]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc: Always restore FPU/VEC/VSX if hardware transactional memory in use
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73
74 extern unsigned long _get_SP(void);
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91 }
92
93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 return MSR_TM_ACTIVE(msr);
96 }
97 #else
98 static inline bool msr_tm_active(unsigned long msr) { return false; }
99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104
105 static int __init enable_strict_msr_control(char *str)
106 {
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
114 void msr_check_and_set(unsigned long bits)
115 {
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
118
119 newmsr = oldmsr | bits;
120
121 #ifdef CONFIG_VSX
122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 newmsr |= MSR_VSX;
124 #endif
125
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
128 }
129
130 void __msr_check_and_clear(unsigned long bits)
131 {
132 unsigned long oldmsr = mfmsr();
133 unsigned long newmsr;
134
135 newmsr = oldmsr & ~bits;
136
137 #ifdef CONFIG_VSX
138 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
139 newmsr &= ~MSR_VSX;
140 #endif
141
142 if (oldmsr != newmsr)
143 mtmsr_isync(newmsr);
144 }
145 EXPORT_SYMBOL(__msr_check_and_clear);
146
147 #ifdef CONFIG_PPC_FPU
148 void __giveup_fpu(struct task_struct *tsk)
149 {
150 unsigned long msr;
151
152 save_fpu(tsk);
153 msr = tsk->thread.regs->msr;
154 msr &= ~MSR_FP;
155 #ifdef CONFIG_VSX
156 if (cpu_has_feature(CPU_FTR_VSX))
157 msr &= ~MSR_VSX;
158 #endif
159 tsk->thread.regs->msr = msr;
160 }
161
162 void giveup_fpu(struct task_struct *tsk)
163 {
164 check_if_tm_restore_required(tsk);
165
166 msr_check_and_set(MSR_FP);
167 __giveup_fpu(tsk);
168 msr_check_and_clear(MSR_FP);
169 }
170 EXPORT_SYMBOL(giveup_fpu);
171
172 /*
173 * Make sure the floating-point register state in the
174 * the thread_struct is up to date for task tsk.
175 */
176 void flush_fp_to_thread(struct task_struct *tsk)
177 {
178 if (tsk->thread.regs) {
179 /*
180 * We need to disable preemption here because if we didn't,
181 * another process could get scheduled after the regs->msr
182 * test but before we have finished saving the FP registers
183 * to the thread_struct. That process could take over the
184 * FPU, and then when we get scheduled again we would store
185 * bogus values for the remaining FP registers.
186 */
187 preempt_disable();
188 if (tsk->thread.regs->msr & MSR_FP) {
189 /*
190 * This should only ever be called for current or
191 * for a stopped child process. Since we save away
192 * the FP register state on context switch,
193 * there is something wrong if a stopped child appears
194 * to still have its FP state in the CPU registers.
195 */
196 BUG_ON(tsk != current);
197 giveup_fpu(tsk);
198 }
199 preempt_enable();
200 }
201 }
202 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
203
204 void enable_kernel_fp(void)
205 {
206 WARN_ON(preemptible());
207
208 msr_check_and_set(MSR_FP);
209
210 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
211 check_if_tm_restore_required(current);
212 __giveup_fpu(current);
213 }
214 }
215 EXPORT_SYMBOL(enable_kernel_fp);
216
217 static int restore_fp(struct task_struct *tsk) {
218 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
219 load_fp_state(&current->thread.fp_state);
220 current->thread.load_fp++;
221 return 1;
222 }
223 return 0;
224 }
225 #else
226 static int restore_fp(struct task_struct *tsk) { return 0; }
227 #endif /* CONFIG_PPC_FPU */
228
229 #ifdef CONFIG_ALTIVEC
230 #define loadvec(thr) ((thr).load_vec)
231
232 static void __giveup_altivec(struct task_struct *tsk)
233 {
234 unsigned long msr;
235
236 save_altivec(tsk);
237 msr = tsk->thread.regs->msr;
238 msr &= ~MSR_VEC;
239 #ifdef CONFIG_VSX
240 if (cpu_has_feature(CPU_FTR_VSX))
241 msr &= ~MSR_VSX;
242 #endif
243 tsk->thread.regs->msr = msr;
244 }
245
246 void giveup_altivec(struct task_struct *tsk)
247 {
248 check_if_tm_restore_required(tsk);
249
250 msr_check_and_set(MSR_VEC);
251 __giveup_altivec(tsk);
252 msr_check_and_clear(MSR_VEC);
253 }
254 EXPORT_SYMBOL(giveup_altivec);
255
256 void enable_kernel_altivec(void)
257 {
258 WARN_ON(preemptible());
259
260 msr_check_and_set(MSR_VEC);
261
262 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
263 check_if_tm_restore_required(current);
264 __giveup_altivec(current);
265 }
266 }
267 EXPORT_SYMBOL(enable_kernel_altivec);
268
269 /*
270 * Make sure the VMX/Altivec register state in the
271 * the thread_struct is up to date for task tsk.
272 */
273 void flush_altivec_to_thread(struct task_struct *tsk)
274 {
275 if (tsk->thread.regs) {
276 preempt_disable();
277 if (tsk->thread.regs->msr & MSR_VEC) {
278 BUG_ON(tsk != current);
279 giveup_altivec(tsk);
280 }
281 preempt_enable();
282 }
283 }
284 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
285
286 static int restore_altivec(struct task_struct *tsk)
287 {
288 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
289 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
290 load_vr_state(&tsk->thread.vr_state);
291 tsk->thread.used_vr = 1;
292 tsk->thread.load_vec++;
293
294 return 1;
295 }
296 return 0;
297 }
298 #else
299 #define loadvec(thr) 0
300 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
301 #endif /* CONFIG_ALTIVEC */
302
303 #ifdef CONFIG_VSX
304 static void __giveup_vsx(struct task_struct *tsk)
305 {
306 if (tsk->thread.regs->msr & MSR_FP)
307 __giveup_fpu(tsk);
308 if (tsk->thread.regs->msr & MSR_VEC)
309 __giveup_altivec(tsk);
310 tsk->thread.regs->msr &= ~MSR_VSX;
311 }
312
313 static void giveup_vsx(struct task_struct *tsk)
314 {
315 check_if_tm_restore_required(tsk);
316
317 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
318 __giveup_vsx(tsk);
319 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
320 }
321
322 static void save_vsx(struct task_struct *tsk)
323 {
324 if (tsk->thread.regs->msr & MSR_FP)
325 save_fpu(tsk);
326 if (tsk->thread.regs->msr & MSR_VEC)
327 save_altivec(tsk);
328 }
329
330 void enable_kernel_vsx(void)
331 {
332 WARN_ON(preemptible());
333
334 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
335
336 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
337 check_if_tm_restore_required(current);
338 if (current->thread.regs->msr & MSR_FP)
