]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc/eeh: Enable IO path on permanent error
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66
67 #ifdef CONFIG_CC_STACKPROTECTOR
68 #include <linux/stackprotector.h>
69 unsigned long __stack_chk_guard __read_mostly;
70 EXPORT_SYMBOL(__stack_chk_guard);
71 #endif
72
73 /* Transactional Memory debug */
74 #ifdef TM_DEBUG_SW
75 #define TM_DEBUG(x...) printk(KERN_INFO x)
76 #else
77 #define TM_DEBUG(x...) do { } while(0)
78 #endif
79
80 extern unsigned long _get_SP(void);
81
82 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
83 static void check_if_tm_restore_required(struct task_struct *tsk)
84 {
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
94 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
95 set_thread_flag(TIF_RESTORE_TM);
96 }
97 }
98
99 static inline bool msr_tm_active(unsigned long msr)
100 {
101 return MSR_TM_ACTIVE(msr);
102 }
103 #else
104 static inline bool msr_tm_active(unsigned long msr) { return false; }
105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
107
108 bool strict_msr_control;
109 EXPORT_SYMBOL(strict_msr_control);
110
111 static int __init enable_strict_msr_control(char *str)
112 {
113 strict_msr_control = true;
114 pr_info("Enabling strict facility control\n");
115
116 return 0;
117 }
118 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
119
120 unsigned long msr_check_and_set(unsigned long bits)
121 {
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
124
125 newmsr = oldmsr | bits;
126
127 #ifdef CONFIG_VSX
128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 newmsr |= MSR_VSX;
130 #endif
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134
135 return newmsr;
136 }
137
138 void __msr_check_and_clear(unsigned long bits)
139 {
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
142
143 newmsr = oldmsr & ~bits;
144
145 #ifdef CONFIG_VSX
146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 newmsr &= ~MSR_VSX;
148 #endif
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152 }
153 EXPORT_SYMBOL(__msr_check_and_clear);
154
155 #ifdef CONFIG_PPC_FPU
156 void __giveup_fpu(struct task_struct *tsk)
157 {
158 unsigned long msr;
159
160 save_fpu(tsk);
161 msr = tsk->thread.regs->msr;
162 msr &= ~MSR_FP;
163 #ifdef CONFIG_VSX
164 if (cpu_has_feature(CPU_FTR_VSX))
165 msr &= ~MSR_VSX;
166 #endif
167 tsk->thread.regs->msr = msr;
168 }
169
170 void giveup_fpu(struct task_struct *tsk)
171 {
172 check_if_tm_restore_required(tsk);
173
174 msr_check_and_set(MSR_FP);
175 __giveup_fpu(tsk);
176 msr_check_and_clear(MSR_FP);
177 }
178 EXPORT_SYMBOL(giveup_fpu);
179
180 /*
181 * Make sure the floating-point register state in the
182 * the thread_struct is up to date for task tsk.
183 */
184 void flush_fp_to_thread(struct task_struct *tsk)
185 {
186 if (tsk->thread.regs) {
187 /*
188 * We need to disable preemption here because if we didn't,
189 * another process could get scheduled after the regs->msr
190 * test but before we have finished saving the FP registers
191 * to the thread_struct. That process could take over the
192 * FPU, and then when we get scheduled again we would store
193 * bogus values for the remaining FP registers.
194 */
195 preempt_disable();
196 if (tsk->thread.regs->msr & MSR_FP) {
197 /*
198 * This should only ever be called for current or
199 * for a stopped child process. Since we save away
200 * the FP register state on context switch,
201 * there is something wrong if a stopped child appears
202 * to still have its FP state in the CPU registers.
203 */
204 BUG_ON(tsk != current);
205 giveup_fpu(tsk);
206 }
207 preempt_enable();
208 }
209 }
210 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
211
212 void enable_kernel_fp(void)
213 {
214 unsigned long cpumsr;
215
216 WARN_ON(preemptible());
217
218 cpumsr = msr_check_and_set(MSR_FP);
219
220 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
221 check_if_tm_restore_required(current);
222 /*
223 * If a thread has already been reclaimed then the
224 * checkpointed registers are on the CPU but have definitely
225 * been saved by the reclaim code. Don't need to and *cannot*
226 * giveup as this would save to the 'live' structure not the
227 * checkpointed structure.
228 */
229 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
230 return;
231 __giveup_fpu(current);
232 }
233 }
234 EXPORT_SYMBOL(enable_kernel_fp);
235
236 static int restore_fp(struct task_struct *tsk) {
237 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
238 load_fp_state(&current->thread.fp_state);
239 current->thread.load_fp++;
240 return 1;
241 }
242 return 0;
243 }
244 #else
245 static int restore_fp(struct task_struct *tsk) { return 0; }
246 #endif /* CONFIG_PPC_FPU */
247
248 #ifdef CONFIG_ALTIVEC
249 #define loadvec(thr) ((thr).load_vec)
250
251 static void __giveup_altivec(struct task_struct *tsk)
252 {
253 unsigned long msr;
254
255 save_altivec(tsk);
256 msr = tsk->thread.regs->msr;
257 msr &= ~MSR_VEC;
258 #ifdef CONFIG_VSX
259 if (cpu_has_feature(CPU_FTR_VSX))
260 msr &= ~MSR_VSX;
261 #endif
262 tsk->thread.regs->msr = msr;
263 }
264
265 void giveup_altivec(struct task_struct *tsk)
266 {
267 check_if_tm_restore_required(tsk);
268
269 msr_check_and_set(MSR_VEC);
270 __giveup_altivec(tsk);
271 msr_check_and_clear(MSR_VEC);
272 }
273 EXPORT_SYMBOL(giveup_altivec);
274
275 void enable_kernel_altivec(void)
276 {
277 unsigned long cpumsr;
278
279 WARN_ON(preemptible());
280
281 cpumsr = msr_check_and_set(MSR_VEC);
282
283 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
284 check_if_tm_restore_required(current);
285 /*
286 * If a thread has already been reclaimed then the
287 * checkpointed registers are on the CPU but have definitely
288 * been saved by the reclaim code. Don't need to and *cannot*
289 * giveup as this would save to the 'live' structure not the
290 * checkpointed structure.
291 */
292 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
293 return;
294 __giveup_altivec(current);
295 }
296 }
297 EXPORT_SYMBOL(enable_kernel_altivec);
298
299 /*
300 * Make sure the VMX/Altivec register state in the
301 * the thread_struct is up to date for task tsk.
