]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc: Implement accurate task and CPU time accounting
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/config.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/elf.h>
30 #include <linux/init.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/kprobes.h>
39
40 #include <asm/pgtable.h>
41 #include <asm/uaccess.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/firmware.h>
51 #endif
52
53 extern unsigned long _get_SP(void);
54
55 #ifndef CONFIG_SMP
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 struct task_struct *last_task_used_spe = NULL;
59 #endif
60
61 /*
62 * Make sure the floating-point register state in the
63 * the thread_struct is up to date for task tsk.
64 */
65 void flush_fp_to_thread(struct task_struct *tsk)
66 {
67 if (tsk->thread.regs) {
68 /*
69 * We need to disable preemption here because if we didn't,
70 * another process could get scheduled after the regs->msr
71 * test but before we have finished saving the FP registers
72 * to the thread_struct. That process could take over the
73 * FPU, and then when we get scheduled again we would store
74 * bogus values for the remaining FP registers.
75 */
76 preempt_disable();
77 if (tsk->thread.regs->msr & MSR_FP) {
78 #ifdef CONFIG_SMP
79 /*
80 * This should only ever be called for current or
81 * for a stopped child process. Since we save away
82 * the FP register state on context switch on SMP,
83 * there is something wrong if a stopped child appears
84 * to still have its FP state in the CPU registers.
85 */
86 BUG_ON(tsk != current);
87 #endif
88 giveup_fpu(current);
89 }
90 preempt_enable();
91 }
92 }
93
94 void enable_kernel_fp(void)
95 {
96 WARN_ON(preemptible());
97
98 #ifdef CONFIG_SMP
99 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
100 giveup_fpu(current);
101 else
102 giveup_fpu(NULL); /* just enables FP for kernel */
103 #else
104 giveup_fpu(last_task_used_math);
105 #endif /* CONFIG_SMP */
106 }
107 EXPORT_SYMBOL(enable_kernel_fp);
108
109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
110 {
111 if (!tsk->thread.regs)
112 return 0;
113 flush_fp_to_thread(current);
114
115 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
116
117 return 1;
118 }
119
120 #ifdef CONFIG_ALTIVEC
121 void enable_kernel_altivec(void)
122 {
123 WARN_ON(preemptible());
124
125 #ifdef CONFIG_SMP
126 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
127 giveup_altivec(current);
128 else
129 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
130 #else
131 giveup_altivec(last_task_used_altivec);
132 #endif /* CONFIG_SMP */
133 }
134 EXPORT_SYMBOL(enable_kernel_altivec);
135
136 /*
137 * Make sure the VMX/Altivec register state in the
138 * the thread_struct is up to date for task tsk.
139 */
140 void flush_altivec_to_thread(struct task_struct *tsk)
141 {
142 if (tsk->thread.regs) {
143 preempt_disable();
144 if (tsk->thread.regs->msr & MSR_VEC) {
145 #ifdef CONFIG_SMP
146 BUG_ON(tsk != current);
147 #endif
148 giveup_altivec(current);
149 }
150 preempt_enable();
151 }
152 }
153
154 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
155 {
156 flush_altivec_to_thread(current);
157 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
158 return 1;
159 }
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_SPE
163
164 void enable_kernel_spe(void)
165 {
166 WARN_ON(preemptible());
167
168 #ifdef CONFIG_SMP
169 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
170 giveup_spe(current);
171 else
172 giveup_spe(NULL); /* just enable SPE for kernel - force */
173 #else
174 giveup_spe(last_task_used_spe);
175 #endif /* __SMP __ */
176 }
177 EXPORT_SYMBOL(enable_kernel_spe);
178
179 void flush_spe_to_thread(struct task_struct *tsk)
180 {
181 if (tsk->thread.regs) {
182 preempt_disable();
183 if (tsk->thread.regs->msr & MSR_SPE) {
184 #ifdef CONFIG_SMP
185 BUG_ON(tsk != current);
186 #endif
187 giveup_spe(current);
188 }
189 preempt_enable();
190 }
191 }
192
193 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
194 {
195 flush_spe_to_thread(current);
196 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
197 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
198 return 1;
199 }
200 #endif /* CONFIG_SPE */
201
202 #ifndef CONFIG_SMP
203 /*
204 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
205 * and the current task has some state, discard it.