339 __giveup_fpu(current);
340 if (current->thread.regs->msr & MSR_VEC)
341 __giveup_altivec(current);
342 __giveup_vsx(current);
343 }
344 }
345 EXPORT_SYMBOL(enable_kernel_vsx);
346
347 void flush_vsx_to_thread(struct task_struct *tsk)
348 {
349 if (tsk->thread.regs) {
350 preempt_disable();
351 if (tsk->thread.regs->msr & MSR_VSX) {
352 BUG_ON(tsk != current);
353 giveup_vsx(tsk);
354 }
355 preempt_enable();
356 }
357 }
358 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
359
360 static int restore_vsx(struct task_struct *tsk)
361 {
362 if (cpu_has_feature(CPU_FTR_VSX)) {
363 tsk->thread.used_vsr = 1;
364 return 1;
365 }
366
367 return 0;
368 }
369 #else
370 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
371 static inline void save_vsx(struct task_struct *tsk) { }
372 #endif /* CONFIG_VSX */
373
374 #ifdef CONFIG_SPE
375 void giveup_spe(struct task_struct *tsk)
376 {
377 check_if_tm_restore_required(tsk);
378
379 msr_check_and_set(MSR_SPE);
380 __giveup_spe(tsk);
381 msr_check_and_clear(MSR_SPE);
382 }
383 EXPORT_SYMBOL(giveup_spe);
384
385 void enable_kernel_spe(void)
386 {
387 WARN_ON(preemptible());
388
389 msr_check_and_set(MSR_SPE);
390
391 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
392 check_if_tm_restore_required(current);
393 __giveup_spe(current);
394 }
395 }
396 EXPORT_SYMBOL(enable_kernel_spe);
397
398 void flush_spe_to_thread(struct task_struct *tsk)
399 {
400 if (tsk->thread.regs) {
401 preempt_disable();
402 if (tsk->thread.regs->msr & MSR_SPE) {
403 BUG_ON(tsk != current);
404 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
405 giveup_spe(tsk);
406 }
407 preempt_enable();
408 }
409 }
410 #endif /* CONFIG_SPE */
411
412 static unsigned long msr_all_available;
413
414 static int __init init_msr_all_available(void)
415 {
416 #ifdef CONFIG_PPC_FPU
417 msr_all_available |= MSR_FP;
418 #endif
419 #ifdef CONFIG_ALTIVEC
420 if (cpu_has_feature(CPU_FTR_ALTIVEC))
421 msr_all_available |= MSR_VEC;
422 #endif
423 #ifdef CONFIG_VSX
424 if (cpu_has_feature(CPU_FTR_VSX))
425 msr_all_available |= MSR_VSX;
426 #endif
427 #ifdef CONFIG_SPE
428 if (cpu_has_feature(CPU_FTR_SPE))
429 msr_all_available |= MSR_SPE;
430 #endif
431
432 return 0;
433 }
434 early_initcall(init_msr_all_available);
435
436 void giveup_all(struct task_struct *tsk)
437 {
438 unsigned long usermsr;
439
440 if (!tsk->thread.regs)
441 return;
442
443 usermsr = tsk->thread.regs->msr;
444
445 if ((usermsr & msr_all_available) == 0)
446 return;
447
448 msr_check_and_set(msr_all_available);
449
450 #ifdef CONFIG_PPC_FPU
451 if (usermsr & MSR_FP)
452 __giveup_fpu(tsk);
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 if (usermsr & MSR_VEC)
456 __giveup_altivec(tsk);
457 #endif
458 #ifdef CONFIG_VSX
459 if (usermsr & MSR_VSX)
460 __giveup_vsx(tsk);
461 #endif
462 #ifdef CONFIG_SPE
463 if (usermsr & MSR_SPE)
464 __giveup_spe(tsk);
465 #endif
466
467 msr_check_and_clear(msr_all_available);
468 }
469 EXPORT_SYMBOL(giveup_all);
470
471 void restore_math(struct pt_regs *regs)
472 {
473 unsigned long msr;
474
475 if (!msr_tm_active(regs->msr) &&
476 !current->thread.load_fp && !loadvec(current->thread))
477 return;
478
479 msr = regs->msr;
480 msr_check_and_set(msr_all_available);
481
482 /*
483 * Only reload if the bit is not set in the user MSR, the bit BEING set
484 * indicates that the registers are hot
485 */
486 if ((!(msr & MSR_FP)) && restore_fp(current))
487 msr |= MSR_FP | current->thread.fpexc_mode;
488
489 if ((!(msr & MSR_VEC)) && restore_altivec(current))
490 msr |= MSR_VEC;
491
492 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
493 restore_vsx(current)) {
494 msr |= MSR_VSX;
495 }
496
497 msr_check_and_clear(msr_all_available);
498
499 regs->msr = msr;
500 }
501
502 void save_all(struct task_struct *tsk)
503 {
504 unsigned long usermsr;
505
506 if (!tsk->thread.regs)
507 return;
508
509 usermsr = tsk->thread.regs->msr;
510
511 if ((usermsr & msr_all_available) == 0)
512 return;
513
514 msr_check_and_set(msr_all_available);
515
516 /*
517 * Saving the way the register space is in hardware, save_vsx boils
518 * down to a save_fpu() and save_altivec()
519 */
520 if (usermsr & MSR_VSX) {
521 save_vsx(tsk);
522 } else {
523 if (usermsr & MSR_FP)
524 save_fpu(tsk);
525
526 if (usermsr & MSR_VEC)
527 save_altivec(tsk);
528 }
529
530 if (usermsr & MSR_SPE)
531 __giveup_spe(tsk);
532
533 msr_check_and_clear(msr_all_available);
534 }
535
536 void flush_all_to_thread(struct task_struct *tsk)
537 {
538 if (tsk->thread.regs) {
539 preempt_disable();
540 BUG_ON(tsk != current);
541 save_all(tsk);
542
543 #ifdef CONFIG_SPE
544 if (tsk->thread.regs->msr & MSR_SPE)
545 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
546 #endif
547
548 preempt_enable();
549 }
550 }
551 EXPORT_SYMBOL(flush_all_to_thread);
552
553 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
554 void do_send_trap(struct pt_regs *regs, unsigned long address,
555 unsigned long error_code, int signal_code, int breakpt)
556 {
557 siginfo_t info;
558
559 current->thread.trap_nr = signal_code;
560 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
561 11, SIGSEGV) == NOTIFY_STOP)
562 return;
563
564 /* Deliver the signal to userspace */
565 info.si_signo = SIGTRAP;
566 info.si_errno = breakpt; /* breakpoint or watchpoint id */
567 info.si_code = signal_code;
568 info.si_addr = (void __user *)address;
569 force_sig_info(SIGTRAP, &info, current);
570 }
571 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
572 void do_break (struct pt_regs *regs, unsigned long address,
573 unsigned long error_code)
574 {
575 siginfo_t info;
576
577 current->thread.trap_nr = TRAP_HWBKPT;
578 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
579 11, SIGSEGV) == NOTIFY_STOP)
580 return;
581
582 if (debugger_break_match(regs))
583 return;
584
585 /* Clear the breakpoint */
586 hw_breakpoint_disable();
587
588 /* Deliver the signal to userspace */
589 info.si_signo = SIGTRAP;
590 info.si_errno = 0;
591 info.si_code = TRAP_HWBKPT;
592 info.si_addr = (void __user *)address;
593 force_sig_info(SIGTRAP, &info, current);
594 }
595 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
596
597 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
598
599 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
600 /*
601 * Set the debug registers back to their default "safe" values.