302 */
303 void flush_altivec_to_thread(struct task_struct *tsk)
304 {
305 if (tsk->thread.regs) {
306 preempt_disable();
307 if (tsk->thread.regs->msr & MSR_VEC) {
308 BUG_ON(tsk != current);
309 giveup_altivec(tsk);
310 }
311 preempt_enable();
312 }
313 }
314 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
315
316 static int restore_altivec(struct task_struct *tsk)
317 {
318 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
319 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
320 load_vr_state(&tsk->thread.vr_state);
321 tsk->thread.used_vr = 1;
322 tsk->thread.load_vec++;
323
324 return 1;
325 }
326 return 0;
327 }
328 #else
329 #define loadvec(thr) 0
330 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
331 #endif /* CONFIG_ALTIVEC */
332
333 #ifdef CONFIG_VSX
334 static void __giveup_vsx(struct task_struct *tsk)
335 {
336 if (tsk->thread.regs->msr & MSR_FP)
337 __giveup_fpu(tsk);
338 if (tsk->thread.regs->msr & MSR_VEC)
339 __giveup_altivec(tsk);
340 tsk->thread.regs->msr &= ~MSR_VSX;
341 }
342
343 static void giveup_vsx(struct task_struct *tsk)
344 {
345 check_if_tm_restore_required(tsk);
346
347 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
348 __giveup_vsx(tsk);
349 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
350 }
351
352 static void save_vsx(struct task_struct *tsk)
353 {
354 if (tsk->thread.regs->msr & MSR_FP)
355 save_fpu(tsk);
356 if (tsk->thread.regs->msr & MSR_VEC)
357 save_altivec(tsk);
358 }
359
360 void enable_kernel_vsx(void)
361 {
362 unsigned long cpumsr;
363
364 WARN_ON(preemptible());
365
366 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
367
368 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
369 check_if_tm_restore_required(current);
370 /*
371 * If a thread has already been reclaimed then the
372 * checkpointed registers are on the CPU but have definitely
373 * been saved by the reclaim code. Don't need to and *cannot*
374 * giveup as this would save to the 'live' structure not the
375 * checkpointed structure.
376 */
377 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
378 return;
379 if (current->thread.regs->msr & MSR_FP)
380 __giveup_fpu(current);
381 if (current->thread.regs->msr & MSR_VEC)
382 __giveup_altivec(current);
383 __giveup_vsx(current);
384 }
385 }
386 EXPORT_SYMBOL(enable_kernel_vsx);
387
388 void flush_vsx_to_thread(struct task_struct *tsk)
389 {
390 if (tsk->thread.regs) {
391 preempt_disable();
392 if (tsk->thread.regs->msr & MSR_VSX) {
393 BUG_ON(tsk != current);
394 giveup_vsx(tsk);
395 }
396 preempt_enable();
397 }
398 }
399 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
400
401 static int restore_vsx(struct task_struct *tsk)
402 {
403 if (cpu_has_feature(CPU_FTR_VSX)) {
404 tsk->thread.used_vsr = 1;
405 return 1;
406 }
407
408 return 0;
409 }
410 #else
411 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
412 static inline void save_vsx(struct task_struct *tsk) { }
413 #endif /* CONFIG_VSX */
414
415 #ifdef CONFIG_SPE
416 void giveup_spe(struct task_struct *tsk)
417 {
418 check_if_tm_restore_required(tsk);
419
420 msr_check_and_set(MSR_SPE);
421 __giveup_spe(tsk);
422 msr_check_and_clear(MSR_SPE);
423 }
424 EXPORT_SYMBOL(giveup_spe);
425
426 void enable_kernel_spe(void)
427 {
428 WARN_ON(preemptible());
429
430 msr_check_and_set(MSR_SPE);
431
432 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
433 check_if_tm_restore_required(current);
434 __giveup_spe(current);
435 }
436 }
437 EXPORT_SYMBOL(enable_kernel_spe);
438
439 void flush_spe_to_thread(struct task_struct *tsk)
440 {
441 if (tsk->thread.regs) {
442 preempt_disable();
443 if (tsk->thread.regs->msr & MSR_SPE) {
444 BUG_ON(tsk != current);
445 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
446 giveup_spe(tsk);
447 }
448 preempt_enable();
449 }
450 }
451 #endif /* CONFIG_SPE */
452
453 static unsigned long msr_all_available;
454
455 static int __init init_msr_all_available(void)
456 {
457 #ifdef CONFIG_PPC_FPU
458 msr_all_available |= MSR_FP;
459 #endif
460 #ifdef CONFIG_ALTIVEC
461 if (cpu_has_feature(CPU_FTR_ALTIVEC))
462 msr_all_available |= MSR_VEC;
463 #endif
464 #ifdef CONFIG_VSX
465 if (cpu_has_feature(CPU_FTR_VSX))
466 msr_all_available |= MSR_VSX;
467 #endif
468 #ifdef CONFIG_SPE
469 if (cpu_has_feature(CPU_FTR_SPE))
470 msr_all_available |= MSR_SPE;
471 #endif
472
473 return 0;
474 }
475 early_initcall(init_msr_all_available);
476
477 void giveup_all(struct task_struct *tsk)
478 {
479 unsigned long usermsr;
480
481 if (!tsk->thread.regs)
482 return;
483
484 usermsr = tsk->thread.regs->msr;
485
486 if ((usermsr & msr_all_available) == 0)
487 return;
488
489 msr_check_and_set(msr_all_available);
490 check_if_tm_restore_required(tsk);
491
492 #ifdef CONFIG_PPC_FPU
493 if (usermsr & MSR_FP)
494 __giveup_fpu(tsk);
495 #endif
496 #ifdef CONFIG_ALTIVEC
497 if (usermsr & MSR_VEC)
498 __giveup_altivec(tsk);
499 #endif
500 #ifdef CONFIG_VSX
501 if (usermsr & MSR_VSX)
502 __giveup_vsx(tsk);
503 #endif
504 #ifdef CONFIG_SPE
505 if (usermsr & MSR_SPE)
506 __giveup_spe(tsk);
507 #endif
508
509 msr_check_and_clear(msr_all_available);
510 }
511 EXPORT_SYMBOL(giveup_all);
512
513 void restore_math(struct pt_regs *regs)
514 {
515 unsigned long msr;
516
517 if (!msr_tm_active(regs->msr) &&
518 !current->thread.load_fp && !loadvec(current->thread))
519 return;
520
521 msr = regs->msr;
522 msr_check_and_set(msr_all_available);
523
524 /*
525 * Only reload if the bit is not set in the user MSR, the bit BEING set
526 * indicates that the registers are hot
527 */
528 if ((!(msr & MSR_FP)) && restore_fp(current))
529 msr |= MSR_FP | current->thread.fpexc_mode;
530
531 if ((!(msr & MSR_VEC)) && restore_altivec(current))
532 msr |= MSR_VEC;
533
534 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
535 restore_vsx(current)) {
536 msr |= MSR_VSX;
537 }
538
539 msr_check_and_clear(msr_all_available);
540
541 regs->msr = msr;
542 }
543
544 void save_all(struct task_struct *tsk)
545 {
546 unsigned long usermsr;
547
548 if (!tsk->thread.regs)
549 return;
550
551 usermsr = tsk->thread.regs->msr;
552
553 if ((usermsr & msr_all_available) == 0)
554 return;
555
556 msr_check_and_set(msr_all_available);
557
558 /*
559 * Saving the way the register space is in hardware, save_vsx boils
560 * down to a save_fpu() and save_altivec()
561 */
562 if (usermsr & MSR_VSX) {
563 save_vsx(tsk);
564 } else {
565 if (usermsr & MSR_FP)
566 save_fpu(tsk);
567
568 if (usermsr & MSR_VEC)
569 save_altivec(tsk);
570 }
571
572 if (usermsr & MSR_SPE)
573 __giveup_spe(tsk);
574
575 msr_check_and_clear(msr_all_available);
576 }
577
578 void flush_all_to_thread(struct task_struct *tsk)
579 {
580 if (tsk->thread.regs) {
581 preempt_disable();
582 BUG_ON(tsk != current);
583 save_all(tsk);
584
585 #ifdef CONFIG_SPE
586 if (tsk->thread.regs->msr & MSR_SPE)
587 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
588 #endif
589
590 preempt_enable();
591 }
592 }
593 EXPORT_SYMBOL(flush_all_to_thread);
594
595 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
596 void do_send_trap(struct pt_regs *regs, unsigned long address,
597 unsigned long error_code, int signal_code, int breakpt)
598 {
599 siginfo_t info;
600
601 current->thread.trap_nr = signal_code;
602 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
603 11, SIGSEGV) == NOTIFY_STOP)
604 return;
605
606 /* Deliver the signal to userspace */
607 info.si_signo = SIGTRAP;
608 info.si_errno = breakpt; /* breakpoint or watchpoint id */
609 info.si_code = signal_code;
610 info.si_addr = (void __user *)address;
611 force_sig_info(SIGTRAP, &info, current);
612 }
613 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
614 void do_break (struct pt_regs *regs, unsigned long address,
615 unsigned long error_code)
616 {
617 siginfo_t info;
618
619 current->thread.trap_nr = TRAP_HWBKPT;
620 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
621 11, SIGSEGV) == NOTIFY_STOP)
622 return;
623
624 if (debugger_break_match(regs))
625 return;
626
627 /* Clear the breakpoint */
628 hw_breakpoint_disable();
629
630 /* Deliver the signal to userspace */
631 info.si_signo = SIGTRAP;
632 info.si_errno = 0;
633 info.si_code = TRAP_HWBKPT;
634 info.si_addr = (void __user *)address;
635 force_sig_info(SIGTRAP, &info, current);
636 }
637 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
638
639 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
640
641 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
642 /*
643 * Set the debug registers back to their default "safe" values.
