]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/perf_event.c
Merge branch 'bkl/core' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / perf_event.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_events {
23 int n_events;
24 int n_percpu;
25 int disabled;
26 int n_added;
27 int n_limited;
28 u8 pmcs_enabled;
29 struct perf_event *event[MAX_HWEVENTS];
30 u64 events[MAX_HWEVENTS];
31 unsigned int flags[MAX_HWEVENTS];
32 unsigned long mmcr[3];
33 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
36 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
37 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
38
39 unsigned int group_flag;
40 int n_txn_start;
41 };
42 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
43
44 struct power_pmu *ppmu;
45
46 /*
47 * Normally, to ignore kernel events we set the FCS (freeze counters
48 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
49 * hypervisor bit set in the MSR, or if we are running on a processor
50 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
51 * then we need to use the FCHV bit to ignore kernel events.
52 */
53 static unsigned int freeze_events_kernel = MMCR0_FCS;
54
55 /*
56 * 32-bit doesn't have MMCRA but does have an MMCR2,
57 * and a few other names are different.
58 */
59 #ifdef CONFIG_PPC32
60
61 #define MMCR0_FCHV 0
62 #define MMCR0_PMCjCE MMCR0_PMCnCE
63
64 #define SPRN_MMCRA SPRN_MMCR2
65 #define MMCRA_SAMPLE_ENABLE 0
66
67 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
68 {
69 return 0;
70 }
71 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
72 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
73 {
74 return 0;
75 }
76 static inline void perf_read_regs(struct pt_regs *regs) { }
77 static inline int perf_intr_is_nmi(struct pt_regs *regs)
78 {
79 return 0;
80 }
81
82 #endif /* CONFIG_PPC32 */
83
84 /*
85 * Things that are specific to 64-bit implementations.
86 */
87 #ifdef CONFIG_PPC64
88
89 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
90 {
91 unsigned long mmcra = regs->dsisr;
92
93 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
94 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
95 if (slot > 1)
96 return 4 * (slot - 1);
97 }
98 return 0;
99 }
100
101 /*
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
107 * bit in MMCRA.
108 */
109 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
110 {
111 unsigned long mmcra = regs->dsisr;
112 unsigned long sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
113 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
114
115 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
116 *addrp = mfspr(SPRN_SDAR);
117 }
118
119 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
120 {
121 unsigned long mmcra = regs->dsisr;
122 unsigned long sihv = MMCRA_SIHV;
123 unsigned long sipr = MMCRA_SIPR;
124
125 if (TRAP(regs) != 0xf00)
126 return 0; /* not a PMU interrupt */
127
128 if (ppmu->flags & PPMU_ALT_SIPR) {
129 sihv = POWER6_MMCRA_SIHV;
130 sipr = POWER6_MMCRA_SIPR;
131 }
132
133 /* PR has priority over HV, so order below is important */
134 if (mmcra & sipr)
135 return PERF_RECORD_MISC_USER;
136 if ((mmcra & sihv) && (freeze_events_kernel != MMCR0_FCHV))
137 return PERF_RECORD_MISC_HYPERVISOR;
138 return PERF_RECORD_MISC_KERNEL;
139 }
140
141 /*
142 * Overload regs->dsisr to store MMCRA so we only need to read it once
143 * on each interrupt.
144 */
145 static inline void perf_read_regs(struct pt_regs *regs)
146 {
147 regs->dsisr = mfspr(SPRN_MMCRA);
148 }
149
150 /*
151 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
152 * it as an NMI.
153 */
154 static inline int perf_intr_is_nmi(struct pt_regs *regs)
155 {
156 return !regs->softe;
157 }
158
159 #endif /* CONFIG_PPC64 */
160
161 static void perf_event_interrupt(struct pt_regs *regs);
162
163 void perf_event_print_debug(void)
164 {
165 }
166
167 /*
168 * Read one performance monitor counter (PMC).
169 */
170 static unsigned long read_pmc(int idx)
171 {
172 unsigned long val;
173
174 switch (idx) {
175 case 1:
176 val = mfspr(SPRN_PMC1);
177 break;
178 case 2:
179 val = mfspr(SPRN_PMC2);
180 break;
181 case 3:
182 val = mfspr(SPRN_PMC3);
183 break;
184 case 4:
185 val = mfspr(SPRN_PMC4);
186 break;
187 case 5:
188 val = mfspr(SPRN_PMC5);
189 break;
190 case 6:
191 val = mfspr(SPRN_PMC6);
192 break;
193 #ifdef CONFIG_PPC64
194 case 7:
195 val = mfspr(SPRN_PMC7);
196 break;
197 case 8:
198 val = mfspr(SPRN_PMC8);
199 break;
200 #endif /* CONFIG_PPC64 */
201 default:
202 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
203 val = 0;
204 }
205 return val;
206 }
207
208 /*
209 * Write one PMC.
