]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/process.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62
63 #include <linux/kprobes.h>
64 #include <linux/kdebug.h>
65
66 /* Transactional Memory debug */
67 #ifdef TM_DEBUG_SW
68 #define TM_DEBUG(x...) printk(KERN_INFO x)
69 #else
70 #define TM_DEBUG(x...) do { } while(0)
71 #endif
72
73 extern unsigned long _get_SP(void);
74
75 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76 static void check_if_tm_restore_required(struct task_struct *tsk)
77 {
78 /*
79 * If we are saving the current thread's registers, and the
80 * thread is in a transactional state, set the TIF_RESTORE_TM
81 * bit so that we know to restore the registers before
82 * returning to userspace.
83 */
84 if (tsk == current && tsk->thread.regs &&
85 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
86 !test_thread_flag(TIF_RESTORE_TM)) {
87 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
88 set_thread_flag(TIF_RESTORE_TM);
89 }
90 }
91 #else
92 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
93 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
94
95 bool strict_msr_control;
96 EXPORT_SYMBOL(strict_msr_control);
97
98 static int __init enable_strict_msr_control(char *str)
99 {
100 strict_msr_control = true;
101 pr_info("Enabling strict facility control\n");
102
103 return 0;
104 }
105 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
106
107 void msr_check_and_set(unsigned long bits)
108 {
109 unsigned long oldmsr = mfmsr();
110 unsigned long newmsr;
111
112 newmsr = oldmsr | bits;
113
114 #ifdef CONFIG_VSX
115 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
116 newmsr |= MSR_VSX;
117 #endif
118
119 if (oldmsr != newmsr)
120 mtmsr_isync(newmsr);
121 }
122
123 void __msr_check_and_clear(unsigned long bits)
124 {
125 unsigned long oldmsr = mfmsr();
126 unsigned long newmsr;
127
128 newmsr = oldmsr & ~bits;
129
130 #ifdef CONFIG_VSX
131 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
132 newmsr &= ~MSR_VSX;
133 #endif
134
135 if (oldmsr != newmsr)
136 mtmsr_isync(newmsr);
137 }
138 EXPORT_SYMBOL(__msr_check_and_clear);
139
140 #ifdef CONFIG_PPC_FPU
141 void __giveup_fpu(struct task_struct *tsk)
142 {
143 unsigned long msr;
144
145 save_fpu(tsk);
146 msr = tsk->thread.regs->msr;
147 msr &= ~MSR_FP;
148 #ifdef CONFIG_VSX
149 if (cpu_has_feature(CPU_FTR_VSX))
150 msr &= ~MSR_VSX;
151 #endif
152 tsk->thread.regs->msr = msr;
153 }
154
155 void giveup_fpu(struct task_struct *tsk)
156 {
157 check_if_tm_restore_required(tsk);
158
159 msr_check_and_set(MSR_FP);
160 __giveup_fpu(tsk);
161 msr_check_and_clear(MSR_FP);
162 }
163 EXPORT_SYMBOL(giveup_fpu);
164
165 /*
166 * Make sure the floating-point register state in the
167 * the thread_struct is up to date for task tsk.
168 */
169 void flush_fp_to_thread(struct task_struct *tsk)
170 {
171 if (tsk->thread.regs) {
172 /*
173 * We need to disable preemption here because if we didn't,
174 * another process could get scheduled after the regs->msr
175 * test but before we have finished saving the FP registers
176 * to the thread_struct. That process could take over the
177 * FPU, and then when we get scheduled again we would store
178 * bogus values for the remaining FP registers.
179 */
180 preempt_disable();
181 if (tsk->thread.regs->msr & MSR_FP) {
182 /*
183 * This should only ever be called for current or
184 * for a stopped child process. Since we save away
185 * the FP register state on context switch,
186 * there is something wrong if a stopped child appears
187 * to still have its FP state in the CPU registers.
