 if (ri->task != current)
321 /* another task is sharing our hash bucket */
322 continue;
323
324 if (ri->rp && ri->rp->handler)
325 ri->rp->handler(ri, regs);
326
327 orig_ret_address = (unsigned long)ri->ret_addr;
328 recycle_rp_inst(ri, &empty_rp);
329
330 if (orig_ret_address != trampoline_address)
331 /*
332 * This is the real return address. Any other
333 * instances associated with this task are for
334 * other calls deeper on the call stack
335 */
336 break;
337 }
338
339 kretprobe_assert(ri, orig_ret_address, trampoline_address);
340 regs->nip = orig_ret_address;
341 /*
342 * Make LR point to the orig_ret_address.
343 * When the 'nop' inside the kretprobe_trampoline
344 * is optimized, we can do a 'blr' after executing the
345 * detour buffer code.
346 */
347 regs->link = orig_ret_address;
348
349 reset_current_kprobe();
350 kretprobe_hash_unlock(current, &flags);
351 preempt_enable_no_resched();
352
353 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
354 hlist_del(&ri->hlist);
355 kfree(ri);
356 }
357 /*
358 * By returning a non-zero value, we are telling
359 * kprobe_handler() that we don't want the post_handler
360 * to run (and have re-enabled preemption)
361 */
362 return 1;
363 }
364
365 /*
366 * Called after single-stepping. p->addr is the address of the
367 * instruction whose first byte has been replaced by the "breakpoint"
368 * instruction. To avoid the SMP problems that can occur when we
369 * temporarily put back the original opcode to single-step, we
370 * single-stepped a copy of the instruction. The address of this
371 * copy is p->ainsn.insn.
372 */
373 int __kprobes kprobe_post_handler(struct pt_regs *regs)
374 {
375 struct kprobe *cur = kprobe_running();
376 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377
378 if (!cur || user_mode(regs))
379 return 0;
380
381 /* make sure we got here for instruction we have a kprobe on */
382 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
383 return 0;
384
385 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
386 kcb->kprobe_status = KPROBE_HIT_SSDONE;
387 cur->post_handler(cur, regs, 0);
388 }
389
390 /* Adjust nip to after the single-stepped instruction */
391 regs->nip = (unsigned long)cur->addr + 4;
392 regs->msr |= kcb->kprobe_saved_msr;
393
394 /*Restore back the original saved kprobes variables and continue. */
395 if (kcb->kprobe_status == KPROBE_REENTER) {
396 restore_previous_kprobe(kcb);
397 goto out;
398 }
399 reset_current_kprobe();
400 out:
401 preempt_enable_no_resched();
402
403 /*
404 * if somebody else is singlestepping across a probe point, msr
405 * will have DE/SE set, in which case, continue the remaining processing
406 * of do_debug, as if this is not a probe hit.
407 */
408 if (regs->msr & MSR_SINGLESTEP)
409 return 0;
410
411 return 1;
412 }
413
414 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
415 {
416 struct kprobe *cur = kprobe_running();
417 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
418 const struct exception_table_entry *entry;
419
420 switch(kcb->kprobe_status) {
421 case KPROBE_HIT_SS:
422 case KPROBE_REENTER:
423 /*
424 * We are here because the instruction being single
425 * stepped caused a page fault. We reset the current
426 * kprobe and the nip points back to the probe address
427 * and allow the page fault handler to continue as a
428 * normal page fault.
429 */
430 regs->nip = (unsigned long)cur->addr;
431 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
432 regs->msr |= kcb->kprobe_saved_msr;
433 if (kcb->kprobe_status == KPROBE_REENTER)
434 restore_previous_kprobe(kcb);
435 else
436 reset_current_kprobe();
437 preempt_enable_no_resched();
438 break;
439 case KPROBE_HIT_ACTIVE:
440 case KPROBE_HIT_SSDONE:
441 /*
442 * We increment the nmissed count for accounting,
443 * we can also use npre/npostfault count for accounting
444 * these specific fault cases.
445 */
446 kprobes_inc_nmissed_count(cur);
447
448 /*
449 * We come here because instructions in the pre/post
450 * handler caused the page_fault, this could happen
451 * if handler tries to access user space by
452 * copy_from_user(), get_user() etc. Let the
453 * user-specified handler try to fix it first.
454 */
455 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
456 return 1;
457
458 /*
459 * In case the user-specified fault handler returned
460 * zero, try to fix up.
461 */
462 if ((entry = search_exception_tables(regs->nip)) != NULL) {
463 regs->nip = extable_fixup(entry);
464 return 1;
465 }
466
467 /*
468 * fixup_exception() could not handle it,
469 * Let do_page_fault() fix it.
470 */
471 break;
472 default:
473 break;
474 }
475 return 0;
476 }
477
478 /*
479 * Wrapper routine to for handling exceptions.
480 */
481 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
482 unsigned long val, void *data)
483 {
484 return NOTIFY_DONE;
485 }
486
487 unsigned long arch_deref_entry_point(void *entry)
488 {
489 return ppc_global_function_entry(entry);
490 }
491
492 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
493 {
494 struct jprobe *jp = container_of(p, struct jprobe, kp);
495 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
496
497 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
498
499 /* setup return addr to the jprobe handler routine */
500 regs->nip = arch_deref_entry_point(jp->entry);
501 #ifdef PPC64_ELF_ABI_v2
502 regs->gpr[12] = (unsigned long)jp->entry;
503 #elif defined(PPC64_ELF_ABI_v1)
504 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
505 #endif
506
507 return 1;
508 }
509
510 void __used __kprobes jprobe_return(void)
511 {
512 asm volatile("trap" ::: "memory");
513 }
514
515 static void __used __kprobes jprobe_return_end(void)
516 {
517 };
518
519 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
520 {
521 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
522
523 /*
524 * FIXME - we should ideally be validating that we got here 'cos
525 * of the "trap" in jprobe_return() above, before restoring the
526 * saved regs...
527 */
528 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
529 preempt_enable_no_resched();
530 return 1;
531 }
532
533 static struct kprobe trampoline_p = {
534 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
535 .pre_handler = trampoline_probe_handler
536 };
537
538 int __init arch_init_kprobes(void)
539 {
540 return register_kprobe(&trampoline_p);
541 }
542
543 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
544 {
545 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
546 return 1;
547
548 return 0;
549 }