210 */
211 static void write_pmc(int idx, unsigned long val)
212 {
213 switch (idx) {
214 case 1:
215 mtspr(SPRN_PMC1, val);
216 break;
217 case 2:
218 mtspr(SPRN_PMC2, val);
219 break;
220 case 3:
221 mtspr(SPRN_PMC3, val);
222 break;
223 case 4:
224 mtspr(SPRN_PMC4, val);
225 break;
226 case 5:
227 mtspr(SPRN_PMC5, val);
228 break;
229 case 6:
230 mtspr(SPRN_PMC6, val);
231 break;
232 #ifdef CONFIG_PPC64
233 case 7:
234 mtspr(SPRN_PMC7, val);
235 break;
236 case 8:
237 mtspr(SPRN_PMC8, val);
238 break;
239 #endif /* CONFIG_PPC64 */
240 default:
241 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
242 }
243 }
244
245 /*
246 * Check if a set of events can all go on the PMU at once.
247 * If they can't, this will look at alternative codes for the events
248 * and see if any combination of alternative codes is feasible.
249 * The feasible set is returned in event_id[].
250 */
251 static int power_check_constraints(struct cpu_hw_events *cpuhw,
252 u64 event_id[], unsigned int cflags[],
253 int n_ev)
254 {
255 unsigned long mask, value, nv;
256 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
257 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
258 int i, j;
259 unsigned long addf = ppmu->add_fields;
260 unsigned long tadd = ppmu->test_adder;
261
262 if (n_ev > ppmu->n_counter)
263 return -1;
264
265 /* First see if the events will go on as-is */
266 for (i = 0; i < n_ev; ++i) {
267 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
268 && !ppmu->limited_pmc_event(event_id[i])) {
269 ppmu->get_alternatives(event_id[i], cflags[i],
270 cpuhw->alternatives[i]);
271 event_id[i] = cpuhw->alternatives[i][0];
272 }
273 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
274 &cpuhw->avalues[i][0]))
275 return -1;
276 }
277 value = mask = 0;
278 for (i = 0; i < n_ev; ++i) {
279 nv = (value | cpuhw->avalues[i][0]) +
280 (value & cpuhw->avalues[i][0] & addf);
281 if ((((nv + tadd) ^ value) & mask) != 0 ||
282 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
283 cpuhw->amasks[i][0]) != 0)
284 break;
285 value = nv;
286 mask |= cpuhw->amasks[i][0];
287 }
288 if (i == n_ev)
289 return 0; /* all OK */
290
291 /* doesn't work, gather alternatives... */
292 if (!ppmu->get_alternatives)
293 return -1;
294 for (i = 0; i < n_ev; ++i) {
295 choice[i] = 0;
296 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
297 cpuhw->alternatives[i]);
298 for (j = 1; j < n_alt[i]; ++j)
299 ppmu->get_constraint(cpuhw->alternatives[i][j],
300 &cpuhw->amasks[i][j],
301 &cpuhw->avalues[i][j]);
302 }
303
304 /* enumerate all possibilities and see if any will work */
305 i = 0;
306 j = -1;
307 value = mask = nv = 0;
308 while (i < n_ev) {
309 if (j >= 0) {
310 /* we're backtracking, restore context */
311 value = svalues[i];
312 mask = smasks[i];
313 j = choice[i];
314 }
315 /*
316 * See if any alternative k for event_id i,
317 * where k > j, will satisfy the constraints.
318 */
319 while (++j < n_alt[i]) {
320 nv = (value | cpuhw->avalues[i][j]) +
321 (value & cpuhw->avalues[i][j] & addf);
322 if ((((nv + tadd) ^ value) & mask) == 0 &&
323 (((nv + tadd) ^ cpuhw->avalues[i][j])
324 & cpuhw->amasks[i][j]) == 0)
325 break;
326 }
327 if (j >= n_alt[i]) {
328 /*
329 * No feasible alternative, backtrack
330 * to event_id i-1 and continue enumerating its
331 * alternatives from where we got up to.
332 */
333 if (--i < 0)
334 return -1;
335 } else {
336 /*
337 * Found a feasible alternative for event_id i,
338 * remember where we got up to with this event_id,
339 * go on to the next event_id, and start with
340 * the first alternative for it.
341 */
342 choice[i] = j;
343 svalues[i] = value;
344 smasks[i] = mask;
345 value = nv;
346 mask |= cpuhw->amasks[i][j];
347 ++i;
348 j = -1;
349 }
350 }
351
352 /* OK, we have a feasible combination, tell the caller the solution */
353 for (i = 0; i < n_ev; ++i)
354 event_id[i] = cpuhw->alternatives[i][choice[i]];
355 return 0;
356 }
357
358 /*
359 * Check if newly-added events have consistent settings for
360 * exclude_{user,kernel,hv} with each other and any previously
361 * added events.