644 */
645 static void set_debug_reg_defaults(struct thread_struct *thread)
646 {
647 thread->debug.iac1 = thread->debug.iac2 = 0;
648 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
649 thread->debug.iac3 = thread->debug.iac4 = 0;
650 #endif
651 thread->debug.dac1 = thread->debug.dac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
653 thread->debug.dvc1 = thread->debug.dvc2 = 0;
654 #endif
655 thread->debug.dbcr0 = 0;
656 #ifdef CONFIG_BOOKE
657 /*
658 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
659 */
660 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
661 DBCR1_IAC3US | DBCR1_IAC4US;
662 /*
663 * Force Data Address Compare User/Supervisor bits to be User-only
664 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
665 */
666 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
667 #else
668 thread->debug.dbcr1 = 0;
669 #endif
670 }
671
672 static void prime_debug_regs(struct debug_reg *debug)
673 {
674 /*
675 * We could have inherited MSR_DE from userspace, since
676 * it doesn't get cleared on exception entry. Make sure
677 * MSR_DE is clear before we enable any debug events.
678 */
679 mtmsr(mfmsr() & ~MSR_DE);
680
681 mtspr(SPRN_IAC1, debug->iac1);
682 mtspr(SPRN_IAC2, debug->iac2);
683 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
684 mtspr(SPRN_IAC3, debug->iac3);
685 mtspr(SPRN_IAC4, debug->iac4);
686 #endif
687 mtspr(SPRN_DAC1, debug->dac1);
688 mtspr(SPRN_DAC2, debug->dac2);
689 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
690 mtspr(SPRN_DVC1, debug->dvc1);
691 mtspr(SPRN_DVC2, debug->dvc2);
692 #endif
693 mtspr(SPRN_DBCR0, debug->dbcr0);
694 mtspr(SPRN_DBCR1, debug->dbcr1);
695 #ifdef CONFIG_BOOKE
696 mtspr(SPRN_DBCR2, debug->dbcr2);
697 #endif
698 }
699 /*
700 * Unless neither the old or new thread are making use of the
701 * debug registers, set the debug registers from the values
702 * stored in the new thread.
703 */
704 void switch_booke_debug_regs(struct debug_reg *new_debug)
705 {
706 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
707 || (new_debug->dbcr0 & DBCR0_IDM))
708 prime_debug_regs(new_debug);
709 }
710 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
711 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
712 #ifndef CONFIG_HAVE_HW_BREAKPOINT
713 static void set_debug_reg_defaults(struct thread_struct *thread)
714 {
715 thread->hw_brk.address = 0;
716 thread->hw_brk.type = 0;
717 set_breakpoint(&thread->hw_brk);
718 }
719 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
720 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
721
722 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
723 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
724 {
725 mtspr(SPRN_DAC1, dabr);
726 #ifdef CONFIG_PPC_47x
727 isync();
728 #endif
729 return 0;
730 }
731 #elif defined(CONFIG_PPC_BOOK3S)
732 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
733 {
734 mtspr(SPRN_DABR, dabr);
735 if (cpu_has_feature(CPU_FTR_DABRX))
736 mtspr(SPRN_DABRX, dabrx);
737 return 0;
738 }
739 #else
740 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
741 {
742 return -EINVAL;
743 }
744 #endif
745
746 static inline int set_dabr(struct arch_hw_breakpoint *brk)
747 {
748 unsigned long dabr, dabrx;
749
750 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
751 dabrx = ((brk->type >> 3) & 0x7);
752
753 if (ppc_md.set_dabr)
754 return ppc_md.set_dabr(dabr, dabrx);
755
756 return __set_dabr(dabr, dabrx);
757 }
758
759 static inline int set_dawr(struct arch_hw_breakpoint *brk)
760 {
761 unsigned long dawr, dawrx, mrd;
762
763 dawr = brk->address;
764
765 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
766 << (63 - 58); //* read/write bits */
767 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
768 << (63 - 59); //* translate */
769 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
770 >> 3; //* PRIM bits */
771 /* dawr length is stored in field MDR bits 48:53. Matches range in
772 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
773 0b111111=64DW.
774 brk->len is in bytes.
775 This aligns up to double word size, shifts and does the bias.
776 */
777 mrd = ((brk->len + 7) >> 3) - 1;
778 dawrx |= (mrd & 0x3f) << (63 - 53);
779
780 if (ppc_md.set_dawr)
781 return ppc_md.set_dawr(dawr, dawrx);
782 mtspr(SPRN_DAWR, dawr);
783 mtspr(SPRN_DAWRX, dawrx);
784 return 0;
785 }
786
787 void __set_breakpoint(struct arch_hw_breakpoint *brk)
788 {
789 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
790
791 if (cpu_has_feature(CPU_FTR_DAWR))
792 set_dawr(brk);
793 else
794 set_dabr(brk);
795 }
796
797 void set_breakpoint(struct arch_hw_breakpoint *brk)
798 {
799 preempt_disable();
800 __set_breakpoint(brk);
801 preempt_enable();
802 }
803
804 #ifdef CONFIG_PPC64
805 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
806 #endif
807
808 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
809 struct arch_hw_breakpoint *b)
810 {
811 if (a->address != b->address)
812 return false;
813 if (a->type != b->type)
814 return false;
815 if (a->len != b->len)
816 return false;
817 return true;
818 }
819
820 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
821
822 static inline bool tm_enabled(struct task_struct *tsk)
823 {
824 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
825 }
826
827 static void tm_reclaim_thread(struct thread_struct *thr,
828 struct thread_info *ti, uint8_t cause)
829 {
830 /*
831 * Use the current MSR TM suspended bit to track if we have
832 * checkpointed state outstanding.