188 */
189 BUG_ON(tsk != current);
190 giveup_fpu(tsk);
191 }
192 preempt_enable();
193 }
194 }
195 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
196
197 void enable_kernel_fp(void)
198 {
199 WARN_ON(preemptible());
200
201 msr_check_and_set(MSR_FP);
202
203 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
204 check_if_tm_restore_required(current);
205 __giveup_fpu(current);
206 }
207 }
208 EXPORT_SYMBOL(enable_kernel_fp);
209
210 static int restore_fp(struct task_struct *tsk) {
211 if (tsk->thread.load_fp) {
212 load_fp_state(&current->thread.fp_state);
213 current->thread.load_fp++;
214 return 1;
215 }
216 return 0;
217 }
218 #else
219 static int restore_fp(struct task_struct *tsk) { return 0; }
220 #endif /* CONFIG_PPC_FPU */
221
222 #ifdef CONFIG_ALTIVEC
223 #define loadvec(thr) ((thr).load_vec)
224
225 static void __giveup_altivec(struct task_struct *tsk)
226 {
227 unsigned long msr;
228
229 save_altivec(tsk);
230 msr = tsk->thread.regs->msr;
231 msr &= ~MSR_VEC;
232 #ifdef CONFIG_VSX
233 if (cpu_has_feature(CPU_FTR_VSX))
234 msr &= ~MSR_VSX;
235 #endif
236 tsk->thread.regs->msr = msr;
237 }
238
239 void giveup_altivec(struct task_struct *tsk)
240 {
241 check_if_tm_restore_required(tsk);
242
243 msr_check_and_set(MSR_VEC);
244 __giveup_altivec(tsk);
245 msr_check_and_clear(MSR_VEC);
246 }
247 EXPORT_SYMBOL(giveup_altivec);
248
249 void enable_kernel_altivec(void)
250 {
251 WARN_ON(preemptible());
252
253 msr_check_and_set(MSR_VEC);
254
255 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
256 check_if_tm_restore_required(current);
257 __giveup_altivec(current);
258 }
259 }
260 EXPORT_SYMBOL(enable_kernel_altivec);
261
262 /*
263 * Make sure the VMX/Altivec register state in the
264 * the thread_struct is up to date for task tsk.
265 */
266 void flush_altivec_to_thread(struct task_struct *tsk)
267 {
268 if (tsk->thread.regs) {
269 preempt_disable();
270 if (tsk->thread.regs->msr & MSR_VEC) {
271 BUG_ON(tsk != current);
272 giveup_altivec(tsk);
273 }
274 preempt_enable();
275 }
276 }
277 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
278
279 static int restore_altivec(struct task_struct *tsk)
280 {
281 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
282 load_vr_state(&tsk->thread.vr_state);
283 tsk->thread.used_vr = 1;
284 tsk->thread.load_vec++;
285
286 return 1;
287 }
288 return 0;
289 }
290 #else
291 #define loadvec(thr) 0
292 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
293 #endif /* CONFIG_ALTIVEC */
294
295 #ifdef CONFIG_VSX
296 static void __giveup_vsx(struct task_struct *tsk)
297 {
298 if (tsk->thread.regs->msr & MSR_FP)
299 __giveup_fpu(tsk);
300 if (tsk->thread.regs->msr & MSR_VEC)
301 __giveup_altivec(tsk);
302 tsk->thread.regs->msr &= ~MSR_VSX;
303 }
304
305 static void giveup_vsx(struct task_struct *tsk)
306 {
307 check_if_tm_restore_required(tsk);
308
309 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
310 __giveup_vsx(tsk);
311 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
312 }
313
314 static void save_vsx(struct task_struct *tsk)
315 {
316 if (tsk->thread.regs->msr & MSR_FP)
317 save_fpu(tsk);
318 if (tsk->thread.regs->msr & MSR_VEC)
319 save_altivec(tsk);
320 }
321
322 void enable_kernel_vsx(void)
323 {
324 WARN_ON(preemptible());
325
326 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327
328 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
329 check_if_tm_restore_required(current);
330 if (current->thread.regs->msr & MSR_FP)
331 __giveup_fpu(current);
332 if (current->thread.regs->msr & MSR_VEC)
333 __giveup_altivec(current);
334 __giveup_vsx(current);
335 }
336 }
337 EXPORT_SYMBOL(enable_kernel_vsx);