602 */
603 static void set_debug_reg_defaults(struct thread_struct *thread)
604 {
605 thread->debug.iac1 = thread->debug.iac2 = 0;
606 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
607 thread->debug.iac3 = thread->debug.iac4 = 0;
608 #endif
609 thread->debug.dac1 = thread->debug.dac2 = 0;
610 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
611 thread->debug.dvc1 = thread->debug.dvc2 = 0;
612 #endif
613 thread->debug.dbcr0 = 0;
614 #ifdef CONFIG_BOOKE
615 /*
616 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
617 */
618 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
619 DBCR1_IAC3US | DBCR1_IAC4US;
620 /*
621 * Force Data Address Compare User/Supervisor bits to be User-only
622 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
623 */
624 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
625 #else
626 thread->debug.dbcr1 = 0;
627 #endif
628 }
629
630 static void prime_debug_regs(struct debug_reg *debug)
631 {
632 /*
633 * We could have inherited MSR_DE from userspace, since
634 * it doesn't get cleared on exception entry. Make sure
635 * MSR_DE is clear before we enable any debug events.
636 */
637 mtmsr(mfmsr() & ~MSR_DE);
638
639 mtspr(SPRN_IAC1, debug->iac1);
640 mtspr(SPRN_IAC2, debug->iac2);
641 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
642 mtspr(SPRN_IAC3, debug->iac3);
643 mtspr(SPRN_IAC4, debug->iac4);
644 #endif
645 mtspr(SPRN_DAC1, debug->dac1);
646 mtspr(SPRN_DAC2, debug->dac2);
647 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
648 mtspr(SPRN_DVC1, debug->dvc1);
649 mtspr(SPRN_DVC2, debug->dvc2);
650 #endif
651 mtspr(SPRN_DBCR0, debug->dbcr0);
652 mtspr(SPRN_DBCR1, debug->dbcr1);
653 #ifdef CONFIG_BOOKE
654 mtspr(SPRN_DBCR2, debug->dbcr2);
655 #endif
656 }
657 /*
658 * Unless neither the old or new thread are making use of the
659 * debug registers, set the debug registers from the values
660 * stored in the new thread.
661 */
662 void switch_booke_debug_regs(struct debug_reg *new_debug)
663 {
664 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
665 || (new_debug->dbcr0 & DBCR0_IDM))
666 prime_debug_regs(new_debug);
667 }
668 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
669 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
670 #ifndef CONFIG_HAVE_HW_BREAKPOINT
671 static void set_debug_reg_defaults(struct thread_struct *thread)
672 {
673 thread->hw_brk.address = 0;
674 thread->hw_brk.type = 0;
675 set_breakpoint(&thread->hw_brk);
676 }
677 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
678 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
679
680 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
681 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
682 {
683 mtspr(SPRN_DAC1, dabr);
684 #ifdef CONFIG_PPC_47x
685 isync();
686 #endif
687 return 0;
688 }
689 #elif defined(CONFIG_PPC_BOOK3S)
690 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
691 {
692 mtspr(SPRN_DABR, dabr);
693 if (cpu_has_feature(CPU_FTR_DABRX))
694 mtspr(SPRN_DABRX, dabrx);
695 return 0;
696 }
697 #else
698 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
699 {
700 return -EINVAL;
701 }
702 #endif
703
704 static inline int set_dabr(struct arch_hw_breakpoint *brk)
705 {
706 unsigned long dabr, dabrx;
707
708 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
709 dabrx = ((brk->type >> 3) & 0x7);
710
711 if (ppc_md.set_dabr)
712 return ppc_md.set_dabr(dabr, dabrx);
713
714 return __set_dabr(dabr, dabrx);
715 }
716
717 static inline int set_dawr(struct arch_hw_breakpoint *brk)
718 {
719 unsigned long dawr, dawrx, mrd;
720
721 dawr = brk->address;
722
723 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
724 << (63 - 58); //* read/write bits */
725 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
726 << (63 - 59); //* translate */
727 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
728 >> 3; //* PRIM bits */
729 /* dawr length is stored in field MDR bits 48:53. Matches range in
730 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
731 0b111111=64DW.
732 brk->len is in bytes.
733 This aligns up to double word size, shifts and does the bias.
734 */
735 mrd = ((brk->len + 7) >> 3) - 1;
736 dawrx |= (mrd & 0x3f) << (63 - 53);
737
738 if (ppc_md.set_dawr)
739 return ppc_md.set_dawr(dawr, dawrx);
740 mtspr(SPRN_DAWR, dawr);
741 mtspr(SPRN_DAWRX, dawrx);
742 return 0;
743 }
744
745 void __set_breakpoint(struct arch_hw_breakpoint *brk)
746 {
747 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
748
749 if (cpu_has_feature(CPU_FTR_DAWR))
750 set_dawr(brk);
751 else
752 set_dabr(brk);
753 }
754
755 void set_breakpoint(struct arch_hw_breakpoint *brk)
756 {
757 preempt_disable();
758 __set_breakpoint(brk);
759 preempt_enable();
760 }
761
762 #ifdef CONFIG_PPC64
763 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
764 #endif
765
766 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
767 struct arch_hw_breakpoint *b)
768 {
769 if (a->address != b->address)
770 return false;
771 if (a->type != b->type)
772 return false;
773 if (a->len != b->len)
774 return false;
775 return true;
776 }
777
778 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
779 static void tm_reclaim_thread(struct thread_struct *thr,
780 struct thread_info *ti, uint8_t cause)
781 {
782 unsigned long msr_diff = 0;
783
784 /*
785 * If FP/VSX registers have been already saved to the
786 * thread_struct, move them to the transact_fp array.
787 * We clear the TIF_RESTORE_TM bit since after the reclaim
788 * the thread will no longer be transactional.
789 */
790 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
791 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
792 if (msr_diff & MSR_FP)
793 memcpy(&thr->transact_fp, &thr->fp_state,
794 sizeof(struct thread_fp_state));
795 if (msr_diff & MSR_VEC)
796 memcpy(&thr->transact_vr, &thr->vr_state,
797 sizeof(struct thread_vr_state));
798 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
799 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
800 }
801
802 /*
803 * Use the current MSR TM suspended bit to track if we have
804 * checkpointed state outstanding.
805 * On signal delivery, we'd normally reclaim the checkpointed
806 * state to obtain stack pointer (see:get_tm_stackpointer()).
807 * This will then directly return to userspace without going
808 * through __switch_to(). However, if the stack frame is bad,
809 * we need to exit this thread which calls __switch_to() which
810 * will again attempt to reclaim the already saved tm state.
811 * Hence we need to check that we've not already reclaimed
812 * this state.
813 * We do this using the current MSR, rather tracking it in
814 * some specific thread_struct bit, as it has the additional
815 * benefit of checking for a potential TM bad thing exception.
816 */
817 if (!MSR_TM_SUSPENDED(mfmsr()))
818 return;
819
820 tm_reclaim(thr, thr->regs->msr, cause);
821
822 /* Having done the reclaim, we now have the checkpointed
823 * FP/VSX values in the registers. These might be valid
824 * even if we have previously called enable_kernel_fp() or
825 * flush_fp_to_thread(), so update thr->regs->msr to
826 * indicate their current validity.
827 */
828 thr->regs->msr |= msr_diff;
829 }
830
831 void tm_reclaim_current(uint8_t cause)
832 {
833 tm_enable();
834 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
835 }
836
837 static inline void tm_reclaim_task(struct task_struct *tsk)
838 {
839 /* We have to work out if we're switching from/to a task that's in the
840 * middle of a transaction.