206 */
207 void discard_lazy_cpu_state(void)
208 {
209 preempt_disable();
210 if (last_task_used_math == current)
211 last_task_used_math = NULL;
212 #ifdef CONFIG_ALTIVEC
213 if (last_task_used_altivec == current)
214 last_task_used_altivec = NULL;
215 #endif /* CONFIG_ALTIVEC */
216 #ifdef CONFIG_SPE
217 if (last_task_used_spe == current)
218 last_task_used_spe = NULL;
219 #endif
220 preempt_enable();
221 }
222 #endif /* CONFIG_SMP */
223
224 #ifdef CONFIG_PPC_MERGE /* XXX for now */
225 int set_dabr(unsigned long dabr)
226 {
227 if (ppc_md.set_dabr)
228 return ppc_md.set_dabr(dabr);
229
230 mtspr(SPRN_DABR, dabr);
231 return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
237 static DEFINE_PER_CPU(unsigned long, current_dabr);
238 #endif
239
240 struct task_struct *__switch_to(struct task_struct *prev,
241 struct task_struct *new)
242 {
243 struct thread_struct *new_thread, *old_thread;
244 unsigned long flags;
245 struct task_struct *last;
246
247 #ifdef CONFIG_SMP
248 /* avoid complexity of lazy save/restore of fpu
249 * by just saving it every time we switch out if
250 * this task used the fpu during the last quantum.
251 *
252 * If it tries to use the fpu again, it'll trap and
253 * reload its fp regs. So we don't have to do a restore
254 * every switch, just a save.
255 * -- Cort
256 */
257 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258 giveup_fpu(prev);
259 #ifdef CONFIG_ALTIVEC
260 /*
261 * If the previous thread used altivec in the last quantum
262 * (thus changing altivec regs) then save them.
263 * We used to check the VRSAVE register but not all apps
264 * set it, so we don't rely on it now (and in fact we need
265 * to save & restore VSCR even if VRSAVE == 0). -- paulus
266 *
267 * On SMP we always save/restore altivec regs just to avoid the
268 * complexity of changing processors.
269 * -- Cort
270 */
271 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
272 giveup_altivec(prev);
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
275 /*
276 * If the previous thread used spe in the last quantum
277 * (thus changing spe regs) then save them.
278 *
279 * On SMP we always save/restore spe regs just to avoid the
280 * complexity of changing processors.
281 */
282 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283 giveup_spe(prev);
284 #endif /* CONFIG_SPE */
285
286 #else /* CONFIG_SMP */
287 #ifdef CONFIG_ALTIVEC
288 /* Avoid the trap. On smp this this never happens since
289 * we don't set last_task_used_altivec -- Cort
290 */
291 if (new->thread.regs && last_task_used_altivec == new)
292 new->thread.regs->msr |= MSR_VEC;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_SPE
295 /* Avoid the trap. On smp this this never happens since
296 * we don't set last_task_used_spe
297 */
298 if (new->thread.regs && last_task_used_spe == new)
299 new->thread.regs->msr |= MSR_SPE;
300 #endif /* CONFIG_SPE */
301
302 #endif /* CONFIG_SMP */
303
304 #ifdef CONFIG_PPC64 /* for now */
305 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
306 set_dabr(new->thread.dabr);
307 __get_cpu_var(current_dabr) = new->thread.dabr;
308 }
309
310 flush_tlb_pending();
311 #endif
312
313 new_thread = &new->thread;
314 old_thread = &current->thread;
315
316 #ifdef CONFIG_PPC64
317 /*
318 * Collect processor utilization data per process
319 */
320 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
321 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
322 long unsigned start_tb, current_tb;
323 start_tb = old_thread->start_tb;
324 cu->current_tb = current_tb = mfspr(SPRN_PURR);
325 old_thread->accum_tb += (current_tb - start_tb);
326 new_thread->start_tb = current_tb;
327 }
328 #endif
329
330 local_irq_save(flags);
331
332 account_system_vtime(current);
333 account_process_vtime(current);
334 calculate_steal_time();
335
336 last = _switch(old_thread, new_thread);