338
339 void flush_vsx_to_thread(struct task_struct *tsk)
340 {
341 if (tsk->thread.regs) {
342 preempt_disable();
343 if (tsk->thread.regs->msr & MSR_VSX) {
344 BUG_ON(tsk != current);
345 giveup_vsx(tsk);
346 }
347 preempt_enable();
348 }
349 }
350 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
351
352 static int restore_vsx(struct task_struct *tsk)
353 {
354 if (cpu_has_feature(CPU_FTR_VSX)) {
355 tsk->thread.used_vsr = 1;
356 return 1;
357 }
358
359 return 0;
360 }
361 #else
362 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
363 static inline void save_vsx(struct task_struct *tsk) { }
364 #endif /* CONFIG_VSX */
365
366 #ifdef CONFIG_SPE
367 void giveup_spe(struct task_struct *tsk)
368 {
369 check_if_tm_restore_required(tsk);
370
371 msr_check_and_set(MSR_SPE);
372 __giveup_spe(tsk);
373 msr_check_and_clear(MSR_SPE);
374 }
375 EXPORT_SYMBOL(giveup_spe);
376
377 void enable_kernel_spe(void)
378 {
379 WARN_ON(preemptible());
380
381 msr_check_and_set(MSR_SPE);
382
383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 check_if_tm_restore_required(current);
385 __giveup_spe(current);
386 }
387 }
388 EXPORT_SYMBOL(enable_kernel_spe);
389
390 void flush_spe_to_thread(struct task_struct *tsk)
391 {
392 if (tsk->thread.regs) {
393 preempt_disable();
394 if (tsk->thread.regs->msr & MSR_SPE) {
395 BUG_ON(tsk != current);
396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397 giveup_spe(tsk);
398 }
399 preempt_enable();
400 }
401 }
402 #endif /* CONFIG_SPE */
403
404 static unsigned long msr_all_available;
405
406 static int __init init_msr_all_available(void)
407 {
408 #ifdef CONFIG_PPC_FPU
409 msr_all_available |= MSR_FP;
410 #endif
411 #ifdef CONFIG_ALTIVEC
412 if (cpu_has_feature(CPU_FTR_ALTIVEC))
413 msr_all_available |= MSR_VEC;
414 #endif
415 #ifdef CONFIG_VSX
416 if (cpu_has_feature(CPU_FTR_VSX))
417 msr_all_available |= MSR_VSX;
418 #endif
419 #ifdef CONFIG_SPE
420 if (cpu_has_feature(CPU_FTR_SPE))
421 msr_all_available |= MSR_SPE;
422 #endif
423
424 return 0;
425 }
426 early_initcall(init_msr_all_available);
427
428 void giveup_all(struct task_struct *tsk)
429 {
430 unsigned long usermsr;
431
432 if (!tsk->thread.regs)
433 return;
434
435 usermsr = tsk->thread.regs->msr;
436
437 if ((usermsr & msr_all_available) == 0)
438 return;
439
440 msr_check_and_set(msr_all_available);
441
442 #ifdef CONFIG_PPC_FPU
443 if (usermsr & MSR_FP)
444 __giveup_fpu(tsk);
445 #endif
446 #ifdef CONFIG_ALTIVEC
447 if (usermsr & MSR_VEC)
448 __giveup_altivec(tsk);
449 #endif
450 #ifdef CONFIG_VSX
451 if (usermsr & MSR_VSX)
452 __giveup_vsx(tsk);
453 #endif
454 #ifdef CONFIG_SPE
455 if (usermsr & MSR_SPE)
456 __giveup_spe(tsk);
457 #endif
458
459 msr_check_and_clear(msr_all_available);
460 }
461 EXPORT_SYMBOL(giveup_all);
462
463 void restore_math(struct pt_regs *regs)
464 {
465 unsigned long msr;
466
467 if (!current->thread.load_fp && !loadvec(current->thread))
468 return;
469
470 msr = regs->msr;
471 msr_check_and_set(msr_all_available);
472
473 /*
474 * Only reload if the bit is not set in the user MSR, the bit BEING set
475 * indicates that the registers are hot
476 */
477 if ((!(msr & MSR_FP)) && restore_fp(current))
478 msr |= MSR_FP | current->thread.fpexc_mode;
479
480 if ((!(msr & MSR_VEC)) && restore_altivec(current))
481 msr |= MSR_VEC;
482
483 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
484 restore_vsx(current)) {
485 msr |= MSR_VSX;
486 }
487
488 msr_check_and_clear(msr_all_available);
489
490 regs->msr = msr;
491 }
492
493 void save_all(struct task_struct *tsk)
494 {
495 unsigned long usermsr;
496
497 if (!tsk->thread.regs)