841 *
842 * In switching we need to maintain a 2nd register state as
843 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
844 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
845 * (current) FPRs into oldtask->thread.transact_fpr[].
846 *
847 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
848 */
849 struct thread_struct *thr = &tsk->thread;
850
851 if (!thr->regs)
852 return;
853
854 if (!MSR_TM_ACTIVE(thr->regs->msr))
855 goto out_and_saveregs;
856
857 /* Stash the original thread MSR, as giveup_fpu et al will
858 * modify it. We hold onto it to see whether the task used
859 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
860 * ckpt_regs.msr is already set.
861 */
862 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
863 thr->ckpt_regs.msr = thr->regs->msr;
864
865 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
866 "ccr=%lx, msr=%lx, trap=%lx)\n",
867 tsk->pid, thr->regs->nip,
868 thr->regs->ccr, thr->regs->msr,
869 thr->regs->trap);
870
871 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
872
873 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
874 tsk->pid);
875
876 out_and_saveregs:
877 /* Always save the regs here, even if a transaction's not active.
878 * This context-switches a thread's TM info SPRs. We do it here to
879 * be consistent with the restore path (in recheckpoint) which
880 * cannot happen later in _switch().
881 */
882 tm_save_sprs(thr);
883 }
884
885 extern void __tm_recheckpoint(struct thread_struct *thread,
886 unsigned long orig_msr);
887
888 void tm_recheckpoint(struct thread_struct *thread,
889 unsigned long orig_msr)
890 {
891 unsigned long flags;
892
893 /* We really can't be interrupted here as the TEXASR registers can't
894 * change and later in the trecheckpoint code, we have a userspace R1.
895 * So let's hard disable over this region.
896 */
897 local_irq_save(flags);
898 hard_irq_disable();
899
900 /* The TM SPRs are restored here, so that TEXASR.FS can be set
901 * before the trecheckpoint and no explosion occurs.
902 */
903 tm_restore_sprs(thread);
904
905 __tm_recheckpoint(thread, orig_msr);
906
907 local_irq_restore(flags);
908 }
909
910 static inline void tm_recheckpoint_new_task(struct task_struct *new)
911 {
912 unsigned long msr;
913
914 if (!cpu_has_feature(CPU_FTR_TM))
915 return;
916
917 /* Recheckpoint the registers of the thread we're about to switch to.
918 *
919 * If the task was using FP, we non-lazily reload both the original and
920 * the speculative FP register states. This is because the kernel
921 * doesn't see if/when a TM rollback occurs, so if we take an FP
922 * unavoidable later, we are unable to determine which set of FP regs
923 * need to be restored.
924 */
925 if (!new->thread.regs)
926 return;
927
928 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
929 tm_restore_sprs(&new->thread);
930 return;
931 }
932 msr = new->thread.ckpt_regs.msr;
933 /* Recheckpoint to restore original checkpointed register state. */
934 TM_DEBUG("*** tm_recheckpoint of pid %d "
935 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
936 new->pid, new->thread.regs->msr, msr);
937
938 /* This loads the checkpointed FP/VEC state, if used */
939 tm_recheckpoint(&new->thread, msr);
940
941 /* This loads the speculative FP/VEC state, if used */
942 if (msr & MSR_FP) {
943 do_load_up_transact_fpu(&new->thread);
944 new->thread.regs->msr |=
945 (MSR_FP | new->thread.fpexc_mode);
946 }
947 #ifdef CONFIG_ALTIVEC
948 if (msr & MSR_VEC) {
949 do_load_up_transact_altivec(&new->thread);
950 new->thread.regs->msr |= MSR_VEC;
951 }
952 #endif
953 /* We may as well turn on VSX too since all the state is restored now */
954 if (msr & MSR_VSX)
955 new->thread.regs->msr |= MSR_VSX;
956
957 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
958 "(kernel msr 0x%lx)\n",
959 new->pid, mfmsr());
960 }
961
962 static inline void __switch_to_tm(struct task_struct *prev)
963 {
964 if (cpu_has_feature(CPU_FTR_TM)) {
965 tm_enable();
966 tm_reclaim_task(prev);
967 }
968 }
969
970 /*
971 * This is called if we are on the way out to userspace and the
972 * TIF_RESTORE_TM flag is set. It checks if we need to reload
973 * FP and/or vector state and does so if necessary.
974 * If userspace is inside a transaction (whether active or
975 * suspended) and FP/VMX/VSX instructions have ever been enabled
976 * inside that transaction, then we have to keep them enabled
977 * and keep the FP/VMX/VSX state loaded while ever the transaction
978 * continues. The reason is that if we didn't, and subsequently
979 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
980 * we don't know whether it's the same transaction, and thus we
981 * don't know which of the checkpointed state and the transactional
982 * state to use.
983 */
984 void restore_tm_state(struct pt_regs *regs)
985 {
986 unsigned long msr_diff;
987
988 clear_thread_flag(TIF_RESTORE_TM);
989 if (!MSR_TM_ACTIVE(regs->msr))
990 return;
991
992 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
993 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
994
995 /* Ensure that restore_math() will restore */
996 if (msr_diff & MSR_FP)
997 current->thread.load_fp = 1;
998 #ifdef CONFIG_ALIVEC
999 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1000 current->thread.load_vec = 1;
1001 #endif
1002 restore_math(regs);
1003
1004 regs->msr |= msr_diff;
1005 }
1006
1007 #else
1008 #define tm_recheckpoint_new_task(new)
1009 #define __switch_to_tm(prev)
1010 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1011
1012 static inline void save_sprs(struct thread_struct *t)
1013 {
1014 #ifdef CONFIG_ALTIVEC
1015 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1016 t->vrsave = mfspr(SPRN_VRSAVE);
1017 #endif
1018 #ifdef CONFIG_PPC_BOOK3S_64
1019 if (cpu_has_feature(CPU_FTR_DSCR))
1020 t->dscr = mfspr(SPRN_DSCR);
1021
1022 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1023 t->bescr = mfspr(SPRN_BESCR);
1024 t->ebbhr = mfspr(SPRN_EBBHR);
1025 t->ebbrr = mfspr(SPRN_EBBRR);
1026
1027 t->fscr = mfspr(SPRN_FSCR);
1028
1029 /*
1030 * Note that the TAR is not available for use in the kernel.
1031 * (To provide this, the TAR should be backed up/restored on
1032 * exception entry/exit instead, and be in pt_regs. FIXME,
1033 * this should be in pt_regs anyway (for debug).)