337
338 local_irq_restore(flags);
339
340 return last;
341 }
342
343 static int instructions_to_print = 16;
344
345 #ifdef CONFIG_PPC64
346 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
347 (REGION_ID(pc) != VMALLOC_REGION_ID))
348 #else
349 #define BAD_PC(pc) ((pc) < KERNELBASE)
350 #endif
351
352 static void show_instructions(struct pt_regs *regs)
353 {
354 int i;
355 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
356 sizeof(int));
357
358 printk("Instruction dump:");
359
360 for (i = 0; i < instructions_to_print; i++) {
361 int instr;
362
363 if (!(i % 8))
364 printk("\n");
365
366 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
367 printk("XXXXXXXX ");
368 } else {
369 if (regs->nip == pc)
370 printk("<%08x> ", instr);
371 else
372 printk("%08x ", instr);
373 }
374
375 pc += sizeof(int);
376 }
377
378 printk("\n");
379 }
380
381 static struct regbit {
382 unsigned long bit;
383 const char *name;
384 } msr_bits[] = {
385 {MSR_EE, "EE"},
386 {MSR_PR, "PR"},
387 {MSR_FP, "FP"},
388 {MSR_ME, "ME"},
389 {MSR_IR, "IR"},
390 {MSR_DR, "DR"},
391 {0, NULL}
392 };
393
394 static void printbits(unsigned long val, struct regbit *bits)
395 {
396 const char *sep = "";
397
398 printk("<");
399 for (; bits->bit; ++bits)
400 if (val & bits->bit) {
401 printk("%s%s", sep, bits->name);
402 sep = ",";
403 }
404 printk(">");
405 }
406
407 #ifdef CONFIG_PPC64
408 #define REG "%016lX"
409 #define REGS_PER_LINE 4
410 #define LAST_VOLATILE 13
411 #else
412 #define REG "%08lX"
413 #define REGS_PER_LINE 8
414 #define LAST_VOLATILE 12
415 #endif
416
417 void show_regs(struct pt_regs * regs)
418 {
419 int i, trap;
420
421 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
422 regs->nip, regs->link, regs->ctr);
423 printk("REGS: %p TRAP: %04lx %s (%s)\n",
424 regs, regs->trap, print_tainted(), system_utsname.release);
425 printk("MSR: "REG" ", regs->msr);
426 printbits(regs->msr, msr_bits);
427 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
428 trap = TRAP(regs);
429 if (trap == 0x300 || trap == 0x600)
430 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
431 printk("TASK = %p[%d] '%s' THREAD: %p",
432 current, current->pid, current->comm, task_thread_info(current));
433
434 #ifdef CONFIG_SMP
435 printk(" CPU: %d", smp_processor_id());
436 #endif /* CONFIG_SMP */
437
438 for (i = 0; i < 32; i++) {
439 if ((i % REGS_PER_LINE) == 0)
440 printk("\n" KERN_INFO "GPR%02d: ", i);
441 printk(REG " ", regs->gpr[i]);
442 if (i == LAST_VOLATILE && !FULL_REGS(regs))
443 break;
444 }
445 printk("\n");
446 #ifdef CONFIG_KALLSYMS
447 /*
448 * Lookup NIP late so we have the best change of getting the
449 * above info out without failing
450 */
451 printk("NIP ["REG"] ", regs->nip);
452 print_symbol("%s\n", regs->nip);
453 printk("LR ["REG"] ", regs->link);
454 print_symbol("%s\n", regs->link);
455 #endif
456 show_stack(current, (unsigned long *) regs->gpr[1]);
457 if (!user_mode(regs))
458 show_instructions(regs);
459 }
460
461 void exit_thread(void)
462 {
463 kprobe_flush_task(current);
464 discard_lazy_cpu_state();
465 }
466
467 void flush_thread(void)
468 {
469 #ifdef CONFIG_PPC64
470 struct thread_info *t = current_thread_info();
471
472 if (t->flags & _TIF_ABI_PENDING)
473 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
474 #endif
475
476 discard_lazy_cpu_state();
477
478 #ifdef CONFIG_PPC64 /* for now */
479 if (current->thread.dabr) {
480 current->thread.dabr = 0;
481 set_dabr(0);
482 }
483 #endif
484 }
485
486 void
487 release_thread(struct task_struct *t)
488 {
489 }
490
491 /*
492 * This gets called before we allocate a new thread and copy
493 * the current task into it.
494 */
495 void prepare_to_copy(struct task_struct *tsk)
496 {
497 flush_fp_to_thread(current);
498 flush_altivec_to_thread(current);
499 flush_spe_to_thread(current);
500 }
501
502 /*
503 * Copy a thread..