498 return;
499
500 usermsr = tsk->thread.regs->msr;
501
502 if ((usermsr & msr_all_available) == 0)
503 return;
504
505 msr_check_and_set(msr_all_available);
506
507 /*
508 * Saving the way the register space is in hardware, save_vsx boils
509 * down to a save_fpu() and save_altivec()
510 */
511 if (usermsr & MSR_VSX) {
512 save_vsx(tsk);
513 } else {
514 if (usermsr & MSR_FP)
515 save_fpu(tsk);
516
517 if (usermsr & MSR_VEC)
518 save_altivec(tsk);
519 }
520
521 if (usermsr & MSR_SPE)
522 __giveup_spe(tsk);
523
524 msr_check_and_clear(msr_all_available);
525 }
526
527 void flush_all_to_thread(struct task_struct *tsk)
528 {
529 if (tsk->thread.regs) {
530 preempt_disable();
531 BUG_ON(tsk != current);
532 save_all(tsk);
533
534 #ifdef CONFIG_SPE
535 if (tsk->thread.regs->msr & MSR_SPE)
536 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
537 #endif
538
539 preempt_enable();
540 }
541 }
542 EXPORT_SYMBOL(flush_all_to_thread);
543
544 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
545 void do_send_trap(struct pt_regs *regs, unsigned long address,
546 unsigned long error_code, int signal_code, int breakpt)
547 {
548 siginfo_t info;
549
550 current->thread.trap_nr = signal_code;
551 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
552 11, SIGSEGV) == NOTIFY_STOP)
553 return;
554
555 /* Deliver the signal to userspace */
556 info.si_signo = SIGTRAP;
557 info.si_errno = breakpt; /* breakpoint or watchpoint id */
558 info.si_code = signal_code;
559 info.si_addr = (void __user *)address;
560 force_sig_info(SIGTRAP, &info, current);
561 }
562 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
563 void do_break (struct pt_regs *regs, unsigned long address,
564 unsigned long error_code)
565 {
566 siginfo_t info;
567
568 current->thread.trap_nr = TRAP_HWBKPT;
569 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
570 11, SIGSEGV) == NOTIFY_STOP)
571 return;
572
573 if (debugger_break_match(regs))
574 return;
575
576 /* Clear the breakpoint */
577 hw_breakpoint_disable();
578
579 /* Deliver the signal to userspace */
580 info.si_signo = SIGTRAP;
581 info.si_errno = 0;
582 info.si_code = TRAP_HWBKPT;
583 info.si_addr = (void __user *)address;
584 force_sig_info(SIGTRAP, &info, current);
585 }
586 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
587
588 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
589
590 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
591 /*
592 * Set the debug registers back to their default "safe" values.
593 */
594 static void set_debug_reg_defaults(struct thread_struct *thread)
595 {
596 thread->debug.iac1 = thread->debug.iac2 = 0;
597 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
598 thread->debug.iac3 = thread->debug.iac4 = 0;
599 #endif
600 thread->debug.dac1 = thread->debug.dac2 = 0;
601 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
602 thread->debug.dvc1 = thread->debug.dvc2 = 0;
603 #endif
604 thread->debug.dbcr0 = 0;
605 #ifdef CONFIG_BOOKE
606 /*
607 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
608 */
609 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
610 DBCR1_IAC3US | DBCR1_IAC4US;
611 /*
612 * Force Data Address Compare User/Supervisor bits to be User-only
613 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
614 */
615 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
616 #else
617 thread->debug.dbcr1 = 0;
618 #endif
619 }
620
621 static void prime_debug_regs(struct debug_reg *debug)
622 {
623 /*
624 * We could have inherited MSR_DE from userspace, since
625 * it doesn't get cleared on exception entry. Make sure
626 * MSR_DE is clear before we enable any debug events.