1034 */
1035 t->tar = mfspr(SPRN_TAR);
1036 }
1037
1038 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1039 /* Conditionally save Load Monitor registers, if enabled */
1040 if (t->fscr & FSCR_LM) {
1041 t->lmrr = mfspr(SPRN_LMRR);
1042 t->lmser = mfspr(SPRN_LMSER);
1043 }
1044 }
1045 #endif
1046 }
1047
1048 static inline void restore_sprs(struct thread_struct *old_thread,
1049 struct thread_struct *new_thread)
1050 {
1051 #ifdef CONFIG_ALTIVEC
1052 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1053 old_thread->vrsave != new_thread->vrsave)
1054 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1055 #endif
1056 #ifdef CONFIG_PPC_BOOK3S_64
1057 if (cpu_has_feature(CPU_FTR_DSCR)) {
1058 u64 dscr = get_paca()->dscr_default;
1059 if (new_thread->dscr_inherit)
1060 dscr = new_thread->dscr;
1061
1062 if (old_thread->dscr != dscr)
1063 mtspr(SPRN_DSCR, dscr);
1064 }
1065
1066 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1067 if (old_thread->bescr != new_thread->bescr)
1068 mtspr(SPRN_BESCR, new_thread->bescr);
1069 if (old_thread->ebbhr != new_thread->ebbhr)
1070 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1071 if (old_thread->ebbrr != new_thread->ebbrr)
1072 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1073
1074 if (old_thread->fscr != new_thread->fscr)
1075 mtspr(SPRN_FSCR, new_thread->fscr);
1076
1077 if (old_thread->tar != new_thread->tar)
1078 mtspr(SPRN_TAR, new_thread->tar);
1079 }
1080
1081 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1082 /* Conditionally restore Load Monitor registers, if enabled */
1083 if (new_thread->fscr & FSCR_LM) {
1084 if (old_thread->lmrr != new_thread->lmrr)
1085 mtspr(SPRN_LMRR, new_thread->lmrr);
1086 if (old_thread->lmser != new_thread->lmser)
1087 mtspr(SPRN_LMSER, new_thread->lmser);
1088 }
1089 }
1090 #endif
1091 }
1092
1093 struct task_struct *__switch_to(struct task_struct *prev,
1094 struct task_struct *new)
1095 {
1096 struct thread_struct *new_thread, *old_thread;
1097 struct task_struct *last;
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 struct ppc64_tlb_batch *batch;
1100 #endif
1101
1102 new_thread = &new->thread;
1103 old_thread = &current->thread;
1104
1105 WARN_ON(!irqs_disabled());
1106
1107 #ifdef CONFIG_PPC64
1108 /*
1109 * Collect processor utilization data per process
1110 */
1111 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1112 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1113 long unsigned start_tb, current_tb;
1114 start_tb = old_thread->start_tb;
1115 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1116 old_thread->accum_tb += (current_tb - start_tb);
1117 new_thread->start_tb = current_tb;
1118 }
1119 #endif /* CONFIG_PPC64 */
1120
1121 #ifdef CONFIG_PPC_STD_MMU_64
1122 batch = this_cpu_ptr(&ppc64_tlb_batch);
1123 if (batch->active) {
1124 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1125 if (batch->index)
1126 __flush_tlb_pending(batch);
1127 batch->active = 0;
1128 }
1129 #endif /* CONFIG_PPC_STD_MMU_64 */
1130
1131 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1132 switch_booke_debug_regs(&new->thread.debug);
1133 #else
1134 /*
1135 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1136 * schedule DABR
1137 */
1138 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1139 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1140 __set_breakpoint(&new->thread.hw_brk);
1141 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1142 #endif
1143
1144 /*
1145 * We need to save SPRs before treclaim/trecheckpoint as these will
1146 * change a number of them.
1147 */
1148 save_sprs(&prev->thread);
1149
1150 __switch_to_tm(prev);
1151
1152 /* Save FPU, Altivec, VSX and SPE state */
1153 giveup_all(prev);
1154
1155 /*
1156 * We can't take a PMU exception inside _switch() since there is a
1157 * window where the kernel stack SLB and the kernel stack are out
1158 * of sync. Hard disable here.
1159 */
1160 hard_irq_disable();
1161
1162 tm_recheckpoint_new_task(new);
1163
1164 /*
1165 * Call restore_sprs() before calling _switch(). If we move it after
1166 * _switch() then we miss out on calling it for new tasks. The reason
1167 * for this is we manually create a stack frame for new tasks that
1168 * directly returns through ret_from_fork() or
1169 * ret_from_kernel_thread(). See copy_thread() for details.
1170 */
1171 restore_sprs(old_thread, new_thread);
1172
1173 last = _switch(old_thread, new_thread);
1174
1175 #ifdef CONFIG_PPC_STD_MMU_64
1176 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1177 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1178 batch = this_cpu_ptr(&ppc64_tlb_batch);
1179 batch->active = 1;
1180 }
1181
1182 if (current_thread_info()->task->thread.regs)
1183 restore_math(current_thread_info()->task->thread.regs);
1184 #endif /* CONFIG_PPC_STD_MMU_64 */
1185
1186 return last;
1187 }
1188
1189 static int instructions_to_print = 16;
1190
1191 static void show_instructions(struct pt_regs *regs)
1192 {
1193 int i;
1194 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1195 sizeof(int));
1196
1197 printk("Instruction dump:");
1198
1199 for (i = 0; i < instructions_to_print; i++) {
1200 int instr;
1201
1202 if (!(i % 8))
1203 printk("\n");
1204
1205 #if !defined(CONFIG_BOOKE)
1206 /* If executing with the IMMU off, adjust pc rather
1207 * than print XXXXXXXX.
1208 */
1209 if (!(regs->msr & MSR_IR))
1210 pc = (unsigned long)phys_to_virt(pc);
1211 #endif
1212
1213 if (!__kernel_text_address(pc) ||
1214 probe_kernel_address((unsigned int __user *)pc, instr)) {
1215 printk(KERN_CONT "XXXXXXXX ");
1216 } else {
1217 if (regs->nip == pc)
1218 printk(KERN_CONT "<%08x> ", instr);
1219 else
1220 printk(KERN_CONT "%08x ", instr);
1221 }
1222
1223 pc += sizeof(int);
1224 }
1225
1226 printk("\n");
1227 }
1228
1229 struct regbit {
1230 unsigned long bit;
1231 const char *name;
1232 };
1233
1234 static struct regbit msr_bits[] = {
1235 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1236 {MSR_SF, "SF"},
1237 {MSR_HV, "HV"},
1238 #endif
1239 {MSR_VEC, "VEC"},
1240 {MSR_VSX, "VSX"},
1241 #ifdef CONFIG_BOOKE
1242 {MSR_CE, "CE"},
1243 #endif
1244 {MSR_EE, "EE"},
1245 {MSR_PR, "PR"},
1246 {MSR_FP, "FP"},
1247 {MSR_ME, "ME"},
1248 #ifdef CONFIG_BOOKE
1249 {MSR_DE, "DE"},
1250 #else
1251 {MSR_SE, "SE"},
1252 {MSR_BE, "BE"},
1253 #endif
1254 {MSR_IR, "IR"},
1255 {MSR_DR, "DR"},
1256 {MSR_PMM, "PMM"},
1257 #ifndef CONFIG_BOOKE
1258 {MSR_RI, "RI"},
1259 {MSR_LE, "LE"},
1260 #endif
1261 {0, NULL}
1262 };
1263
1264 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1265 {
1266 const char *s = "";
1267
1268 for (; bits->bit; ++bits)
1269 if (val & bits->bit) {
1270 printk("%s%s", s, bits->name);
1271 s = sep;
1272 }
1273 }
1274
1275 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1276 static struct regbit msr_tm_bits[] = {
1277 {MSR_TS_T, "T"},
1278 {MSR_TS_S, "S"},
1279 {MSR_TM, "E"},
1280 {0, NULL}
1281 };
1282
1283 static void print_tm_bits(unsigned long val)
1284 {
1285 /*
1286 * This only prints something if at least one of the TM bit is set.
