]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/machine_kexec_64.c
1da864c00db0fbbee88cd0c08bd410b68de37897
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / machine_kexec_64.c
1 /*
2 * PPC64 code to handle Linux booting another kernel.
3 *
4 * Copyright (C) 2004-2005, IBM Corp.
5 *
6 * Created by: Milton D Miller II
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
12
13 #include <linux/kexec.h>
14 #include <linux/smp.h>
15 #include <linux/thread_info.h>
16 #include <linux/init_task.h>
17 #include <linux/errno.h>
18 #include <linux/kernel.h>
19 #include <linux/cpu.h>
20 #include <linux/hardirq.h>
21
22 #include <asm/page.h>
23 #include <asm/current.h>
24 #include <asm/machdep.h>
25 #include <asm/cacheflush.h>
26 #include <asm/paca.h>
27 #include <asm/mmu.h>
28 #include <asm/sections.h> /* _end */
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/hw_breakpoint.h>
32
33 #ifdef CONFIG_PPC_BOOK3E
34 int default_machine_kexec_prepare(struct kimage *image)
35 {
36 int i;
37 /*
38 * Since we use the kernel fault handlers and paging code to
39 * handle the virtual mode, we must make sure no destination
40 * overlaps kernel static data or bss.
41 */
42 for (i = 0; i < image->nr_segments; i++)
43 if (image->segment[i].mem < __pa(_end))
44 return -ETXTBSY;
45 return 0;
46 }
47 #else
48 int default_machine_kexec_prepare(struct kimage *image)
49 {
50 int i;
51 unsigned long begin, end; /* limits of segment */
52 unsigned long low, high; /* limits of blocked memory range */
53 struct device_node *node;
54 const unsigned long *basep;
55 const unsigned int *sizep;
56
57 if (!ppc_md.hpte_clear_all)
58 return -ENOENT;
59
60 /*
61 * Since we use the kernel fault handlers and paging code to
62 * handle the virtual mode, we must make sure no destination
63 * overlaps kernel static data or bss.
64 */
65 for (i = 0; i < image->nr_segments; i++)
66 if (image->segment[i].mem < __pa(_end))
67 return -ETXTBSY;
68
69 /*
70 * For non-LPAR, we absolutely can not overwrite the mmu hash
71 * table, since we are still using the bolted entries in it to
72 * do the copy. Check that here.
73 *
74 * It is safe if the end is below the start of the blocked
75 * region (end <= low), or if the beginning is after the
76 * end of the blocked region (begin >= high). Use the
77 * boolean identity !(a || b) === (!a && !b).
78 */
79 #ifdef CONFIG_PPC_STD_MMU_64
80 if (htab_address) {
81 low = __pa(htab_address);
82 high = low + htab_size_bytes;
83
84 for (i = 0; i < image->nr_segments; i++) {
85 begin = image->segment[i].mem;
86 end = begin + image->segment[i].memsz;
87
88 if ((begin < high) && (end > low))
89 return -ETXTBSY;
90 }
91 }
92 #endif /* CONFIG_PPC_STD_MMU_64 */
93
94 /* We also should not overwrite the tce tables */
95 for_each_node_by_type(node, "pci") {
96 basep = of_get_property(node, "linux,tce-base", NULL);
97 sizep = of_get_property(node, "linux,tce-size", NULL);
98 if (basep == NULL || sizep == NULL)
99 continue;
100
101 low = *basep;
102 high = low + (*sizep);
103
104 for (i = 0; i < image->nr_segments; i++) {
105 begin = image->segment[i].mem;
106 end = begin + image->segment[i].memsz;
107
108 if ((begin < high) && (end > low))
109 return -ETXTBSY;
110 }
111 }
112
113 return 0;
114 }
115 #endif /* !CONFIG_PPC_BOOK3E */
116
117 static void copy_segments(unsigned long ind)
118 {
119 unsigned long entry;
120 unsigned long *ptr;
121 void *dest;
122 void *addr;
123
124 /*
125 * We rely on kexec_load to create a lists that properly
126 * initializes these pointers before they are used.
127 * We will still crash if the list is wrong, but at least
128 * the compiler will be quiet.
129 */
130 ptr = NULL;
131 dest = NULL;
132
133 for (entry = ind; !(entry & IND_DONE); entry = *ptr++) {
134 addr = __va(entry & PAGE_MASK);
135
136 switch (entry & IND_FLAGS) {
137 case IND_DESTINATION:
138 dest = addr;
139 break;
140 case IND_INDIRECTION:
141 ptr = addr;
142 break;
143 case IND_SOURCE:
144 copy_page(dest, addr);
145 dest += PAGE_SIZE;
146 }
147 }
148 }
149
150 void kexec_copy_flush(struct kimage *image)
151 {
152 long i, nr_segments = image->nr_segments;
153 struct kexec_segment ranges[KEXEC_SEGMENT_MAX];
154
155 /* save the ranges on the stack to efficiently flush the icache */
156 memcpy(ranges, image->segment, sizeof(ranges));
157
158 /*
159 * After this call we may not use anything allocated in dynamic
160 * memory, including *image.