627 */
628 mtmsr(mfmsr() & ~MSR_DE);
629
630 mtspr(SPRN_IAC1, debug->iac1);
631 mtspr(SPRN_IAC2, debug->iac2);
632 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
633 mtspr(SPRN_IAC3, debug->iac3);
634 mtspr(SPRN_IAC4, debug->iac4);
635 #endif
636 mtspr(SPRN_DAC1, debug->dac1);
637 mtspr(SPRN_DAC2, debug->dac2);
638 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
639 mtspr(SPRN_DVC1, debug->dvc1);
640 mtspr(SPRN_DVC2, debug->dvc2);
641 #endif
642 mtspr(SPRN_DBCR0, debug->dbcr0);
643 mtspr(SPRN_DBCR1, debug->dbcr1);
644 #ifdef CONFIG_BOOKE
645 mtspr(SPRN_DBCR2, debug->dbcr2);
646 #endif
647 }
648 /*
649 * Unless neither the old or new thread are making use of the
650 * debug registers, set the debug registers from the values
651 * stored in the new thread.
652 */
653 void switch_booke_debug_regs(struct debug_reg *new_debug)
654 {
655 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
656 || (new_debug->dbcr0 & DBCR0_IDM))
657 prime_debug_regs(new_debug);
658 }
659 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
660 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
661 #ifndef CONFIG_HAVE_HW_BREAKPOINT
662 static void set_debug_reg_defaults(struct thread_struct *thread)
663 {
664 thread->hw_brk.address = 0;
665 thread->hw_brk.type = 0;
666 set_breakpoint(&thread->hw_brk);
667 }
668 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
669 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
670
671 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
672 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
673 {
674 mtspr(SPRN_DAC1, dabr);
675 #ifdef CONFIG_PPC_47x
676 isync();
677 #endif
678 return 0;
679 }
680 #elif defined(CONFIG_PPC_BOOK3S)
681 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
682 {
683 mtspr(SPRN_DABR, dabr);
684 if (cpu_has_feature(CPU_FTR_DABRX))
685 mtspr(SPRN_DABRX, dabrx);
686 return 0;
687 }
688 #else
689 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
690 {
691 return -EINVAL;
692 }
693 #endif
694
695 static inline int set_dabr(struct arch_hw_breakpoint *brk)
696 {
697 unsigned long dabr, dabrx;
698
699 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
700 dabrx = ((brk->type >> 3) & 0x7);
701
702 if (ppc_md.set_dabr)
703 return ppc_md.set_dabr(dabr, dabrx);
704
705 return __set_dabr(dabr, dabrx);
706 }
707
708 static inline int set_dawr(struct arch_hw_breakpoint *brk)
709 {
710 unsigned long dawr, dawrx, mrd;
711
712 dawr = brk->address;
713
714 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
715 << (63 - 58); //* read/write bits */
716 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
717 << (63 - 59); //* translate */
718 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
719 >> 3; //* PRIM bits */
720 /* dawr length is stored in field MDR bits 48:53. Matches range in
721 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
722 0b111111=64DW.
723 brk->len is in bytes.