833 * On signal delivery, we'd normally reclaim the checkpointed
834 * state to obtain stack pointer (see:get_tm_stackpointer()).
835 * This will then directly return to userspace without going
836 * through __switch_to(). However, if the stack frame is bad,
837 * we need to exit this thread which calls __switch_to() which
838 * will again attempt to reclaim the already saved tm state.
839 * Hence we need to check that we've not already reclaimed
840 * this state.
841 * We do this using the current MSR, rather tracking it in
842 * some specific thread_struct bit, as it has the additional
843 * benefit of checking for a potential TM bad thing exception.
844 */
845 if (!MSR_TM_SUSPENDED(mfmsr()))
846 return;
847
848 giveup_all(container_of(thr, struct task_struct, thread));
849
850 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
851 }
852
853 void tm_reclaim_current(uint8_t cause)
854 {
855 tm_enable();
856 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
857 }
858
859 static inline void tm_reclaim_task(struct task_struct *tsk)
860 {
861 /* We have to work out if we're switching from/to a task that's in the
862 * middle of a transaction.
863 *
864 * In switching we need to maintain a 2nd register state as
865 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
866 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
867 * ckvr_state
868 *
869 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
870 */
871 struct thread_struct *thr = &tsk->thread;
872
873 if (!thr->regs)
874 return;
875
876 if (!MSR_TM_ACTIVE(thr->regs->msr))
877 goto out_and_saveregs;
878
879 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
880 "ccr=%lx, msr=%lx, trap=%lx)\n",
881 tsk->pid, thr->regs->nip,
882 thr->regs->ccr, thr->regs->msr,
883 thr->regs->trap);
884
885 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
886
887 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
888 tsk->pid);
889
890 out_and_saveregs:
891 /* Always save the regs here, even if a transaction's not active.
892 * This context-switches a thread's TM info SPRs. We do it here to
893 * be consistent with the restore path (in recheckpoint) which
894 * cannot happen later in _switch().
895 */
896 tm_save_sprs(thr);
897 }
898
899 extern void __tm_recheckpoint(struct thread_struct *thread,
900 unsigned long orig_msr);
901
902 void tm_recheckpoint(struct thread_struct *thread,
903 unsigned long orig_msr)
904 {
905 unsigned long flags;
906
907 if (!(thread->regs->msr & MSR_TM))
908 return;
909
910 /* We really can't be interrupted here as the TEXASR registers can't
911 * change and later in the trecheckpoint code, we have a userspace R1.
912 * So let's hard disable over this region.
913 */
914 local_irq_save(flags);
915 hard_irq_disable();
916
917 /* The TM SPRs are restored here, so that TEXASR.FS can be set
918 * before the trecheckpoint and no explosion occurs.
919 */
920 tm_restore_sprs(thread);
921
922 __tm_recheckpoint(thread, orig_msr);
923
924 local_irq_restore(flags);
925 }
926
927 static inline void tm_recheckpoint_new_task(struct task_struct *new)
928 {
929 unsigned long msr;
930
931 if (!cpu_has_feature(CPU_FTR_TM))
932 return;
933
934 /* Recheckpoint the registers of the thread we're about to switch to.
935 *
936 * If the task was using FP, we non-lazily reload both the original and
937 * the speculative FP register states. This is because the kernel
938 * doesn't see if/when a TM rollback occurs, so if we take an FP
939 * unavailable later, we are unable to determine which set of FP regs
940 * need to be restored.
941 */
942 if (!tm_enabled(new))
943 return;
944
945 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
946 tm_restore_sprs(&new->thread);
947 return;
948 }
949 msr = new->thread.ckpt_regs.msr;
950 /* Recheckpoint to restore original checkpointed register state. */
951 TM_DEBUG("*** tm_recheckpoint of pid %d "
952 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
953 new->pid, new->thread.regs->msr, msr);
954
955 tm_recheckpoint(&new->thread, msr);
956
957 /*
958 * The checkpointed state has been restored but the live state has
959 * not, ensure all the math functionality is turned off to trigger
960 * restore_math() to reload.
961 */
962 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
963
964 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
965 "(kernel msr 0x%lx)\n",
966 new->pid, mfmsr());
967 }
968
969 static inline void __switch_to_tm(struct task_struct *prev,
970 struct task_struct *new)
971 {
972 if (cpu_has_feature(CPU_FTR_TM)) {
973 if (tm_enabled(prev) || tm_enabled(new))
974 tm_enable();
975
976 if (tm_enabled(prev)) {
977 prev->thread.load_tm++;
978 tm_reclaim_task(prev);
979 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
980 prev->thread.regs->msr &= ~MSR_TM;
981 }
982
983 tm_recheckpoint_new_task(new);
984 }
985 }
986
987 /*
988 * This is called if we are on the way out to userspace and the
989 * TIF_RESTORE_TM flag is set. It checks if we need to reload
990 * FP and/or vector state and does so if necessary.
991 * If userspace is inside a transaction (whether active or
992 * suspended) and FP/VMX/VSX instructions have ever been enabled
993 * inside that transaction, then we have to keep them enabled
994 * and keep the FP/VMX/VSX state loaded while ever the transaction
995 * continues. The reason is that if we didn't, and subsequently
996 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
997 * we don't know whether it's the same transaction, and thus we
998 * don't know which of the checkpointed state and the transactional
999 * state to use.
1000 */
1001 void restore_tm_state(struct pt_regs *regs)
1002 {
1003 unsigned long msr_diff;
1004
1005 /*
1006 * This is the only moment we should clear TIF_RESTORE_TM as
1007 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1008 * again, anything else could lead to an incorrect ckpt_msr being
1009 * saved and therefore incorrect signal contexts.
1010 */
1011 clear_thread_flag(TIF_RESTORE_TM);
1012 if (!MSR_TM_ACTIVE(regs->msr))
1013 return;
1014
1015 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1016 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1017
1018 /* Ensure that restore_math() will restore */
1019 if (msr_diff & MSR_FP)
1020 current->thread.load_fp = 1;
1021 #ifdef CONFIG_ALTIVEC
1022 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1023 current->thread.load_vec = 1;
1024 #endif
1025 restore_math(regs);
1026
1027 regs->msr |= msr_diff;
1028 }
1029
1030 #else
1031 #define tm_recheckpoint_new_task(new)
1032 #define __switch_to_tm(prev, new)
1033 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1034
1035 static inline void save_sprs(struct thread_struct *t)
1036 {
1037 #ifdef CONFIG_ALTIVEC
1038 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1039 t->vrsave = mfspr(SPRN_VRSAVE);
1040 #endif
1041 #ifdef CONFIG_PPC_BOOK3S_64
1042 if (cpu_has_feature(CPU_FTR_DSCR))
1043 t->dscr = mfspr(SPRN_DSCR);
1044
1045 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1046 t->bescr = mfspr(SPRN_BESCR);
1047 t->ebbhr = mfspr(SPRN_EBBHR);
1048 t->ebbrr = mfspr(SPRN_EBBRR);
1049
1050 t->fscr = mfspr(SPRN_FSCR);
1051
1052 /*
1053 * Note that the TAR is not available for use in the kernel.
1054 * (To provide this, the TAR should be backed up/restored on
1055 * exception entry/exit instead, and be in pt_regs. FIXME,
1056 * this should be in pt_regs anyway (for debug).)