362 */
363 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
364 int n_prev, int n_new)
365 {
366 int eu = 0, ek = 0, eh = 0;
367 int i, n, first;
368 struct perf_event *event;
369
370 n = n_prev + n_new;
371 if (n <= 1)
372 return 0;
373
374 first = 1;
375 for (i = 0; i < n; ++i) {
376 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
377 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
378 continue;
379 }
380 event = ctrs[i];
381 if (first) {
382 eu = event->attr.exclude_user;
383 ek = event->attr.exclude_kernel;
384 eh = event->attr.exclude_hv;
385 first = 0;
386 } else if (event->attr.exclude_user != eu ||
387 event->attr.exclude_kernel != ek ||
388 event->attr.exclude_hv != eh) {
389 return -EAGAIN;
390 }
391 }
392
393 if (eu || ek || eh)
394 for (i = 0; i < n; ++i)
395 if (cflags[i] & PPMU_LIMITED_PMC_OK)
396 cflags[i] |= PPMU_LIMITED_PMC_REQD;
397
398 return 0;
399 }
400
401 static void power_pmu_read(struct perf_event *event)
402 {
403 s64 val, delta, prev;
404
405 if (!event->hw.idx)
406 return;
407 /*
408 * Performance monitor interrupts come even when interrupts
409 * are soft-disabled, as long as interrupts are hard-enabled.
410 * Therefore we treat them like NMIs.
411 */
412 do {
413 prev = local64_read(&event->hw.prev_count);
414 barrier();
415 val = read_pmc(event->hw.idx);
416 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
417
418 /* The counters are only 32 bits wide */
419 delta = (val - prev) & 0xfffffffful;
420 local64_add(delta, &event->count);
421 local64_sub(delta, &event->hw.period_left);
422 }
423
424 /*
425 * On some machines, PMC5 and PMC6 can't be written, don't respect
426 * the freeze conditions, and don't generate interrupts. This tells
427 * us if `event' is using such a PMC.
428 */
429 static int is_limited_pmc(int pmcnum)
430 {
431 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
432 && (pmcnum == 5 || pmcnum == 6);
433 }
434
435 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
436 unsigned long pmc5, unsigned long pmc6)
437 {
438 struct perf_event *event;
439 u64 val, prev, delta;
440 int i;
441
442 for (i = 0; i < cpuhw->n_limited; ++i) {
443 event = cpuhw->limited_counter[i];
444 if (!event->hw.idx)
445 continue;
446 val = (event->hw.idx == 5) ? pmc5 : pmc6;
447 prev = local64_read(&event->hw.prev_count);
448 event->hw.idx = 0;
449 delta = (val - prev) & 0xfffffffful;
450 local64_add(delta, &event->count);
451 }
452 }
453
454 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
455 unsigned long pmc5, unsigned long pmc6)
456 {
457 struct perf_event *event;
458 u64 val;
459 int i;
460
461 for (i = 0; i < cpuhw->n_limited; ++i) {
462 event = cpuhw->limited_counter[i];
463 event->hw.idx = cpuhw->limited_hwidx[i];
464 val = (event->hw.idx == 5) ? pmc5 : pmc6;
465 local64_set(&event->hw.prev_count, val);
466 perf_event_update_userpage(event);
467 }
468 }
469
470 /*
471 * Since limited events don't respect the freeze conditions, we
472 * have to read them immediately after freezing or unfreezing the
473 * other events. We try to keep the values from the limited
474 * events as consistent as possible by keeping the delay (in
475 * cycles and instructions) between freezing/unfreezing and reading
476 * the limited events as small and consistent as possible.
477 * Therefore, if any limited events are in use, we read them
478 * both, and always in the same order, to minimize variability,
479 * and do it inside the same asm that writes MMCR0.
480 */
481 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
482 {
483 unsigned long pmc5, pmc6;
484
485 if (!cpuhw->n_limited) {
486 mtspr(SPRN_MMCR0, mmcr0);
487 return;
488 }
489
490 /*
491 * Write MMCR0, then read PMC5 and PMC6 immediately.
492 * To ensure we don't get a performance monitor interrupt
493 * between writing MMCR0 and freezing/thawing the limited
494 * events, we first write MMCR0 with the event overflow
495 * interrupt enable bits turned off.
496 */
497 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
498 : "=&r" (pmc5), "=&r" (pmc6)
499 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
500 "i" (SPRN_MMCR0),
501 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
502
503 if (mmcr0 & MMCR0_FC)
504 freeze_limited_counters(cpuhw, pmc5, pmc6);
505 else
506 thaw_limited_counters(cpuhw, pmc5, pmc6);
507
508 /*
509 * Write the full MMCR0 including the event overflow interrupt
510 * enable bits, if necessary.
511 */
512 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
513 mtspr(SPRN_MMCR0, mmcr0);
514 }
515
516 /*
517 * Disable all events to prevent PMU interrupts and to allow
518 * events to be added or removed.
519 */
520 void hw_perf_disable(void)
521 {
522 struct cpu_hw_events *cpuhw;
523 unsigned long flags;
524
525 if (!ppmu)
526 return;
527 local_irq_save(flags);
528 cpuhw = &__get_cpu_var(cpu_hw_events);
529
530 if (!cpuhw->disabled) {
531 cpuhw->disabled = 1;
532 cpuhw->n_added = 0;
533
534 /*
535 * Check if we ever enabled the PMU on this cpu.