504 */
505 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
506 unsigned long unused, struct task_struct *p,
507 struct pt_regs *regs)
508 {
509 struct pt_regs *childregs, *kregs;
510 extern void ret_from_fork(void);
511 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
512
513 CHECK_FULL_REGS(regs);
514 /* Copy registers */
515 sp -= sizeof(struct pt_regs);
516 childregs = (struct pt_regs *) sp;
517 *childregs = *regs;
518 if ((childregs->msr & MSR_PR) == 0) {
519 /* for kernel thread, set `current' and stackptr in new task */
520 childregs->gpr[1] = sp + sizeof(struct pt_regs);
521 #ifdef CONFIG_PPC32
522 childregs->gpr[2] = (unsigned long) p;
523 #else
524 clear_tsk_thread_flag(p, TIF_32BIT);
525 #endif
526 p->thread.regs = NULL; /* no user register state */
527 } else {
528 childregs->gpr[1] = usp;
529 p->thread.regs = childregs;
530 if (clone_flags & CLONE_SETTLS) {
531 #ifdef CONFIG_PPC64
532 if (!test_thread_flag(TIF_32BIT))
533 childregs->gpr[13] = childregs->gpr[6];
534 else
535 #endif
536 childregs->gpr[2] = childregs->gpr[6];
537 }
538 }
539 childregs->gpr[3] = 0; /* Result from fork() */
540 sp -= STACK_FRAME_OVERHEAD;
541
542 /*
543 * The way this works is that at some point in the future
544 * some task will call _switch to switch to the new task.
545 * That will pop off the stack frame created below and start
546 * the new task running at ret_from_fork. The new task will
547 * do some house keeping and then return from the fork or clone
548 * system call, using the stack frame created above.
549 */
550 sp -= sizeof(struct pt_regs);
551 kregs = (struct pt_regs *) sp;
552 sp -= STACK_FRAME_OVERHEAD;
553 p->thread.ksp = sp;
554
555 #ifdef CONFIG_PPC64
556 if (cpu_has_feature(CPU_FTR_SLB)) {
557 unsigned long sp_vsid = get_kernel_vsid(sp);
558 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
559
560 sp_vsid <<= SLB_VSID_SHIFT;
561 sp_vsid |= SLB_VSID_KERNEL | llp;
562 p->thread.ksp_vsid = sp_vsid;
563 }
564
565 /*
566 * The PPC64 ABI makes use of a TOC to contain function
567 * pointers. The function (ret_from_except) is actually a pointer
568 * to the TOC entry. The first entry is a pointer to the actual
569 * function.
570 */
571 kregs->nip = *((unsigned long *)ret_from_fork);
572 #else
573 kregs->nip = (unsigned long)ret_from_fork;
574 p->thread.last_syscall = -1;
575 #endif
576
577 return 0;
578 }
579
580 /*
581 * Set up a thread for executing a new program
582 */
583 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
584 {
585 #ifdef CONFIG_PPC64
586 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
587 #endif
588
589 set_fs(USER_DS);
590
591 /*
592 * If we exec out of a kernel thread then thread.regs will not be
593 * set. Do it now.
594 */
595 if (!current->thread.regs) {
596 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
597 current->thread.regs = regs - 1;
598 }
599
600 memset(regs->gpr, 0, sizeof(regs->gpr));
601 regs->ctr = 0;
602 regs->link = 0;
603 regs->xer = 0;
604 regs->ccr = 0;
605 regs->gpr[1] = sp;
606
607 #ifdef CONFIG_PPC32
608 regs->mq = 0;
609 regs->nip = start;
610 regs->msr = MSR_USER;
611 #else
612 if (!test_thread_flag(TIF_32BIT)) {
613 unsigned long entry, toc;
614
615 /* start is a relocated pointer to the function descriptor for
616 * the elf _start routine. The first entry in the function
617 * descriptor is the entry address of _start and the second
618 * entry is the TOC value we need to use.
619 */
620 __get_user(entry, (unsigned long __user *)start);
621 __get_user(toc, (unsigned long __user *)start+1);
622
623 /* Check whether the e_entry function descriptor entries
624 * need to be relocated before we can use them.