1057 */
1058 t->tar = mfspr(SPRN_TAR);
1059 }
1060 #endif
1061 }
1062
1063 static inline void restore_sprs(struct thread_struct *old_thread,
1064 struct thread_struct *new_thread)
1065 {
1066 #ifdef CONFIG_ALTIVEC
1067 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1068 old_thread->vrsave != new_thread->vrsave)
1069 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1070 #endif
1071 #ifdef CONFIG_PPC_BOOK3S_64
1072 if (cpu_has_feature(CPU_FTR_DSCR)) {
1073 u64 dscr = get_paca()->dscr_default;
1074 if (new_thread->dscr_inherit)
1075 dscr = new_thread->dscr;
1076
1077 if (old_thread->dscr != dscr)
1078 mtspr(SPRN_DSCR, dscr);
1079 }
1080
1081 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1082 if (old_thread->bescr != new_thread->bescr)
1083 mtspr(SPRN_BESCR, new_thread->bescr);
1084 if (old_thread->ebbhr != new_thread->ebbhr)
1085 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1086 if (old_thread->ebbrr != new_thread->ebbrr)
1087 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1088
1089 if (old_thread->fscr != new_thread->fscr)
1090 mtspr(SPRN_FSCR, new_thread->fscr);
1091
1092 if (old_thread->tar != new_thread->tar)
1093 mtspr(SPRN_TAR, new_thread->tar);
1094 }
1095 #endif
1096 }
1097
1098 struct task_struct *__switch_to(struct task_struct *prev,
1099 struct task_struct *new)
1100 {
1101 struct thread_struct *new_thread, *old_thread;
1102 struct task_struct *last;
1103 #ifdef CONFIG_PPC_BOOK3S_64
1104 struct ppc64_tlb_batch *batch;
1105 #endif
1106
1107 new_thread = &new->thread;
1108 old_thread = &current->thread;
1109
1110 WARN_ON(!irqs_disabled());
1111
1112 #ifdef CONFIG_PPC64
1113 /*
1114 * Collect processor utilization data per process
1115 */
1116 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1117 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1118 long unsigned start_tb, current_tb;
1119 start_tb = old_thread->start_tb;
1120 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1121 old_thread->accum_tb += (current_tb - start_tb);
1122 new_thread->start_tb = current_tb;
1123 }
1124 #endif /* CONFIG_PPC64 */
1125
1126 #ifdef CONFIG_PPC_STD_MMU_64
1127 batch = this_cpu_ptr(&ppc64_tlb_batch);
1128 if (batch->active) {
1129 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1130 if (batch->index)
1131 __flush_tlb_pending(batch);
1132 batch->active = 0;
1133 }
1134 #endif /* CONFIG_PPC_STD_MMU_64 */
1135
1136 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1137 switch_booke_debug_regs(&new->thread.debug);
1138 #else
1139 /*
1140 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1141 * schedule DABR
1142 */
1143 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1144 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1145 __set_breakpoint(&new->thread.hw_brk);
1146 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1147 #endif
1148
1149 /*
1150 * We need to save SPRs before treclaim/trecheckpoint as these will
1151 * change a number of them.
1152 */
1153 save_sprs(&prev->thread);
1154
1155 /* Save FPU, Altivec, VSX and SPE state */
1156 giveup_all(prev);
1157
1158 __switch_to_tm(prev, new);
1159
1160 /*
1161 * We can't take a PMU exception inside _switch() since there is a
1162 * window where the kernel stack SLB and the kernel stack are out
1163 * of sync. Hard disable here.
1164 */
1165 hard_irq_disable();
1166
1167 /*
1168 * Call restore_sprs() before calling _switch(). If we move it after
1169 * _switch() then we miss out on calling it for new tasks. The reason
1170 * for this is we manually create a stack frame for new tasks that
1171 * directly returns through ret_from_fork() or
1172 * ret_from_kernel_thread(). See copy_thread() for details.
1173 */
1174 restore_sprs(old_thread, new_thread);
1175
1176 last = _switch(old_thread, new_thread);
1177
1178 #ifdef CONFIG_PPC_STD_MMU_64
1179 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1180 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1181 batch = this_cpu_ptr(&ppc64_tlb_batch);
1182 batch->active = 1;
1183 }
1184
1185 if (current_thread_info()->task->thread.regs)
1186 restore_math(current_thread_info()->task->thread.regs);
1187 #endif /* CONFIG_PPC_STD_MMU_64 */
1188
1189 return last;
1190 }
1191
1192 static int instructions_to_print = 16;
1193
1194 static void show_instructions(struct pt_regs *regs)
1195 {
1196 int i;
1197 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1198 sizeof(int));
1199
1200 printk("Instruction dump:");
1201
1202 for (i = 0; i < instructions_to_print; i++) {
1203 int instr;
1204
1205 if (!(i % 8))
1206 pr_cont("\n");
1207
1208 #if !defined(CONFIG_BOOKE)
1209 /* If executing with the IMMU off, adjust pc rather
1210 * than print XXXXXXXX.
1211 */
1212 if (!(regs->msr & MSR_IR))
1213 pc = (unsigned long)phys_to_virt(pc);
1214 #endif
1215
1216 if (!__kernel_text_address(pc) ||
1217 probe_kernel_address((unsigned int __user *)pc, instr)) {
1218 pr_cont("XXXXXXXX ");
1219 } else {
1220 if (regs->nip == pc)
1221 pr_cont("<%08x> ", instr);
1222 else
1223 pr_cont("%08x ", instr);
1224 }
1225
1226 pc += sizeof(int);
1227 }
1228
1229 pr_cont("\n");
1230 }
1231
1232 struct regbit {
1233 unsigned long bit;
1234 const char *name;
1235 };
1236
1237 static struct regbit msr_bits[] = {
1238 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1239 {MSR_SF, "SF"},
1240 {MSR_HV, "HV"},
1241 #endif
1242 {MSR_VEC, "VEC"},
1243 {MSR_VSX, "VSX"},
1244 #ifdef CONFIG_BOOKE
1245 {MSR_CE, "CE"},
1246 #endif
1247 {MSR_EE, "EE"},
1248 {MSR_PR, "PR"},
1249 {MSR_FP, "FP"},
1250 {MSR_ME, "ME"},
1251 #ifdef CONFIG_BOOKE
1252 {MSR_DE, "DE"},
1253 #else
1254 {MSR_SE, "SE"},
1255 {MSR_BE, "BE"},
1256 #endif
1257 {MSR_IR, "IR"},
1258 {MSR_DR, "DR"},
1259 {MSR_PMM, "PMM"},
1260 #ifndef CONFIG_BOOKE
1261 {MSR_RI, "RI"},
1262 {MSR_LE, "LE"},
1263 #endif
1264 {0, NULL}
1265 };
1266
1267 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1268 {
1269 const char *s = "";
1270
1271 for (; bits->bit; ++bits)
1272 if (val & bits->bit) {
1273 pr_cont("%s%s", s, bits->name);
1274 s = sep;
1275 }
1276 }
1277
1278 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1279 static struct regbit msr_tm_bits[] = {
1280 {MSR_TS_T, "T"},
1281 {MSR_TS_S, "S"},
1282 {MSR_TM, "E"},
1283 {0, NULL}
1284 };
1285
1286 static void print_tm_bits(unsigned long val)
1287 {
1288 /*
1289 * This only prints something if at least one of the TM bit is set.