536 */
537 if (!cpuhw->pmcs_enabled) {
538 ppc_enable_pmcs();
539 cpuhw->pmcs_enabled = 1;
540 }
541
542 /*
543 * Disable instruction sampling if it was enabled
544 */
545 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
546 mtspr(SPRN_MMCRA,
547 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
548 mb();
549 }
550
551 /*
552 * Set the 'freeze counters' bit.
553 * The barrier is to make sure the mtspr has been
554 * executed and the PMU has frozen the events
555 * before we return.
556 */
557 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
558 mb();
559 }
560 local_irq_restore(flags);
561 }
562
563 /*
564 * Re-enable all events if disable == 0.
565 * If we were previously disabled and events were added, then
566 * put the new config on the PMU.
567 */
568 void hw_perf_enable(void)
569 {
570 struct perf_event *event;
571 struct cpu_hw_events *cpuhw;
572 unsigned long flags;
573 long i;
574 unsigned long val;
575 s64 left;
576 unsigned int hwc_index[MAX_HWEVENTS];
577 int n_lim;
578 int idx;
579
580 if (!ppmu)
581 return;
582 local_irq_save(flags);
583 cpuhw = &__get_cpu_var(cpu_hw_events);
584 if (!cpuhw->disabled) {
585 local_irq_restore(flags);
586 return;
587 }
588 cpuhw->disabled = 0;
589
590 /*
591 * If we didn't change anything, or only removed events,
592 * no need to recalculate MMCR* settings and reset the PMCs.
593 * Just reenable the PMU with the current MMCR* settings
594 * (possibly updated for removal of events).
595 */
596 if (!cpuhw->n_added) {
597 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
598 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
599 if (cpuhw->n_events == 0)
600 ppc_set_pmu_inuse(0);
601 goto out_enable;
602 }
603
604 /*
605 * Compute MMCR* values for the new set of events
606 */
607 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
608 cpuhw->mmcr)) {
609 /* shouldn't ever get here */
610 printk(KERN_ERR "oops compute_mmcr failed\n");
611 goto out;
612 }
613
614 /*
615 * Add in MMCR0 freeze bits corresponding to the
616 * attr.exclude_* bits for the first event.
617 * We have already checked that all events have the
618 * same values for these bits as the first event.
619 */
620 event = cpuhw->event[0];
621 if (event->attr.exclude_user)
622 cpuhw->mmcr[0] |= MMCR0_FCP;
623 if (event->attr.exclude_kernel)
624 cpuhw->mmcr[0] |= freeze_events_kernel;
625 if (event->attr.exclude_hv)
626 cpuhw->mmcr[0] |= MMCR0_FCHV;
627
628 /*
629 * Write the new configuration to MMCR* with the freeze
630 * bit set and set the hardware events to their initial values.
631 * Then unfreeze the events.
632 */
633 ppc_set_pmu_inuse(1);
634 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
635 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
636 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
637 | MMCR0_FC);
638
639 /*
640 * Read off any pre-existing events that need to move
641 * to another PMC.
642 */
643 for (i = 0; i < cpuhw->n_events; ++i) {
644 event = cpuhw->event[i];
645 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
646 power_pmu_read(event);
647 write_pmc(event->hw.idx, 0);
648 event->hw.idx = 0;
649 }
650 }
651
652 /*
653 * Initialize the PMCs for all the new and moved events.
654 */
655 cpuhw->n_limited = n_lim = 0;
656 for (i = 0; i < cpuhw->n_events; ++i) {
657 event = cpuhw->event[i];
658 if (event->hw.idx)
659 continue;
660 idx = hwc_index[i] + 1;
661 if (is_limited_pmc(idx)) {
662 cpuhw->limited_counter[n_lim] = event;
663 cpuhw->limited_hwidx[n_lim] = idx;
664 ++n_lim;
665 continue;
666 }
667 val = 0;
668 if (event->hw.sample_period) {
669 left = local64_read(&event->hw.period_left);
670 if (left < 0x80000000L)
671 val = 0x80000000L - left;
672 }
673 local64_set(&event->hw.prev_count, val);
674 event->hw.idx = idx;
675 write_pmc(idx, val);
676 perf_event_update_userpage(event);
677 }
678 cpuhw->n_limited = n_lim;
679 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
680
681 out_enable:
682 mb();
683 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
684
685 /*
686 * Enable instruction sampling if necessary
687 */
688 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
689 mb();
690 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
691 }
692
693 out:
694 local_irq_restore(flags);
695 }
696
697 static int collect_events(struct perf_event *group, int max_count,
698 struct perf_event *ctrs[], u64 *events,
699 unsigned int *flags)
700 {
701 int n = 0;
702 struct perf_event *event;
703
704 if (!is_software_event(group)) {
705 if (n >= max_count)
706 return -1;
707 ctrs[n] = group;
708 flags[n] = group->hw.event_base;
709 events[n++] = group->hw.config;
710 }
711 list_for_each_entry(event, &group->sibling_list, group_entry) {
712 if (!is_software_event(event) &&
713 event->state != PERF_EVENT_STATE_OFF) {
714 if (n >= max_count)
715 return -1;
716 ctrs[n] = event;
717 flags[n] = event->hw.event_base;
718 events[n++] = event->hw.config;
719 }
720 }
721 return n;
722 }
723
724 /*
725 * Add a event to the PMU.