1287 * Inside the TM[], the output means:
1288 * E: Enabled (bit 32)
1289 * S: Suspended (bit 33)
1290 * T: Transactional (bit 34)
1291 */
1292 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1293 printk(",TM[");
1294 print_bits(val, msr_tm_bits, "");
1295 printk("]");
1296 }
1297 }
1298 #else
1299 static void print_tm_bits(unsigned long val) {}
1300 #endif
1301
1302 static void print_msr_bits(unsigned long val)
1303 {
1304 printk("<");
1305 print_bits(val, msr_bits, ",");
1306 print_tm_bits(val);
1307 printk(">");
1308 }
1309
1310 #ifdef CONFIG_PPC64
1311 #define REG "%016lx"
1312 #define REGS_PER_LINE 4
1313 #define LAST_VOLATILE 13
1314 #else
1315 #define REG "%08lx"
1316 #define REGS_PER_LINE 8
1317 #define LAST_VOLATILE 12
1318 #endif
1319
1320 void show_regs(struct pt_regs * regs)
1321 {
1322 int i, trap;
1323
1324 show_regs_print_info(KERN_DEFAULT);
1325
1326 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1327 regs->nip, regs->link, regs->ctr);
1328 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1329 regs, regs->trap, print_tainted(), init_utsname()->release);
1330 printk("MSR: "REG" ", regs->msr);
1331 print_msr_bits(regs->msr);
1332 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1333 trap = TRAP(regs);
1334 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1335 printk("CFAR: "REG" ", regs->orig_gpr3);
1336 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1337 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1338 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1339 #else
1340 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1341 #endif
1342 #ifdef CONFIG_PPC64
1343 printk("SOFTE: %ld ", regs->softe);
1344 #endif
1345 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1346 if (MSR_TM_ACTIVE(regs->msr))
1347 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1348 #endif
1349
1350 for (i = 0; i < 32; i++) {
1351 if ((i % REGS_PER_LINE) == 0)
1352 printk("\nGPR%02d: ", i);
1353 printk(REG " ", regs->gpr[i]);
1354 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1355 break;
1356 }
1357 printk("\n");
1358 #ifdef CONFIG_KALLSYMS
1359 /*
1360 * Lookup NIP late so we have the best change of getting the
1361 * above info out without failing
1362 */
1363 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1364 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1365 #endif
1366 show_stack(current, (unsigned long *) regs->gpr[1]);
1367 if (!user_mode(regs))
1368 show_instructions(regs);
1369 }
1370
1371 void flush_thread(void)
1372 {
1373 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1374 flush_ptrace_hw_breakpoint(current);
1375 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1376 set_debug_reg_defaults(&current->thread);
1377 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1378 }
1379
1380 void
1381 release_thread(struct task_struct *t)
1382 {
1383 }
1384
1385 /*
1386 * this gets called so that we can store coprocessor state into memory and
1387 * copy the current task into the new thread.
1388 */
1389 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1390 {
1391 flush_all_to_thread(src);
1392 /*
1393 * Flush TM state out so we can copy it. __switch_to_tm() does this
1394 * flush but it removes the checkpointed state from the current CPU and
1395 * transitions the CPU out of TM mode. Hence we need to call
1396 * tm_recheckpoint_new_task() (on the same task) to restore the
1397 * checkpointed state back and the TM mode.
1398 */
1399 __switch_to_tm(src);
1400 tm_recheckpoint_new_task(src);
1401
1402 *dst = *src;
1403
1404 clear_task_ebb(dst);
1405
1406 return 0;
1407 }
1408
1409 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1410 {
1411 #ifdef CONFIG_PPC_STD_MMU_64
1412 unsigned long sp_vsid;
1413 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1414
1415 if (radix_enabled())
1416 return;
1417
1418 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1419 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1420 << SLB_VSID_SHIFT_1T;
1421 else
1422 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1423 << SLB_VSID_SHIFT;
1424 sp_vsid |= SLB_VSID_KERNEL | llp;
1425 p->thread.ksp_vsid = sp_vsid;
1426 #endif
1427 }
1428
1429 /*
1430 * Copy a thread..
1431 */
1432
1433 /*
1434 * Copy architecture-specific thread state
1435 */
1436 int copy_thread(unsigned long clone_flags, unsigned long usp,
1437 unsigned long kthread_arg, struct task_struct *p)
1438 {
1439 struct pt_regs *childregs, *kregs;
1440 extern void ret_from_fork(void);
1441 extern void ret_from_kernel_thread(void);
1442 void (*f)(void);
1443 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1444 struct thread_info *ti = task_thread_info(p);
1445
1446 klp_init_thread_info(ti);
1447
1448 /* Copy registers */
1449 sp -= sizeof(struct pt_regs);
1450 childregs = (struct pt_regs *) sp;
1451 if (unlikely(p->flags & PF_KTHREAD)) {
1452 /* kernel thread */
1453 memset(childregs, 0, sizeof(struct pt_regs));
1454 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1455 /* function */
1456 if (usp)
1457 childregs->gpr[14] = ppc_function_entry((void *)usp);
1458 #ifdef CONFIG_PPC64
1459 clear_tsk_thread_flag(p, TIF_32BIT);
1460 childregs->softe = 1;
1461 #endif
1462 childregs->gpr[15] = kthread_arg;
1463 p->thread.regs = NULL; /* no user register state */
1464 ti->flags |= _TIF_RESTOREALL;
1465 f = ret_from_kernel_thread;
1466 } else {
1467 /* user thread */
1468 struct pt_regs *regs = current_pt_regs();
1469 CHECK_FULL_REGS(regs);
1470 *childregs = *regs;
1471 if (usp)
1472 childregs->gpr[1] = usp;
1473 p->thread.regs = childregs;
1474 childregs->gpr[3] = 0; /* Result from fork() */
1475 if (clone_flags & CLONE_SETTLS) {
1476 #ifdef CONFIG_PPC64
1477 if (!is_32bit_task())
1478 childregs->gpr[13] = childregs->gpr[6];
1479 else
1480 #endif
1481 childregs->gpr[2] = childregs->gpr[6];
1482 }
1483
1484 f = ret_from_fork;
1485 }
1486 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1487 sp -= STACK_FRAME_OVERHEAD;
1488
1489 /*
1490 * The way this works is that at some point in the future
1491 * some task will call _switch to switch to the new task.
1492 * That will pop off the stack frame created below and start
1493 * the new task running at ret_from_fork. The new task will
1494 * do some house keeping and then return from the fork or clone
1495 * system call, using the stack frame created above.
1496 */
1497 ((unsigned long *)sp)[0] = 0;
1498 sp -= sizeof(struct pt_regs);
1499 kregs = (struct pt_regs *) sp;
1500 sp -= STACK_FRAME_OVERHEAD;
1501 p->thread.ksp = sp;
1502 #ifdef CONFIG_PPC32
1503 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1504 _ALIGN_UP(sizeof(struct thread_info), 16);
1505 #endif
1506 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1507 p->thread.ptrace_bps[0] = NULL;
1508 #endif
1509
1510 p->thread.fp_save_area = NULL;
1511 #ifdef CONFIG_ALTIVEC
1512 p->thread.vr_save_area = NULL;
1513 #endif
1514
1515 setup_ksp_vsid(p, sp);
1516
1517 #ifdef CONFIG_PPC64
1518 if (cpu_has_feature(CPU_FTR_DSCR)) {
1519 p->thread.dscr_inherit = current->thread.dscr_inherit;
1520 p->thread.dscr = mfspr(SPRN_DSCR);
1521 }
1522 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1523 p->thread.ppr = INIT_PPR;
1524 #endif
1525 kregs->nip = ppc_function_entry(f);
1526 return 0;
1527 }
1528
1529 /*
1530 * Set up a thread for executing a new program
1531 */
1532 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1533 {
1534 #ifdef CONFIG_PPC64
1535 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1536 #endif
1537
1538 /*
1539 * If we exec out of a kernel thread then thread.regs will not be
1540 * set. Do it now.