625 */
626 if (load_addr != 0) {
627 entry += load_addr;
628 toc += load_addr;
629 }
630 regs->nip = entry;
631 regs->gpr[2] = toc;
632 regs->msr = MSR_USER64;
633 } else {
634 regs->nip = start;
635 regs->gpr[2] = 0;
636 regs->msr = MSR_USER32;
637 }
638 #endif
639
640 discard_lazy_cpu_state();
641 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
642 current->thread.fpscr.val = 0;
643 #ifdef CONFIG_ALTIVEC
644 memset(current->thread.vr, 0, sizeof(current->thread.vr));
645 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
646 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
647 current->thread.vrsave = 0;
648 current->thread.used_vr = 0;
649 #endif /* CONFIG_ALTIVEC */
650 #ifdef CONFIG_SPE
651 memset(current->thread.evr, 0, sizeof(current->thread.evr));
652 current->thread.acc = 0;
653 current->thread.spefscr = 0;
654 current->thread.used_spe = 0;
655 #endif /* CONFIG_SPE */
656 }
657
658 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
659 | PR_FP_EXC_RES | PR_FP_EXC_INV)
660
661 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
662 {
663 struct pt_regs *regs = tsk->thread.regs;
664
665 /* This is a bit hairy. If we are an SPE enabled processor
666 * (have embedded fp) we store the IEEE exception enable flags in
667 * fpexc_mode. fpexc_mode is also used for setting FP exception
668 * mode (asyn, precise, disabled) for 'Classic' FP. */
669 if (val & PR_FP_EXC_SW_ENABLE) {
670 #ifdef CONFIG_SPE
671 tsk->thread.fpexc_mode = val &
672 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
673 return 0;
674 #else
675 return -EINVAL;
676 #endif
677 }
678
679 /* on a CONFIG_SPE this does not hurt us. The bits that
680 * __pack_fe01 use do not overlap with bits used for
681 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
682 * on CONFIG_SPE implementations are reserved so writing to
683 * them does not change anything */
684 if (val > PR_FP_EXC_PRECISE)
685 return -EINVAL;
686 tsk->thread.fpexc_mode = __pack_fe01(val);
687 if (regs != NULL && (regs->msr & MSR_FP) != 0)
688 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
689 | tsk->thread.fpexc_mode;
690 return 0;
691 }
692
693 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
694 {
695 unsigned int val;
696
697 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
698 #ifdef CONFIG_SPE
699 val = tsk->thread.fpexc_mode;
700 #else
701 return -EINVAL;
702 #endif
703 else
704 val = __unpack_fe01(tsk->thread.fpexc_mode);
705 return put_user(val, (unsigned int __user *) adr);
706 }
707
708 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
709
710 int sys_clone(unsigned long clone_flags, unsigned long usp,
711 int __user *parent_tidp, void __user *child_threadptr,
712 int __user *child_tidp, int p6,
713 struct pt_regs *regs)
714 {
715 CHECK_FULL_REGS(regs);
716 if (usp == 0)
717 usp = regs->gpr[1]; /* stack pointer for child */
718 #ifdef CONFIG_PPC64
719 if (test_thread_flag(TIF_32BIT)) {
720 parent_tidp = TRUNC_PTR(parent_tidp);
721 child_tidp = TRUNC_PTR(child_tidp);
722 }
723 #endif
724 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
725 }
726
727 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
728 unsigned long p4, unsigned long p5, unsigned long p6,
729 struct pt_regs *regs)
730 {
731 CHECK_FULL_REGS(regs);
732 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
733 }
734
735 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
736 unsigned long p4, unsigned long p5, unsigned long p6,
737 struct pt_regs *regs)
738 {
739 CHECK_FULL_REGS(regs);
740 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
741 regs, 0, NULL, NULL);
742 }
743
744 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
745 unsigned long a3, unsigned long a4, unsigned long a5,
746 struct pt_regs *regs)
747 {
748 int error;
749 char *filename;
750
751 filename = getname((char __user *) a0);
752 error = PTR_ERR(filename);
753 if (IS_ERR(filename))
754 goto out;
755 flush_fp_to_thread(current);
756 flush_altivec_to_thread(current);
757 flush_spe_to_thread(current);
758 error = do_execve(filename, (char __user * __user *) a1,