726 * If all events are not already frozen, then we disable and
727 * re-enable the PMU in order to get hw_perf_enable to do the
728 * actual work of reconfiguring the PMU.
729 */
730 static int power_pmu_enable(struct perf_event *event)
731 {
732 struct cpu_hw_events *cpuhw;
733 unsigned long flags;
734 int n0;
735 int ret = -EAGAIN;
736
737 local_irq_save(flags);
738 perf_disable();
739
740 /*
741 * Add the event to the list (if there is room)
742 * and check whether the total set is still feasible.
743 */
744 cpuhw = &__get_cpu_var(cpu_hw_events);
745 n0 = cpuhw->n_events;
746 if (n0 >= ppmu->n_counter)
747 goto out;
748 cpuhw->event[n0] = event;
749 cpuhw->events[n0] = event->hw.config;
750 cpuhw->flags[n0] = event->hw.event_base;
751
752 /*
753 * If group events scheduling transaction was started,
754 * skip the schedulability test here, it will be peformed
755 * at commit time(->commit_txn) as a whole
756 */
757 if (cpuhw->group_flag & PERF_EVENT_TXN)
758 goto nocheck;
759
760 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
761 goto out;
762 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
763 goto out;
764 event->hw.config = cpuhw->events[n0];
765
766 nocheck:
767 ++cpuhw->n_events;
768 ++cpuhw->n_added;
769
770 ret = 0;
771 out:
772 perf_enable();
773 local_irq_restore(flags);
774 return ret;
775 }
776
777 /*
778 * Remove a event from the PMU.
779 */
780 static void power_pmu_disable(struct perf_event *event)
781 {
782 struct cpu_hw_events *cpuhw;
783 long i;
784 unsigned long flags;
785
786 local_irq_save(flags);
787 perf_disable();
788
789 power_pmu_read(event);
790
791 cpuhw = &__get_cpu_var(cpu_hw_events);
792 for (i = 0; i < cpuhw->n_events; ++i) {
793 if (event == cpuhw->event[i]) {
794 while (++i < cpuhw->n_events) {
795 cpuhw->event[i-1] = cpuhw->event[i];
796 cpuhw->events[i-1] = cpuhw->events[i];
797 cpuhw->flags[i-1] = cpuhw->flags[i];
798 }
799 --cpuhw->n_events;
800 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
801 if (event->hw.idx) {
802 write_pmc(event->hw.idx, 0);
803 event->hw.idx = 0;
804 }
805 perf_event_update_userpage(event);
806 break;
807 }
808 }
809 for (i = 0; i < cpuhw->n_limited; ++i)
810 if (event == cpuhw->limited_counter[i])
811 break;
812 if (i < cpuhw->n_limited) {
813 while (++i < cpuhw->n_limited) {
814 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
815 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
816 }
817 --cpuhw->n_limited;
818 }
819 if (cpuhw->n_events == 0) {
820 /* disable exceptions if no events are running */
821 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
822 }
823
824 perf_enable();
825 local_irq_restore(flags);
826 }
827
828 /*
829 * Re-enable interrupts on a event after they were throttled
830 * because they were coming too fast.
831 */
832 static void power_pmu_unthrottle(struct perf_event *event)
833 {
834 s64 val, left;
835 unsigned long flags;
836
837 if (!event->hw.idx || !event->hw.sample_period)
838 return;
839 local_irq_save(flags);
840 perf_disable();
841 power_pmu_read(event);
842 left = event->hw.sample_period;
843 event->hw.last_period = left;
844 val = 0;
845 if (left < 0x80000000L)
846 val = 0x80000000L - left;
847 write_pmc(event->hw.idx, val);
848 local64_set(&event->hw.prev_count, val);
849 local64_set(&event->hw.period_left, left);
850 perf_event_update_userpage(event);
851 perf_enable();
852 local_irq_restore(flags);
853 }
854
855 /*
856 * Start group events scheduling transaction
857 * Set the flag to make pmu::enable() not perform the
858 * schedulability test, it will be performed at commit time
859 */
860 void power_pmu_start_txn(const struct pmu *pmu)
861 {
862 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
863
864 cpuhw->group_flag |= PERF_EVENT_TXN;
865 cpuhw->n_txn_start = cpuhw->n_events;
866 }
867
868 /*
869 * Stop group events scheduling transaction
870 * Clear the flag and pmu::enable() will perform the
871 * schedulability test.