1290 * Inside the TM[], the output means:
1291 * E: Enabled (bit 32)
1292 * S: Suspended (bit 33)
1293 * T: Transactional (bit 34)
1294 */
1295 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1296 pr_cont(",TM[");
1297 print_bits(val, msr_tm_bits, "");
1298 pr_cont("]");
1299 }
1300 }
1301 #else
1302 static void print_tm_bits(unsigned long val) {}
1303 #endif
1304
1305 static void print_msr_bits(unsigned long val)
1306 {
1307 pr_cont("<");
1308 print_bits(val, msr_bits, ",");
1309 print_tm_bits(val);
1310 pr_cont(">");
1311 }
1312
1313 #ifdef CONFIG_PPC64
1314 #define REG "%016lx"
1315 #define REGS_PER_LINE 4
1316 #define LAST_VOLATILE 13
1317 #else
1318 #define REG "%08lx"
1319 #define REGS_PER_LINE 8
1320 #define LAST_VOLATILE 12
1321 #endif
1322
1323 void show_regs(struct pt_regs * regs)
1324 {
1325 int i, trap;
1326
1327 show_regs_print_info(KERN_DEFAULT);
1328
1329 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1330 regs->nip, regs->link, regs->ctr);
1331 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1332 regs, regs->trap, print_tainted(), init_utsname()->release);
1333 printk("MSR: "REG" ", regs->msr);
1334 print_msr_bits(regs->msr);
1335 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1336 trap = TRAP(regs);
1337 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1338 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1339 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1340 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1341 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1342 #else
1343 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1344 #endif
1345 #ifdef CONFIG_PPC64
1346 pr_cont("SOFTE: %ld ", regs->softe);
1347 #endif
1348 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1349 if (MSR_TM_ACTIVE(regs->msr))
1350 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1351 #endif
1352
1353 for (i = 0; i < 32; i++) {
1354 if ((i % REGS_PER_LINE) == 0)
1355 pr_cont("\nGPR%02d: ", i);
1356 pr_cont(REG " ", regs->gpr[i]);
1357 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1358 break;
1359 }
1360 pr_cont("\n");
1361 #ifdef CONFIG_KALLSYMS
1362 /*
1363 * Lookup NIP late so we have the best change of getting the
1364 * above info out without failing
1365 */
1366 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1367 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1368 #endif
1369 show_stack(current, (unsigned long *) regs->gpr[1]);
1370 if (!user_mode(regs))
1371 show_instructions(regs);
1372 }
1373
1374 void flush_thread(void)
1375 {
1376 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1377 flush_ptrace_hw_breakpoint(current);
1378 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1379 set_debug_reg_defaults(&current->thread);
1380 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1381 }
1382
1383 void
1384 release_thread(struct task_struct *t)
1385 {
1386 }
1387
1388 /*
1389 * this gets called so that we can store coprocessor state into memory and
1390 * copy the current task into the new thread.
1391 */
1392 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1393 {
1394 flush_all_to_thread(src);
1395 /*
1396 * Flush TM state out so we can copy it. __switch_to_tm() does this
1397 * flush but it removes the checkpointed state from the current CPU and
1398 * transitions the CPU out of TM mode. Hence we need to call
1399 * tm_recheckpoint_new_task() (on the same task) to restore the
1400 * checkpointed state back and the TM mode.
1401 *
1402 * Can't pass dst because it isn't ready. Doesn't matter, passing
1403 * dst is only important for __switch_to()
1404 */
1405 __switch_to_tm(src, src);
1406
1407 *dst = *src;
1408
1409 clear_task_ebb(dst);
1410
1411 return 0;
1412 }
1413
1414 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1415 {
1416 #ifdef CONFIG_PPC_STD_MMU_64
1417 unsigned long sp_vsid;
1418 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1419
1420 if (radix_enabled())
1421 return;
1422
1423 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1424 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1425 << SLB_VSID_SHIFT_1T;
1426 else
1427 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1428 << SLB_VSID_SHIFT;
1429 sp_vsid |= SLB_VSID_KERNEL | llp;
1430 p->thread.ksp_vsid = sp_vsid;
1431 #endif
1432 }
1433
1434 /*
1435 * Copy a thread..
1436 */
1437
1438 /*
1439 * Copy architecture-specific thread state
1440 */
1441 int copy_thread(unsigned long clone_flags, unsigned long usp,
1442 unsigned long kthread_arg, struct task_struct *p)
1443 {
1444 struct pt_regs *childregs, *kregs;
1445 extern void ret_from_fork(void);
1446 extern void ret_from_kernel_thread(void);
1447 void (*f)(void);
1448 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1449 struct thread_info *ti = task_thread_info(p);
1450
1451 klp_init_thread_info(ti);
1452
1453 /* Copy registers */
1454 sp -= sizeof(struct pt_regs);
1455 childregs = (struct pt_regs *) sp;
1456 if (unlikely(p->flags & PF_KTHREAD)) {
1457 /* kernel thread */
1458 memset(childregs, 0, sizeof(struct pt_regs));
1459 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1460 /* function */
1461 if (usp)
1462 childregs->gpr[14] = ppc_function_entry((void *)usp);
1463 #ifdef CONFIG_PPC64
1464 clear_tsk_thread_flag(p, TIF_32BIT);
1465 childregs->softe = 1;
1466 #endif
1467 childregs->gpr[15] = kthread_arg;
1468 p->thread.regs = NULL; /* no user register state */
1469 ti->flags |= _TIF_RESTOREALL;
1470 f = ret_from_kernel_thread;
1471 } else {
1472 /* user thread */
1473 struct pt_regs *regs = current_pt_regs();
1474 CHECK_FULL_REGS(regs);
1475 *childregs = *regs;
1476 if (usp)
1477 childregs->gpr[1] = usp;
1478 p->thread.regs = childregs;
1479 childregs->gpr[3] = 0; /* Result from fork() */
1480 if (clone_flags & CLONE_SETTLS) {
1481 #ifdef CONFIG_PPC64
1482 if (!is_32bit_task())
1483 childregs->gpr[13] = childregs->gpr[6];
1484 else
1485 #endif
1486 childregs->gpr[2] = childregs->gpr[6];
1487 }
1488
1489 f = ret_from_fork;
1490 }
1491 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1492 sp -= STACK_FRAME_OVERHEAD;
1493
1494 /*
1495 * The way this works is that at some point in the future
1496 * some task will call _switch to switch to the new task.
1497 * That will pop off the stack frame created below and start
1498 * the new task running at ret_from_fork. The new task will
1499 * do some house keeping and then return from the fork or clone
1500 * system call, using the stack frame created above.