759 (char __user * __user *) a2, regs);
760 if (error == 0) {
761 task_lock(current);
762 current->ptrace &= ~PT_DTRACE;
763 task_unlock(current);
764 }
765 putname(filename);
766 out:
767 return error;
768 }
769
770 static int validate_sp(unsigned long sp, struct task_struct *p,
771 unsigned long nbytes)
772 {
773 unsigned long stack_page = (unsigned long)task_stack_page(p);
774
775 if (sp >= stack_page + sizeof(struct thread_struct)
776 && sp <= stack_page + THREAD_SIZE - nbytes)
777 return 1;
778
779 #ifdef CONFIG_IRQSTACKS
780 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
781 if (sp >= stack_page + sizeof(struct thread_struct)
782 && sp <= stack_page + THREAD_SIZE - nbytes)
783 return 1;
784
785 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
786 if (sp >= stack_page + sizeof(struct thread_struct)
787 && sp <= stack_page + THREAD_SIZE - nbytes)
788 return 1;
789 #endif
790
791 return 0;
792 }
793
794 #ifdef CONFIG_PPC64
795 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
796 #define FRAME_LR_SAVE 2
797 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
798 #define REGS_MARKER 0x7265677368657265ul
799 #define FRAME_MARKER 12
800 #else
801 #define MIN_STACK_FRAME 16
802 #define FRAME_LR_SAVE 1
803 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
804 #define REGS_MARKER 0x72656773ul
805 #define FRAME_MARKER 2
806 #endif
807
808 unsigned long get_wchan(struct task_struct *p)
809 {
810 unsigned long ip, sp;
811 int count = 0;
812
813 if (!p || p == current || p->state == TASK_RUNNING)
814 return 0;
815
816 sp = p->thread.ksp;
817 if (!validate_sp(sp, p, MIN_STACK_FRAME))
818 return 0;
819
820 do {
821 sp = *(unsigned long *)sp;
822 if (!validate_sp(sp, p, MIN_STACK_FRAME))
823 return 0;
824 if (count > 0) {
825 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
826 if (!in_sched_functions(ip))
827 return ip;
828 }
829 } while (count++ < 16);
830 return 0;
831 }
832 EXPORT_SYMBOL(get_wchan);
833
834 static int kstack_depth_to_print = 64;
835
836 void show_stack(struct task_struct *tsk, unsigned long *stack)
837 {
838 unsigned long sp, ip, lr, newsp;
839 int count = 0;
840 int firstframe = 1;
841
842 sp = (unsigned long) stack;
843 if (tsk == NULL)
844 tsk = current;
845 if (sp == 0) {
846 if (tsk == current)
847 asm("mr %0,1" : "=r" (sp));
848 else
849 sp = tsk->thread.ksp;
850 }
851
852 lr = 0;
853 printk("Call Trace:\n");
854 do {
855 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
856 return;
857
858 stack = (unsigned long *) sp;
859 newsp = stack[0];
860 ip = stack[FRAME_LR_SAVE];
861 if (!firstframe || ip != lr) {
862 printk("["REG"] ["REG"] ", sp, ip);
863 print_symbol("%s", ip);
864 if (firstframe)
865 printk(" (unreliable)");
866 printk("\n");
867 }
868 firstframe = 0;
869
870 /*
871 * See if this is an exception frame.
872 * We look for the "regshere" marker in the current frame.
873 */
874 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
875 && stack[FRAME_MARKER] == REGS_MARKER) {
876 struct pt_regs *regs = (struct pt_regs *)
877 (sp + STACK_FRAME_OVERHEAD);
878 printk("--- Exception: %lx", regs->trap);
879 print_symbol(" at %s\n", regs->nip);
880 lr = regs->link;
881 print_symbol(" LR = %s\n", lr);
882 firstframe = 1;
883 }
884
885 sp = newsp;
886 } while (count++ < kstack_depth_to_print);
887 }
888
889 void dump_stack(void)
890 {
891 show_stack(current, NULL);
892 }
893 EXPORT_SYMBOL(dump_stack);
894
895 #ifdef CONFIG_PPC64
896 void ppc64_runlatch_on(void)
897 {
898 unsigned long ctrl;
899
900 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
901 HMT_medium();
902
903 ctrl = mfspr(SPRN_CTRLF);
904 ctrl |= CTRL_RUNLATCH;
905 mtspr(SPRN_CTRLT, ctrl);
906
907 set_thread_flag(TIF_RUNLATCH);
908 }
909 }
910
911 void ppc64_runlatch_off(void)
912 {
913 unsigned long ctrl;
914
915 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
916 HMT_medium();
917
918 clear_thread_flag(TIF_RUNLATCH);
919
920 ctrl = mfspr(SPRN_CTRLF);
921 ctrl &= ~CTRL_RUNLATCH;
922 mtspr(SPRN_CTRLT, ctrl);
923 }
924 }
925 #endif