872 */
873 void power_pmu_cancel_txn(const struct pmu *pmu)
874 {
875 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
876
877 cpuhw->group_flag &= ~PERF_EVENT_TXN;
878 }
879
880 /*
881 * Commit group events scheduling transaction
882 * Perform the group schedulability test as a whole
883 * Return 0 if success
884 */
885 int power_pmu_commit_txn(const struct pmu *pmu)
886 {
887 struct cpu_hw_events *cpuhw;
888 long i, n;
889
890 if (!ppmu)
891 return -EAGAIN;
892 cpuhw = &__get_cpu_var(cpu_hw_events);
893 n = cpuhw->n_events;
894 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
895 return -EAGAIN;
896 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
897 if (i < 0)
898 return -EAGAIN;
899
900 for (i = cpuhw->n_txn_start; i < n; ++i)
901 cpuhw->event[i]->hw.config = cpuhw->events[i];
902
903 cpuhw->group_flag &= ~PERF_EVENT_TXN;
904 return 0;
905 }
906
907 struct pmu power_pmu = {
908 .enable = power_pmu_enable,
909 .disable = power_pmu_disable,
910 .read = power_pmu_read,
911 .unthrottle = power_pmu_unthrottle,
912 .start_txn = power_pmu_start_txn,
913 .cancel_txn = power_pmu_cancel_txn,
914 .commit_txn = power_pmu_commit_txn,
915 };
916
917 /*
918 * Return 1 if we might be able to put event on a limited PMC,
919 * or 0 if not.
920 * A event can only go on a limited PMC if it counts something
921 * that a limited PMC can count, doesn't require interrupts, and
922 * doesn't exclude any processor mode.
923 */
924 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
925 unsigned int flags)
926 {
927 int n;
928 u64 alt[MAX_EVENT_ALTERNATIVES];
929
930 if (event->attr.exclude_user
931 || event->attr.exclude_kernel
932 || event->attr.exclude_hv
933 || event->attr.sample_period)
934 return 0;
935
936 if (ppmu->limited_pmc_event(ev))
937 return 1;
938
939 /*
940 * The requested event_id isn't on a limited PMC already;
941 * see if any alternative code goes on a limited PMC.
942 */
943 if (!ppmu->get_alternatives)
944 return 0;
945
946 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
947 n = ppmu->get_alternatives(ev, flags, alt);
948
949 return n > 0;
950 }
951
952 /*
953 * Find an alternative event_id that goes on a normal PMC, if possible,
954 * and return the event_id code, or 0 if there is no such alternative.
955 * (Note: event_id code 0 is "don't count" on all machines.)
956 */
957 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
958 {
959 u64 alt[MAX_EVENT_ALTERNATIVES];
960 int n;
961
962 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
963 n = ppmu->get_alternatives(ev, flags, alt);
964 if (!n)
965 return 0;
966 return alt[0];
967 }
968
969 /* Number of perf_events counting hardware events */
970 static atomic_t num_events;
971 /* Used to avoid races in calling reserve/release_pmc_hardware */
972 static DEFINE_MUTEX(pmc_reserve_mutex);
973
974 /*
975 * Release the PMU if this is the last perf_event.
976 */
977 static void hw_perf_event_destroy(struct perf_event *event)
978 {
979 if (!atomic_add_unless(&num_events, -1, 1)) {
980 mutex_lock(&pmc_reserve_mutex);
981 if (atomic_dec_return(&num_events) == 0)
982 release_pmc_hardware();
983 mutex_unlock(&pmc_reserve_mutex);
984 }
985 }
986
987 /*
988 * Translate a generic cache event_id config to a raw event_id code.
989 */
990 static int hw_perf_cache_event(u64 config, u64 *eventp)
991 {
992 unsigned long type, op, result;
993 int ev;
994
995 if (!ppmu->cache_events)
996 return -EINVAL;
997
998 /* unpack config */
999 type = config & 0xff;
1000 op = (config >> 8) & 0xff;
1001 result = (config >> 16) & 0xff;
1002
1003 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1004 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1005 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1006 return -EINVAL;
1007
1008 ev = (*ppmu->cache_events)[type][op][result];
1009 if (ev == 0)
1010 return -EOPNOTSUPP;
1011 if (ev == -1)
1012 return -EINVAL;
1013 *eventp = ev;
1014 return 0;
1015 }
1016
1017 const struct pmu *hw_perf_event_init(struct perf_event *event)
1018 {
1019 u64 ev;
1020 unsigned long flags;
1021 struct perf_event *ctrs[MAX_HWEVENTS];
1022 u64 events[MAX_HWEVENTS];
1023 unsigned int cflags[MAX_HWEVENTS];
1024 int n;
1025 int err;
1026 struct cpu_hw_events *cpuhw;
1027
1028 if (!ppmu)
1029 return ERR_PTR(-ENXIO);
1030 switch (event->attr.type) {
1031 case PERF_TYPE_HARDWARE:
1032 ev = event->attr.config;
1033 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1034 return ERR_PTR(-EOPNOTSUPP);
1035 ev = ppmu->generic_events[ev];
1036 break;
1037 case PERF_TYPE_HW_CACHE:
1038 err = hw_perf_cache_event(event->attr.config, &ev);
1039 if (err)
1040 return ERR_PTR(err);
1041 break;
1042 case PERF_TYPE_RAW:
1043 ev = event->attr.config;
1044 break;
1045 default:
1046 return ERR_PTR(-EINVAL);
1047 }
1048 event->hw.config_base = ev;
1049 event->hw.idx = 0;
1050
1051 /*
1052 * If we are not running on a hypervisor, force the
1053 * exclude_hv bit to 0 so that we don't care what
1054 * the user set it to.