1501 */
1502 ((unsigned long *)sp)[0] = 0;
1503 sp -= sizeof(struct pt_regs);
1504 kregs = (struct pt_regs *) sp;
1505 sp -= STACK_FRAME_OVERHEAD;
1506 p->thread.ksp = sp;
1507 #ifdef CONFIG_PPC32
1508 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1509 _ALIGN_UP(sizeof(struct thread_info), 16);
1510 #endif
1511 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1512 p->thread.ptrace_bps[0] = NULL;
1513 #endif
1514
1515 p->thread.fp_save_area = NULL;
1516 #ifdef CONFIG_ALTIVEC
1517 p->thread.vr_save_area = NULL;
1518 #endif
1519
1520 setup_ksp_vsid(p, sp);
1521
1522 #ifdef CONFIG_PPC64
1523 if (cpu_has_feature(CPU_FTR_DSCR)) {
1524 p->thread.dscr_inherit = current->thread.dscr_inherit;
1525 p->thread.dscr = mfspr(SPRN_DSCR);
1526 }
1527 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1528 p->thread.ppr = INIT_PPR;
1529 #endif
1530 kregs->nip = ppc_function_entry(f);
1531 return 0;
1532 }
1533
1534 /*
1535 * Set up a thread for executing a new program
1536 */
1537 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1538 {
1539 #ifdef CONFIG_PPC64
1540 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1541 #endif
1542
1543 /*
1544 * If we exec out of a kernel thread then thread.regs will not be
1545 * set. Do it now.
1546 */
1547 if (!current->thread.regs) {
1548 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1549 current->thread.regs = regs - 1;
1550 }
1551
1552 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1553 /*
1554 * Clear any transactional state, we're exec()ing. The cause is
1555 * not important as there will never be a recheckpoint so it's not
1556 * user visible.
1557 */
1558 if (MSR_TM_SUSPENDED(mfmsr()))
1559 tm_reclaim_current(0);
1560 #endif
1561
1562 memset(regs->gpr, 0, sizeof(regs->gpr));
1563 regs->ctr = 0;
1564 regs->link = 0;
1565 regs->xer = 0;
1566 regs->ccr = 0;
1567 regs->gpr[1] = sp;
1568
1569 /*
1570 * We have just cleared all the nonvolatile GPRs, so make
1571 * FULL_REGS(regs) return true. This is necessary to allow
1572 * ptrace to examine the thread immediately after exec.
1573 */
1574 regs->trap &= ~1UL;
1575
1576 #ifdef CONFIG_PPC32
1577 regs->mq = 0;
1578 regs->nip = start;
1579 regs->msr = MSR_USER;
1580 #else
1581 if (!is_32bit_task()) {
1582 unsigned long entry;
1583
1584 if (is_elf2_task()) {
1585 /* Look ma, no function descriptors! */
1586 entry = start;
1587
1588 /*
1589 * Ulrich says:
1590 * The latest iteration of the ABI requires that when
1591 * calling a function (at its global entry point),
1592 * the caller must ensure r12 holds the entry point
1593 * address (so that the function can quickly
1594 * establish addressability).
1595 */
1596 regs->gpr[12] = start;
1597 /* Make sure that's restored on entry to userspace. */
1598 set_thread_flag(TIF_RESTOREALL);
1599 } else {
1600 unsigned long toc;
1601
1602 /* start is a relocated pointer to the function
1603 * descriptor for the elf _start routine. The first
1604 * entry in the function descriptor is the entry
1605 * address of _start and the second entry is the TOC
1606 * value we need to use.
1607 */
1608 __get_user(entry, (unsigned long __user *)start);
1609 __get_user(toc, (unsigned long __user *)start+1);
1610
1611 /* Check whether the e_entry function descriptor entries
1612 * need to be relocated before we can use them.
1613 */
1614 if (load_addr != 0) {
1615 entry += load_addr;
1616 toc += load_addr;
1617 }
1618 regs->gpr[2] = toc;
1619 }
1620 regs->nip = entry;
1621 regs->msr = MSR_USER64;
1622 } else {
1623 regs->nip = start;
1624 regs->gpr[2] = 0;
1625 regs->msr = MSR_USER32;
1626 }
1627 #endif
1628 #ifdef CONFIG_VSX
1629 current->thread.used_vsr = 0;
1630 #endif
1631 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1632 current->thread.fp_save_area = NULL;
1633 #ifdef CONFIG_ALTIVEC
1634 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1635 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1636 current->thread.vr_save_area = NULL;
1637 current->thread.vrsave = 0;
1638 current->thread.used_vr = 0;
1639 #endif /* CONFIG_ALTIVEC */
1640 #ifdef CONFIG_SPE
1641 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1642 current->thread.acc = 0;
1643 current->thread.spefscr = 0;
1644 current->thread.used_spe = 0;
1645 #endif /* CONFIG_SPE */
1646 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1647 current->thread.tm_tfhar = 0;
1648 current->thread.tm_texasr = 0;
1649 current->thread.tm_tfiar = 0;
1650 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1651 }
1652 EXPORT_SYMBOL(start_thread);
1653
1654 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1655 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1656
1657 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1658 {
1659 struct pt_regs *regs = tsk->thread.regs;
1660
1661 /* This is a bit hairy. If we are an SPE enabled processor
1662 * (have embedded fp) we store the IEEE exception enable flags in
1663 * fpexc_mode. fpexc_mode is also used for setting FP exception
1664 * mode (asyn, precise, disabled) for 'Classic' FP. */
1665 if (val & PR_FP_EXC_SW_ENABLE) {
1666 #ifdef CONFIG_SPE
1667 if (cpu_has_feature(CPU_FTR_SPE)) {
1668 /*
1669 * When the sticky exception bits are set
1670 * directly by userspace, it must call prctl
1671 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1672 * in the existing prctl settings) or
1673 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1674 * the bits being set). <fenv.h> functions
1675 * saving and restoring the whole
1676 * floating-point environment need to do so
1677 * anyway to restore the prctl settings from
1678 * the saved environment.
1679 */
1680 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1681 tsk->thread.fpexc_mode = val &
1682 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1683 return 0;
1684 } else {
1685 return -EINVAL;
1686 }
1687 #else
1688 return -EINVAL;
1689 #endif
1690 }
1691
1692 /* on a CONFIG_SPE this does not hurt us. The bits that
1693 * __pack_fe01 use do not overlap with bits used for
1694 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1695 * on CONFIG_SPE implementations are reserved so writing to
1696 * them does not change anything */
1697 if (val > PR_FP_EXC_PRECISE)
1698 return -EINVAL;
1699 tsk->thread.fpexc_mode = __pack_fe01(val);
1700 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1701 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1702 | tsk->thread.fpexc_mode;
1703 return 0;
1704 }
1705
1706 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1707 {
1708 unsigned int val;
1709
1710 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1711 #ifdef CONFIG_SPE
1712 if (cpu_has_feature(CPU_FTR_SPE)) {
1713 /*
1714 * When the sticky exception bits are set
1715 * directly by userspace, it must call prctl
1716 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1717 * in the existing prctl settings) or
1718 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1719 * the bits being set). <fenv.h> functions
1720 * saving and restoring the whole
1721 * floating-point environment need to do so
1722 * anyway to restore the prctl settings from
1723 * the saved environment.