724 This aligns up to double word size, shifts and does the bias.
725 */
726 mrd = ((brk->len + 7) >> 3) - 1;
727 dawrx |= (mrd & 0x3f) << (63 - 53);
728
729 if (ppc_md.set_dawr)
730 return ppc_md.set_dawr(dawr, dawrx);
731 mtspr(SPRN_DAWR, dawr);
732 mtspr(SPRN_DAWRX, dawrx);
733 return 0;
734 }
735
736 void __set_breakpoint(struct arch_hw_breakpoint *brk)
737 {
738 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
739
740 if (cpu_has_feature(CPU_FTR_DAWR))
741 set_dawr(brk);
742 else
743 set_dabr(brk);
744 }
745
746 void set_breakpoint(struct arch_hw_breakpoint *brk)
747 {
748 preempt_disable();
749 __set_breakpoint(brk);
750 preempt_enable();
751 }
752
753 #ifdef CONFIG_PPC64
754 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
755 #endif
756
757 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
758 struct arch_hw_breakpoint *b)
759 {
760 if (a->address != b->address)
761 return false;
762 if (a->type != b->type)
763 return false;
764 if (a->len != b->len)
765 return false;
766 return true;
767 }
768
769 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
770 static void tm_reclaim_thread(struct thread_struct *thr,
771 struct thread_info *ti, uint8_t cause)
772 {
773 unsigned long msr_diff = 0;
774
775 /*
776 * If FP/VSX registers have been already saved to the
777 * thread_struct, move them to the transact_fp array.
778 * We clear the TIF_RESTORE_TM bit since after the reclaim
779 * the thread will no longer be transactional.
780 */
781 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
782 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
783 if (msr_diff & MSR_FP)
784 memcpy(&thr->transact_fp, &thr->fp_state,
785 sizeof(struct thread_fp_state));
786 if (msr_diff & MSR_VEC)
787 memcpy(&thr->transact_vr, &thr->vr_state,
788 sizeof(struct thread_vr_state));
789 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
790 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
791 }
792
793 /*
794 * Use the current MSR TM suspended bit to track if we have
795 * checkpointed state outstanding.
796 * On signal delivery, we'd normally reclaim the checkpointed
797 * state to obtain stack pointer (see:get_tm_stackpointer()).
798 * This will then directly return to userspace without going
799 * through __switch_to(). However, if the stack frame is bad,
800 * we need to exit this thread which calls __switch_to() which
801 * will again attempt to reclaim the already saved tm state.
802 * Hence we need to check that we've not already reclaimed
803 * this state.
804 * We do this using the current MSR, rather tracking it in
805 * some specific thread_struct bit, as it has the additional
806 * benefit of checking for a potential TM bad thing exception.
807 */
808 if (!MSR_TM_SUSPENDED(mfmsr()))
809 return;
810
811 tm_reclaim(thr, thr->regs->msr, cause);
812
813 /* Having done the reclaim, we now have the checkpointed
814 * FP/VSX values in the registers. These might be valid
815 * even if we have previously called enable_kernel_fp() or
816 * flush_fp_to_thread(), so update thr->regs->msr to
817 * indicate their current validity.
818 */
819 thr->regs->msr |= msr_diff;
820 }
821
822 void tm_reclaim_current(uint8_t cause)
823 {
824 tm_enable();
825 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
826 }
827
828 static inline void tm_reclaim_task(struct task_struct *tsk)
829 {
830 /* We have to work out if we're switching from/to a task that's in the
831 * middle of a transaction.
832 *
833 * In switching we need to maintain a 2nd register state as
834 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
835 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
836 * (current) FPRs into oldtask->thread.transact_fpr[].
837 *
838 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
839 */
840 struct thread_struct *thr = &tsk->thread;
841
842 if (!thr->regs)
843 return;
844
845 if (!MSR_TM_ACTIVE(thr->regs->msr))
846 goto out_and_saveregs;
847
848 /* Stash the original thread MSR, as giveup_fpu et al will
849 * modify it. We hold onto it to see whether the task used
850 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
851 * ckpt_regs.msr is already set.
852 */
853 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
854 thr->ckpt_regs.msr = thr->regs->msr;
855
856 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
857 "ccr=%lx, msr=%lx, trap=%lx)\n",
858 tsk->pid, thr->regs->nip,
859 thr->regs->ccr, thr->regs->msr,
860 thr->regs->trap);
861
862 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
863
864 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
865 tsk->pid);
866
867 out_and_saveregs:
868 /* Always save the regs here, even if a transaction's not active.
869 * This context-switches a thread's TM info SPRs. We do it here to
870 * be consistent with the restore path (in recheckpoint) which
871 * cannot happen later in _switch().