1055 */
1056 if (!firmware_has_feature(FW_FEATURE_LPAR))
1057 event->attr.exclude_hv = 0;
1058
1059 /*
1060 * If this is a per-task event, then we can use
1061 * PM_RUN_* events interchangeably with their non RUN_*
1062 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1063 * XXX we should check if the task is an idle task.
1064 */
1065 flags = 0;
1066 if (event->ctx->task)
1067 flags |= PPMU_ONLY_COUNT_RUN;
1068
1069 /*
1070 * If this machine has limited events, check whether this
1071 * event_id could go on a limited event.
1072 */
1073 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1074 if (can_go_on_limited_pmc(event, ev, flags)) {
1075 flags |= PPMU_LIMITED_PMC_OK;
1076 } else if (ppmu->limited_pmc_event(ev)) {
1077 /*
1078 * The requested event_id is on a limited PMC,
1079 * but we can't use a limited PMC; see if any
1080 * alternative goes on a normal PMC.
1081 */
1082 ev = normal_pmc_alternative(ev, flags);
1083 if (!ev)
1084 return ERR_PTR(-EINVAL);
1085 }
1086 }
1087
1088 /*
1089 * If this is in a group, check if it can go on with all the
1090 * other hardware events in the group. We assume the event
1091 * hasn't been linked into its leader's sibling list at this point.
1092 */
1093 n = 0;
1094 if (event->group_leader != event) {
1095 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1096 ctrs, events, cflags);
1097 if (n < 0)
1098 return ERR_PTR(-EINVAL);
1099 }
1100 events[n] = ev;
1101 ctrs[n] = event;
1102 cflags[n] = flags;
1103 if (check_excludes(ctrs, cflags, n, 1))
1104 return ERR_PTR(-EINVAL);
1105
1106 cpuhw = &get_cpu_var(cpu_hw_events);
1107 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1108 put_cpu_var(cpu_hw_events);
1109 if (err)
1110 return ERR_PTR(-EINVAL);
1111
1112 event->hw.config = events[n];
1113 event->hw.event_base = cflags[n];
1114 event->hw.last_period = event->hw.sample_period;
1115 local64_set(&event->hw.period_left, event->hw.last_period);
1116
1117 /*
1118 * See if we need to reserve the PMU.
1119 * If no events are currently in use, then we have to take a
1120 * mutex to ensure that we don't race with another task doing
1121 * reserve_pmc_hardware or release_pmc_hardware.
1122 */
1123 err = 0;
1124 if (!atomic_inc_not_zero(&num_events)) {
1125 mutex_lock(&pmc_reserve_mutex);
1126 if (atomic_read(&num_events) == 0 &&
1127 reserve_pmc_hardware(perf_event_interrupt))
1128 err = -EBUSY;
1129 else
1130 atomic_inc(&num_events);
1131 mutex_unlock(&pmc_reserve_mutex);
1132 }
1133 event->destroy = hw_perf_event_destroy;
1134
1135 if (err)
1136 return ERR_PTR(err);
1137 return &power_pmu;
1138 }
1139
1140 /*
1141 * A counter has overflowed; update its count and record
1142 * things if requested. Note that interrupts are hard-disabled
1143 * here so there is no possibility of being interrupted.
1144 */
1145 static void record_and_restart(struct perf_event *event, unsigned long val,
1146 struct pt_regs *regs, int nmi)
1147 {
1148 u64 period = event->hw.sample_period;
1149 s64 prev, delta, left;
1150 int record = 0;
1151
1152 /* we don't have to worry about interrupts here */
1153 prev = local64_read(&event->hw.prev_count);
1154 delta = (val - prev) & 0xfffffffful;
1155 local64_add(delta, &event->count);
1156
1157 /*
1158 * See if the total period for this event has expired,
1159 * and update for the next period.
1160 */
1161 val = 0;
1162 left = local64_read(&event->hw.period_left) - delta;
1163 if (period) {
1164 if (left <= 0) {
1165 left += period;
1166 if (left <= 0)
1167 left = period;
1168 record = 1;
1169 }
1170 if (left < 0x80000000LL)
1171 val = 0x80000000LL - left;
1172 }
1173
1174 /*
1175 * Finally record data if requested.