1724 */
1725 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1726 val = tsk->thread.fpexc_mode;
1727 } else
1728 return -EINVAL;
1729 #else
1730 return -EINVAL;
1731 #endif
1732 else
1733 val = __unpack_fe01(tsk->thread.fpexc_mode);
1734 return put_user(val, (unsigned int __user *) adr);
1735 }
1736
1737 int set_endian(struct task_struct *tsk, unsigned int val)
1738 {
1739 struct pt_regs *regs = tsk->thread.regs;
1740
1741 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1742 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1743 return -EINVAL;
1744
1745 if (regs == NULL)
1746 return -EINVAL;
1747
1748 if (val == PR_ENDIAN_BIG)
1749 regs->msr &= ~MSR_LE;
1750 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1751 regs->msr |= MSR_LE;
1752 else
1753 return -EINVAL;
1754
1755 return 0;
1756 }
1757
1758 int get_endian(struct task_struct *tsk, unsigned long adr)
1759 {
1760 struct pt_regs *regs = tsk->thread.regs;
1761 unsigned int val;
1762
1763 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1764 !cpu_has_feature(CPU_FTR_REAL_LE))
1765 return -EINVAL;
1766
1767 if (regs == NULL)
1768 return -EINVAL;
1769
1770 if (regs->msr & MSR_LE) {
1771 if (cpu_has_feature(CPU_FTR_REAL_LE))
1772 val = PR_ENDIAN_LITTLE;
1773 else
1774 val = PR_ENDIAN_PPC_LITTLE;
1775 } else
1776 val = PR_ENDIAN_BIG;
1777
1778 return put_user(val, (unsigned int __user *)adr);
1779 }
1780
1781 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1782 {
1783 tsk->thread.align_ctl = val;
1784 return 0;
1785 }
1786
1787 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1788 {
1789 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1790 }
1791
1792 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1793 unsigned long nbytes)
1794 {
1795 unsigned long stack_page;
1796 unsigned long cpu = task_cpu(p);
1797
1798 /*
1799 * Avoid crashing if the stack has overflowed and corrupted
1800 * task_cpu(p), which is in the thread_info struct.
1801 */
1802 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1803 stack_page = (unsigned long) hardirq_ctx[cpu];
1804 if (sp >= stack_page + sizeof(struct thread_struct)
1805 && sp <= stack_page + THREAD_SIZE - nbytes)
1806 return 1;
1807
1808 stack_page = (unsigned long) softirq_ctx[cpu];
1809 if (sp >= stack_page + sizeof(struct thread_struct)
1810 && sp <= stack_page + THREAD_SIZE - nbytes)
1811 return 1;
1812 }
1813 return 0;
1814 }
1815
1816 int validate_sp(unsigned long sp, struct task_struct *p,
1817 unsigned long nbytes)
1818 {
1819 unsigned long stack_page = (unsigned long)task_stack_page(p);
1820
1821 if (sp >= stack_page + sizeof(struct thread_struct)
1822 && sp <= stack_page + THREAD_SIZE - nbytes)
1823 return 1;
1824
1825 return valid_irq_stack(sp, p, nbytes);
1826 }
1827
1828 EXPORT_SYMBOL(validate_sp);
1829
1830 unsigned long get_wchan(struct task_struct *p)
1831 {
1832 unsigned long ip, sp;
1833 int count = 0;
1834
1835 if (!p || p == current || p->state == TASK_RUNNING)
1836 return 0;
1837
1838 sp = p->thread.ksp;
1839 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1840 return 0;
1841
1842 do {
1843 sp = *(unsigned long *)sp;
1844 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1845 return 0;
1846 if (count > 0) {
1847 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1848 if (!in_sched_functions(ip))
1849 return ip;
1850 }
1851 } while (count++ < 16);
1852 return 0;
1853 }
1854
1855 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1856
1857 void show_stack(struct task_struct *tsk, unsigned long *stack)
1858 {
1859 unsigned long sp, ip, lr, newsp;
1860 int count = 0;
1861 int firstframe = 1;
1862 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1863 int curr_frame = current->curr_ret_stack;
1864 extern void return_to_handler(void);
1865 unsigned long rth = (unsigned long)return_to_handler;
1866 #endif
1867
1868 sp = (unsigned long) stack;
1869 if (tsk == NULL)
1870 tsk = current;
1871 if (sp == 0) {
1872 if (tsk == current)
1873 sp = current_stack_pointer();
1874 else
1875 sp = tsk->thread.ksp;
1876 }
1877
1878 lr = 0;
1879 printk("Call Trace:\n");
1880 do {
1881 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1882 return;
1883
1884 stack = (unsigned long *) sp;
1885 newsp = stack[0];
1886 ip = stack[STACK_FRAME_LR_SAVE];
1887 if (!firstframe || ip != lr) {
1888 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1889 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1890 if ((ip == rth) && curr_frame >= 0) {
1891 pr_cont(" (%pS)",
1892 (void *)current->ret_stack[curr_frame].ret);
1893 curr_frame--;
1894 }
1895 #endif
1896 if (firstframe)
1897 pr_cont(" (unreliable)");
1898 pr_cont("\n");
1899 }
1900 firstframe = 0;
1901
1902 /*
1903 * See if this is an exception frame.
1904 * We look for the "regshere" marker in the current frame.
1905 */
1906 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1907 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1908 struct pt_regs *regs = (struct pt_regs *)
1909 (sp + STACK_FRAME_OVERHEAD);
1910 lr = regs->link;
1911 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1912 regs->trap, (void *)regs->nip, (void *)lr);
1913 firstframe = 1;
1914 }
1915
1916 sp = newsp;
1917 } while (count++ < kstack_depth_to_print);
1918 }
1919
1920 #ifdef CONFIG_PPC64
1921 /* Called with hard IRQs off */
1922 void notrace __ppc64_runlatch_on(void)
1923 {
1924 struct thread_info *ti = current_thread_info();
1925 unsigned long ctrl;
1926
1927 ctrl = mfspr(SPRN_CTRLF);
1928 ctrl |= CTRL_RUNLATCH;
1929 mtspr(SPRN_CTRLT, ctrl);
1930
1931 ti->local_flags |= _TLF_RUNLATCH;
1932 }
1933
1934 /* Called with hard IRQs off */
1935 void notrace __ppc64_runlatch_off(void)
1936 {
1937 struct thread_info *ti = current_thread_info();
1938 unsigned long ctrl;
1939
1940 ti->local_flags &= ~_TLF_RUNLATCH;
1941
1942 ctrl = mfspr(SPRN_CTRLF);
1943 ctrl &= ~CTRL_RUNLATCH;
1944 mtspr(SPRN_CTRLT, ctrl);
1945 }
1946 #endif /* CONFIG_PPC64 */
1947
1948 unsigned long arch_align_stack(unsigned long sp)
1949 {
1950 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1951 sp -= get_random_int() & ~PAGE_MASK;
1952 return sp & ~0xf;
1953 }
1954
1955 static inline unsigned long brk_rnd(void)
1956 {
1957 unsigned long rnd = 0;
1958
1959 /* 8MB for 32bit, 1GB for 64bit */
1960 if (is_32bit_task())
1961 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1962 else
1963 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1964
1965 return rnd << PAGE_SHIFT;
1966 }
1967
1968 unsigned long arch_randomize_brk(struct mm_struct *mm)
1969 {
1970 unsigned long base = mm->brk;
1971 unsigned long ret;
1972
1973 #ifdef CONFIG_PPC_STD_MMU_64
1974 /*
1975 * If we are using 1TB segments and we are allowed to randomise
1976 * the heap, we can put it above 1TB so it is backed by a 1TB
1977 * segment. Otherwise the heap will be in the bottom 1TB
1978 * which always uses 256MB segments and this may result in a
1979 * performance penalty. We don't need to worry about radix. For
1980 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1981 */
1982 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1983 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1984 #endif
1985
1986 ret = PAGE_ALIGN(base + brk_rnd());
1987
1988 if (ret < mm->brk)
1989 return mm->brk;
1990
1991 return ret;
1992 }
1993