161 *
162 * Only globals and the stack are allowed.
163 */
164 copy_segments(image->head);
165
166 /*
167 * we need to clear the icache for all dest pages sometime,
168 * including ones that were in place on the original copy
169 */
170 for (i = 0; i < nr_segments; i++)
171 flush_icache_range((unsigned long)__va(ranges[i].mem),
172 (unsigned long)__va(ranges[i].mem + ranges[i].memsz));
173 }
174
175 #ifdef CONFIG_SMP
176
177 static int kexec_all_irq_disabled = 0;
178
179 static void kexec_smp_down(void *arg)
180 {
181 local_irq_disable();
182 hard_irq_disable();
183
184 mb(); /* make sure our irqs are disabled before we say they are */
185 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
186 while(kexec_all_irq_disabled == 0)
187 cpu_relax();
188 mb(); /* make sure all irqs are disabled before this */
189 hw_breakpoint_disable();
190 /*
191 * Now every CPU has IRQs off, we can clear out any pending
192 * IPIs and be sure that no more will come in after this.
193 */
194 if (ppc_md.kexec_cpu_down)
195 ppc_md.kexec_cpu_down(0, 1);
196
197 kexec_smp_wait();
198 /* NOTREACHED */
199 }
200
201 static void kexec_prepare_cpus_wait(int wait_state)
202 {
203 int my_cpu, i, notified=-1;
204
205 hw_breakpoint_disable();
206 my_cpu = get_cpu();
207 /* Make sure each CPU has at least made it to the state we need.
208 *
209 * FIXME: There is a (slim) chance of a problem if not all of the CPUs
210 * are correctly onlined. If somehow we start a CPU on boot with RTAS
211 * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in
212 * time, the boot CPU will timeout. If it does eventually execute
213 * stuff, the secondary will start up (paca[].cpu_start was written) and
214 * get into a peculiar state. If the platform supports
215 * smp_ops->take_timebase(), the secondary CPU will probably be spinning
216 * in there. If not (i.e. pseries), the secondary will continue on and
217 * try to online itself/idle/etc. If it survives that, we need to find
218 * these possible-but-not-online-but-should-be CPUs and chaperone them
219 * into kexec_smp_wait().
220 */
221 for_each_online_cpu(i) {
222 if (i == my_cpu)
223 continue;
224
225 while (paca[i].kexec_state < wait_state) {
226 barrier();
227 if (i != notified) {
228 printk(KERN_INFO "kexec: waiting for cpu %d "
229 "(physical %d) to enter %i state\n",
230 i, paca[i].hw_cpu_id, wait_state);
231 notified = i;
232 }
233 }
234 }
235 mb();
236 }
237
238 /*
239 * We need to make sure each present CPU is online. The next kernel will scan
240 * the device tree and assume primary threads are online and query secondary
241 * threads via RTAS to online them if required. If we don't online primary
242 * threads, they will be stuck. However, we also online secondary threads as we
243 * may be using 'cede offline'. In this case RTAS doesn't see the secondary
244 * threads as offline -- and again, these CPUs will be stuck.
245 *
246 * So, we online all CPUs that should be running, including secondary threads.
247 */
248 static void wake_offline_cpus(void)
249 {
250 int cpu = 0;
251
252 for_each_present_cpu(cpu) {
253 if (!cpu_online(cpu)) {
254 printk(KERN_INFO "kexec: Waking offline cpu %d.\n",
255 cpu);
256 WARN_ON(cpu_up(cpu));
257 }
258 }
259 }
260
261 static void kexec_prepare_cpus(void)
262 {
263 wake_offline_cpus();
264 smp_call_function(kexec_smp_down, NULL, /* wait */0);
265 local_irq_disable();
266 hard_irq_disable();
267
268 mb(); /* make sure IRQs are disabled before we say they are */
269 get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF;
270
271 kexec_prepare_cpus_wait(KEXEC_STATE_IRQS_OFF);
272 /* we are sure every CPU has IRQs off at this point */
273 kexec_all_irq_disabled = 1;
274
275 /* after we tell the others to go down */
276 if (ppc_md.kexec_cpu_down)
277 ppc_md.kexec_cpu_down(0, 0);
278
279 /*
280 * Before removing MMU mappings make sure all CPUs have entered real
281 * mode:
282 */
283 kexec_prepare_cpus_wait(KEXEC_STATE_REAL_MODE);
284
285 put_cpu();
286 }
287
288 #else /* ! SMP */
289
290 static void kexec_prepare_cpus(void)
291 {
292 /*
293 * move the secondarys to us so that we can copy
294 * the new kernel 0-0x100 safely
295 *
296 * do this if kexec in setup.c ?