1541 */
1542 if (!current->thread.regs) {
1543 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1544 current->thread.regs = regs - 1;
1545 }
1546
1547 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1548 /*
1549 * Clear any transactional state, we're exec()ing. The cause is
1550 * not important as there will never be a recheckpoint so it's not
1551 * user visible.
1552 */
1553 if (MSR_TM_SUSPENDED(mfmsr()))
1554 tm_reclaim_current(0);
1555 #endif
1556
1557 memset(regs->gpr, 0, sizeof(regs->gpr));
1558 regs->ctr = 0;
1559 regs->link = 0;
1560 regs->xer = 0;
1561 regs->ccr = 0;
1562 regs->gpr[1] = sp;
1563
1564 /*
1565 * We have just cleared all the nonvolatile GPRs, so make
1566 * FULL_REGS(regs) return true. This is necessary to allow
1567 * ptrace to examine the thread immediately after exec.
1568 */
1569 regs->trap &= ~1UL;
1570
1571 #ifdef CONFIG_PPC32
1572 regs->mq = 0;
1573 regs->nip = start;
1574 regs->msr = MSR_USER;
1575 #else
1576 if (!is_32bit_task()) {
1577 unsigned long entry;
1578
1579 if (is_elf2_task()) {
1580 /* Look ma, no function descriptors! */
1581 entry = start;
1582
1583 /*
1584 * Ulrich says:
1585 * The latest iteration of the ABI requires that when
1586 * calling a function (at its global entry point),
1587 * the caller must ensure r12 holds the entry point
1588 * address (so that the function can quickly
1589 * establish addressability).
1590 */
1591 regs->gpr[12] = start;
1592 /* Make sure that's restored on entry to userspace. */
1593 set_thread_flag(TIF_RESTOREALL);
1594 } else {
1595 unsigned long toc;
1596
1597 /* start is a relocated pointer to the function
1598 * descriptor for the elf _start routine. The first
1599 * entry in the function descriptor is the entry
1600 * address of _start and the second entry is the TOC
1601 * value we need to use.
1602 */
1603 __get_user(entry, (unsigned long __user *)start);
1604 __get_user(toc, (unsigned long __user *)start+1);
1605
1606 /* Check whether the e_entry function descriptor entries
1607 * need to be relocated before we can use them.
1608 */
1609 if (load_addr != 0) {
1610 entry += load_addr;
1611 toc += load_addr;
1612 }
1613 regs->gpr[2] = toc;
1614 }
1615 regs->nip = entry;
1616 regs->msr = MSR_USER64;
1617 } else {
1618 regs->nip = start;
1619 regs->gpr[2] = 0;
1620 regs->msr = MSR_USER32;
1621 }
1622 #endif
1623 #ifdef CONFIG_VSX
1624 current->thread.used_vsr = 0;
1625 #endif
1626 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1627 current->thread.fp_save_area = NULL;
1628 #ifdef CONFIG_ALTIVEC
1629 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1630 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1631 current->thread.vr_save_area = NULL;
1632 current->thread.vrsave = 0;
1633 current->thread.used_vr = 0;
1634 #endif /* CONFIG_ALTIVEC */
1635 #ifdef CONFIG_SPE
1636 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1637 current->thread.acc = 0;
1638 current->thread.spefscr = 0;
1639 current->thread.used_spe = 0;
1640 #endif /* CONFIG_SPE */
1641 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1642 if (cpu_has_feature(CPU_FTR_TM))
1643 regs->msr |= MSR_TM;
1644 current->thread.tm_tfhar = 0;
1645 current->thread.tm_texasr = 0;
1646 current->thread.tm_tfiar = 0;
1647 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1648 }
1649 EXPORT_SYMBOL(start_thread);
1650
1651 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1652 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1653
1654 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1655 {
1656 struct pt_regs *regs = tsk->thread.regs;
1657
1658 /* This is a bit hairy. If we are an SPE enabled processor
1659 * (have embedded fp) we store the IEEE exception enable flags in
1660 * fpexc_mode. fpexc_mode is also used for setting FP exception
1661 * mode (asyn, precise, disabled) for 'Classic' FP. */
1662 if (val & PR_FP_EXC_SW_ENABLE) {
1663 #ifdef CONFIG_SPE
1664 if (cpu_has_feature(CPU_FTR_SPE)) {
1665 /*
1666 * When the sticky exception bits are set
1667 * directly by userspace, it must call prctl
1668 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1669 * in the existing prctl settings) or
1670 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1671 * the bits being set). <fenv.h> functions
1672 * saving and restoring the whole
1673 * floating-point environment need to do so
1674 * anyway to restore the prctl settings from
1675 * the saved environment.
1676 */
1677 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1678 tsk->thread.fpexc_mode = val &
1679 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1680 return 0;
1681 } else {
1682 return -EINVAL;
1683 }
1684 #else
1685 return -EINVAL;
1686 #endif
1687 }
1688
1689 /* on a CONFIG_SPE this does not hurt us. The bits that
1690 * __pack_fe01 use do not overlap with bits used for
1691 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1692 * on CONFIG_SPE implementations are reserved so writing to
1693 * them does not change anything */
1694 if (val > PR_FP_EXC_PRECISE)
1695 return -EINVAL;
1696 tsk->thread.fpexc_mode = __pack_fe01(val);
1697 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1698 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1699 | tsk->thread.fpexc_mode;
1700 return 0;
1701 }
1702
1703 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1704 {
1705 unsigned int val;
1706
1707 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1708 #ifdef CONFIG_SPE
1709 if (cpu_has_feature(CPU_FTR_SPE)) {
1710 /*
1711 * When the sticky exception bits are set
1712 * directly by userspace, it must call prctl
1713 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1714 * in the existing prctl settings) or
1715 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1716 * the bits being set). <fenv.h> functions
1717 * saving and restoring the whole
1718 * floating-point environment need to do so
1719 * anyway to restore the prctl settings from
1720 * the saved environment.