1176 */
1177 if (record) {
1178 struct perf_sample_data data;
1179
1180 perf_sample_data_init(&data, ~0ULL);
1181 data.period = event->hw.last_period;
1182
1183 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1184 perf_get_data_addr(regs, &data.addr);
1185
1186 if (perf_event_overflow(event, nmi, &data, regs)) {
1187 /*
1188 * Interrupts are coming too fast - throttle them
1189 * by setting the event to 0, so it will be
1190 * at least 2^30 cycles until the next interrupt
1191 * (assuming each event counts at most 2 counts
1192 * per cycle).
1193 */
1194 val = 0;
1195 left = ~0ULL >> 1;
1196 }
1197 }
1198
1199 write_pmc(event->hw.idx, val);
1200 local64_set(&event->hw.prev_count, val);
1201 local64_set(&event->hw.period_left, left);
1202 perf_event_update_userpage(event);
1203 }
1204
1205 /*
1206 * Called from generic code to get the misc flags (i.e. processor mode)
1207 * for an event_id.
1208 */
1209 unsigned long perf_misc_flags(struct pt_regs *regs)
1210 {
1211 u32 flags = perf_get_misc_flags(regs);
1212
1213 if (flags)
1214 return flags;
1215 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1216 PERF_RECORD_MISC_KERNEL;
1217 }
1218
1219 /*
1220 * Called from generic code to get the instruction pointer
1221 * for an event_id.
1222 */
1223 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1224 {
1225 unsigned long ip;
1226
1227 if (TRAP(regs) != 0xf00)
1228 return regs->nip; /* not a PMU interrupt */
1229
1230 ip = mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
1231 return ip;
1232 }
1233
1234 /*
1235 * Performance monitor interrupt stuff
1236 */
1237 static void perf_event_interrupt(struct pt_regs *regs)
1238 {
1239 int i;
1240 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1241 struct perf_event *event;
1242 unsigned long val;
1243 int found = 0;
1244 int nmi;
1245
1246 if (cpuhw->n_limited)
1247 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1248 mfspr(SPRN_PMC6));
1249
1250 perf_read_regs(regs);
1251
1252 nmi = perf_intr_is_nmi(regs);
1253 if (nmi)
1254 nmi_enter();
1255 else
1256 irq_enter();
1257
1258 for (i = 0; i < cpuhw->n_events; ++i) {
1259 event = cpuhw->event[i];
1260 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
1261 continue;
1262 val = read_pmc(event->hw.idx);
1263 if ((int)val < 0) {
1264 /* event has overflowed */
1265 found = 1;
1266 record_and_restart(event, val, regs, nmi);
1267 }
1268 }
1269
1270 /*
1271 * In case we didn't find and reset the event that caused
1272 * the interrupt, scan all events and reset any that are
1273 * negative, to avoid getting continual interrupts.
1274 * Any that we processed in the previous loop will not be negative.
1275 */
1276 if (!found) {
1277 for (i = 0; i < ppmu->n_counter; ++i) {
1278 if (is_limited_pmc(i + 1))
1279 continue;
1280 val = read_pmc(i + 1);
1281 if ((int)val < 0)
1282 write_pmc(i + 1, 0);
1283 }
1284 }
1285
1286 /*
1287 * Reset MMCR0 to its normal value. This will set PMXE and
1288 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1289 * and thus allow interrupts to occur again.
1290 * XXX might want to use MSR.PM to keep the events frozen until
1291 * we get back out of this interrupt.
1292 */
1293 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1294
1295 if (nmi)
1296 nmi_exit();
1297 else
1298 irq_exit();
1299 }
1300
1301 static void power_pmu_setup(int cpu)
1302 {
1303 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
1304
1305 if (!ppmu)
1306 return;
1307 memset(cpuhw, 0, sizeof(*cpuhw));
1308 cpuhw->mmcr[0] = MMCR0_FC;
1309 }
1310
1311 static int __cpuinit
1312 power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1313 {
1314 unsigned int cpu = (long)hcpu;
1315
1316 switch (action & ~CPU_TASKS_FROZEN) {
1317 case CPU_UP_PREPARE:
1318 power_pmu_setup(cpu);
1319 break;
1320
1321 default:
1322 break;
1323 }
1324
1325 return NOTIFY_OK;
1326 }
1327
1328 int register_power_pmu(struct power_pmu *pmu)
1329 {
1330 if (ppmu)
1331 return -EBUSY; /* something's already registered */
1332
1333 ppmu = pmu;
1334 pr_info("%s performance monitor hardware support registered\n",
1335 pmu->name);
1336
1337 #ifdef MSR_HV
1338 /*
1339 * Use FCHV to ignore kernel events if MSR.HV is set.
1340 */
1341 if (mfmsr() & MSR_HV)
1342 freeze_events_kernel = MMCR0_FCHV;
1343 #endif /* CONFIG_PPC64 */
1344
1345 perf_cpu_notifier(power_pmu_notifier);
1346
1347 return 0;
1348 }