297 *
298 * We need to release the cpus if we are ever going from an
299 * UP to an SMP kernel.
300 */
301 smp_release_cpus();
302 if (ppc_md.kexec_cpu_down)
303 ppc_md.kexec_cpu_down(0, 0);
304 local_irq_disable();
305 hard_irq_disable();
306 }
307
308 #endif /* SMP */
309
310 /*
311 * kexec thread structure and stack.
312 *
313 * We need to make sure that this is 16384-byte aligned due to the
314 * way process stacks are handled. It also must be statically allocated
315 * or allocated as part of the kimage, because everything else may be
316 * overwritten when we copy the kexec image. We piggyback on the
317 * "init_task" linker section here to statically allocate a stack.
318 *
319 * We could use a smaller stack if we don't care about anything using
320 * current, but that audit has not been performed.
321 */
322 static union thread_union kexec_stack __init_task_data =
323 { };
324
325 /*
326 * For similar reasons to the stack above, the kexecing CPU needs to be on a
327 * static PACA; we switch to kexec_paca.
328 */
329 struct paca_struct kexec_paca;
330
331 /* Our assembly helper, in misc_64.S */
332 extern void kexec_sequence(void *newstack, unsigned long start,
333 void *image, void *control,
334 void (*clear_all)(void)) __noreturn;
335
336 /* too late to fail here */
337 void default_machine_kexec(struct kimage *image)
338 {
339 /* prepare control code if any */
340
341 /*
342 * If the kexec boot is the normal one, need to shutdown other cpus
343 * into our wait loop and quiesce interrupts.
344 * Otherwise, in the case of crashed mode (crashing_cpu >= 0),
345 * stopping other CPUs and collecting their pt_regs is done before
346 * using debugger IPI.
347 */
348
349 if (!kdump_in_progress())
350 kexec_prepare_cpus();
351
352 pr_debug("kexec: Starting switchover sequence.\n");
353
354 /* switch to a staticly allocated stack. Based on irq stack code.
355 * We setup preempt_count to avoid using VMX in memcpy.
356 * XXX: the task struct will likely be invalid once we do the copy!
357 */
358 kexec_stack.thread_info.task = current_thread_info()->task;
359 kexec_stack.thread_info.flags = 0;
360 kexec_stack.thread_info.preempt_count = HARDIRQ_OFFSET;
361 kexec_stack.thread_info.cpu = current_thread_info()->cpu;
362
363 /* We need a static PACA, too; copy this CPU's PACA over and switch to
364 * it. Also poison per_cpu_offset to catch anyone using non-static
365 * data.
366 */
367 memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct));
368 kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL;
369 paca = (struct paca_struct *)RELOC_HIDE(&kexec_paca, 0) -
370 kexec_paca.paca_index;
371 setup_paca(&kexec_paca);
372
373 /* XXX: If anyone does 'dynamic lppacas' this will also need to be
374 * switched to a static version!
375 */
376
377 /* Some things are best done in assembly. Finding globals with
378 * a toc is easier in C, so pass in what we can.
379 */
380 kexec_sequence(&kexec_stack, image->start, image,
381 page_address(image->control_code_page),
382 ppc_md.hpte_clear_all);
383 /* NOTREACHED */
384 }
385
386 #ifdef CONFIG_PPC_STD_MMU_64
387 /* Values we need to export to the second kernel via the device tree. */
388 static unsigned long htab_base;
389 static unsigned long htab_size;
390
391 static struct property htab_base_prop = {
392 .name = "linux,htab-base",
393 .length = sizeof(unsigned long),
394 .value = &htab_base,
395 };
396
397 static struct property htab_size_prop = {
398 .name = "linux,htab-size",
399 .length = sizeof(unsigned long),
400 .value = &htab_size,
401 };
402
403 static int __init export_htab_values(void)
404 {
405 struct device_node *node;
406 struct property *prop;
407
408 /* On machines with no htab htab_address is NULL */
409 if (!htab_address)
410 return -ENODEV;
411
412 node = of_find_node_by_path("/chosen");
413 if (!node)
414 return -ENODEV;
415
416 /* remove any stale propertys so ours can be found */
417 prop = of_find_property(node, htab_base_prop.name, NULL);
418 if (prop)
419 of_remove_property(node, prop);
420 prop = of_find_property(node, htab_size_prop.name, NULL);
421 if (prop)
422 of_remove_property(node, prop);
423
424 htab_base = cpu_to_be64(__pa(htab_address));
425 of_add_property(node, &htab_base_prop);
426 htab_size = cpu_to_be64(htab_size_bytes);
427 of_add_property(node, &htab_size_prop);
428
429 of_node_put(node);
430 return 0;
431 }
432 late_initcall(export_htab_values);
433 #endif /* CONFIG_PPC_STD_MMU_64 */