1721 */
1722 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1723 val = tsk->thread.fpexc_mode;
1724 } else
1725 return -EINVAL;
1726 #else
1727 return -EINVAL;
1728 #endif
1729 else
1730 val = __unpack_fe01(tsk->thread.fpexc_mode);
1731 return put_user(val, (unsigned int __user *) adr);
1732 }
1733
1734 int set_endian(struct task_struct *tsk, unsigned int val)
1735 {
1736 struct pt_regs *regs = tsk->thread.regs;
1737
1738 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1739 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1740 return -EINVAL;
1741
1742 if (regs == NULL)
1743 return -EINVAL;
1744
1745 if (val == PR_ENDIAN_BIG)
1746 regs->msr &= ~MSR_LE;
1747 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1748 regs->msr |= MSR_LE;
1749 else
1750 return -EINVAL;
1751
1752 return 0;
1753 }
1754
1755 int get_endian(struct task_struct *tsk, unsigned long adr)
1756 {
1757 struct pt_regs *regs = tsk->thread.regs;
1758 unsigned int val;
1759
1760 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1761 !cpu_has_feature(CPU_FTR_REAL_LE))
1762 return -EINVAL;
1763
1764 if (regs == NULL)
1765 return -EINVAL;
1766
1767 if (regs->msr & MSR_LE) {
1768 if (cpu_has_feature(CPU_FTR_REAL_LE))
1769 val = PR_ENDIAN_LITTLE;
1770 else
1771 val = PR_ENDIAN_PPC_LITTLE;
1772 } else
1773 val = PR_ENDIAN_BIG;
1774
1775 return put_user(val, (unsigned int __user *)adr);
1776 }
1777
1778 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1779 {
1780 tsk->thread.align_ctl = val;
1781 return 0;
1782 }
1783
1784 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1785 {
1786 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1787 }
1788
1789 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1790 unsigned long nbytes)
1791 {
1792 unsigned long stack_page;
1793 unsigned long cpu = task_cpu(p);
1794
1795 /*
1796 * Avoid crashing if the stack has overflowed and corrupted
1797 * task_cpu(p), which is in the thread_info struct.
1798 */
1799 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1800 stack_page = (unsigned long) hardirq_ctx[cpu];
1801 if (sp >= stack_page + sizeof(struct thread_struct)
1802 && sp <= stack_page + THREAD_SIZE - nbytes)
1803 return 1;
1804
1805 stack_page = (unsigned long) softirq_ctx[cpu];
1806 if (sp >= stack_page + sizeof(struct thread_struct)
1807 && sp <= stack_page + THREAD_SIZE - nbytes)
1808 return 1;
1809 }
1810 return 0;
1811 }
1812
1813 int validate_sp(unsigned long sp, struct task_struct *p,
1814 unsigned long nbytes)
1815 {
1816 unsigned long stack_page = (unsigned long)task_stack_page(p);
1817
1818 if (sp >= stack_page + sizeof(struct thread_struct)
1819 && sp <= stack_page + THREAD_SIZE - nbytes)
1820 return 1;
1821
1822 return valid_irq_stack(sp, p, nbytes);
1823 }
1824
1825 EXPORT_SYMBOL(validate_sp);
1826
1827 unsigned long get_wchan(struct task_struct *p)
1828 {
1829 unsigned long ip, sp;
1830 int count = 0;
1831
1832 if (!p || p == current || p->state == TASK_RUNNING)
1833 return 0;
1834
1835 sp = p->thread.ksp;
1836 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1837 return 0;
1838
1839 do {
1840 sp = *(unsigned long *)sp;
1841 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1842 return 0;
1843 if (count > 0) {
1844 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1845 if (!in_sched_functions(ip))
1846 return ip;
1847 }
1848 } while (count++ < 16);
1849 return 0;
1850 }
1851
1852 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1853
1854 void show_stack(struct task_struct *tsk, unsigned long *stack)
1855 {
1856 unsigned long sp, ip, lr, newsp;
1857 int count = 0;
1858 int firstframe = 1;
1859 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1860 int curr_frame = current->curr_ret_stack;
1861 extern void return_to_handler(void);
1862 unsigned long rth = (unsigned long)return_to_handler;
1863 #endif
1864
1865 sp = (unsigned long) stack;
1866 if (tsk == NULL)
1867 tsk = current;
1868 if (sp == 0) {
1869 if (tsk == current)
1870 sp = current_stack_pointer();
1871 else
1872 sp = tsk->thread.ksp;
1873 }
1874
1875 lr = 0;
1876 printk("Call Trace:\n");
1877 do {
1878 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1879 return;
1880
1881 stack = (unsigned long *) sp;
1882 newsp = stack[0];
1883 ip = stack[STACK_FRAME_LR_SAVE];
1884 if (!firstframe || ip != lr) {
1885 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1886 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1887 if ((ip == rth) && curr_frame >= 0) {
1888 printk(" (%pS)",
1889 (void *)current->ret_stack[curr_frame].ret);
1890 curr_frame--;
1891 }
1892 #endif
1893 if (firstframe)
1894 printk(" (unreliable)");
1895 printk("\n");
1896 }
1897 firstframe = 0;
1898
1899 /*
1900 * See if this is an exception frame.
1901 * We look for the "regshere" marker in the current frame.
1902 */
1903 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1904 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1905 struct pt_regs *regs = (struct pt_regs *)
1906 (sp + STACK_FRAME_OVERHEAD);
1907 lr = regs->link;
1908 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1909 regs->trap, (void *)regs->nip, (void *)lr);
1910 firstframe = 1;
1911 }
1912
1913 sp = newsp;
1914 } while (count++ < kstack_depth_to_print);
1915 }
1916
1917 #ifdef CONFIG_PPC64
1918 /* Called with hard IRQs off */
1919 void notrace __ppc64_runlatch_on(void)
1920 {
1921 struct thread_info *ti = current_thread_info();
1922 unsigned long ctrl;
1923
1924 ctrl = mfspr(SPRN_CTRLF);
1925 ctrl |= CTRL_RUNLATCH;
1926 mtspr(SPRN_CTRLT, ctrl);
1927
1928 ti->local_flags |= _TLF_RUNLATCH;
1929 }
1930
1931 /* Called with hard IRQs off */
1932 void notrace __ppc64_runlatch_off(void)
1933 {
1934 struct thread_info *ti = current_thread_info();
1935 unsigned long ctrl;
1936
1937 ti->local_flags &= ~_TLF_RUNLATCH;
1938
1939 ctrl = mfspr(SPRN_CTRLF);
1940 ctrl &= ~CTRL_RUNLATCH;
1941 mtspr(SPRN_CTRLT, ctrl);
1942 }
1943 #endif /* CONFIG_PPC64 */
1944
1945 unsigned long arch_align_stack(unsigned long sp)
1946 {
1947 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1948 sp -= get_random_int() & ~PAGE_MASK;
1949 return sp & ~0xf;
1950 }
1951
1952 static inline unsigned long brk_rnd(void)
1953 {
1954 unsigned long rnd = 0;
1955
1956 /* 8MB for 32bit, 1GB for 64bit */
1957 if (is_32bit_task())
1958 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1959 else
1960 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1961
1962 return rnd << PAGE_SHIFT;
1963 }
1964
1965 unsigned long arch_randomize_brk(struct mm_struct *mm)
1966 {
1967 unsigned long base = mm->brk;
1968 unsigned long ret;
1969
1970 #ifdef CONFIG_PPC_STD_MMU_64
1971 /*
1972 * If we are using 1TB segments and we are allowed to randomise
1973 * the heap, we can put it above 1TB so it is backed by a 1TB
1974 * segment. Otherwise the heap will be in the bottom 1TB
1975 * which always uses 256MB segments and this may result in a
1976 * performance penalty. We don't need to worry about radix. For
1977 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1978 */
1979 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1980 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1981 #endif
1982
1983 ret = PAGE_ALIGN(base + brk_rnd());
1984
1985 if (ret < mm->brk)
1986 return mm->brk;
1987
1988 return ret;
1989 }
1990