872 */
873 tm_save_sprs(thr);
874 }
875
876 extern void __tm_recheckpoint(struct thread_struct *thread,
877 unsigned long orig_msr);
878
879 void tm_recheckpoint(struct thread_struct *thread,
880 unsigned long orig_msr)
881 {
882 unsigned long flags;
883
884 /* We really can't be interrupted here as the TEXASR registers can't
885 * change and later in the trecheckpoint code, we have a userspace R1.
886 * So let's hard disable over this region.
887 */
888 local_irq_save(flags);
889 hard_irq_disable();
890
891 /* The TM SPRs are restored here, so that TEXASR.FS can be set
892 * before the trecheckpoint and no explosion occurs.
893 */
894 tm_restore_sprs(thread);
895
896 __tm_recheckpoint(thread, orig_msr);
897
898 local_irq_restore(flags);
899 }
900
901 static inline void tm_recheckpoint_new_task(struct task_struct *new)
902 {
903 unsigned long msr;
904
905 if (!cpu_has_feature(CPU_FTR_TM))
906 return;
907
908 /* Recheckpoint the registers of the thread we're about to switch to.
909 *
910 * If the task was using FP, we non-lazily reload both the original and
911 * the speculative FP register states. This is because the kernel
912 * doesn't see if/when a TM rollback occurs, so if we take an FP
913 * unavoidable later, we are unable to determine which set of FP regs
914 * need to be restored.
915 */
916 if (!new->thread.regs)
917 return;
918
919 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
920 tm_restore_sprs(&new->thread);
921 return;
922 }
923 msr = new->thread.ckpt_regs.msr;
924 /* Recheckpoint to restore original checkpointed register state. */
925 TM_DEBUG("*** tm_recheckpoint of pid %d "
926 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
927 new->pid, new->thread.regs->msr, msr);
928
929 /* This loads the checkpointed FP/VEC state, if used */
930 tm_recheckpoint(&new->thread, msr);
931
932 /* This loads the speculative FP/VEC state, if used */
933 if (msr & MSR_FP) {
934 do_load_up_transact_fpu(&new->thread);
935 new->thread.regs->msr |=
936 (MSR_FP | new->thread.fpexc_mode);
937 }
938 #ifdef CONFIG_ALTIVEC
939 if (msr & MSR_VEC) {
940 do_load_up_transact_altivec(&new->thread);
941 new->thread.regs->msr |= MSR_VEC;
942 }
943 #endif
944 /* We may as well turn on VSX too since all the state is restored now */
945 if (msr & MSR_VSX)
946 new->thread.regs->msr |= MSR_VSX;
947
948 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
949 "(kernel msr 0x%lx)\n",
950 new->pid, mfmsr());
951 }
952
953 static inline void __switch_to_tm(struct task_struct *prev)
954 {
955 if (cpu_has_feature(CPU_FTR_TM)) {
956 tm_enable();
957 tm_reclaim_task(prev);
958 }
959 }
960
961 /*
962 * This is called if we are on the way out to userspace and the
963 * TIF_RESTORE_TM flag is set. It checks if we need to reload
964 * FP and/or vector state and does so if necessary.
965 * If userspace is inside a transaction (whether active or
966 * suspended) and FP/VMX/VSX instructions have ever been enabled
967 * inside that transaction, then we have to keep them enabled
968 * and keep the FP/VMX/VSX state loaded while ever the transaction
969 * continues. The reason is that if we didn't, and subsequently
970 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
971 * we don't know whether it's the same transaction, and thus we
972 * don't know which of the checkpointed state and the transactional
973 * state to use.
974 */
975 void restore_tm_state(struct pt_regs *regs)
976 {
977 unsigned long msr_diff;
978
979 clear_thread_flag(TIF_RESTORE_TM);
980 if (!MSR_TM_ACTIVE(regs->msr))
981 return;
982
983 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
984 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
985
986 restore_math(regs);
987
988 regs->msr |= msr_diff;
989 }
990
991 #else
992 #define tm_recheckpoint_new_task(new)
993 #define __switch_to_tm(prev)
994 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
995
996 static inline void save_sprs(struct thread_struct *t)
997 {
998 #ifdef CONFIG_ALTIVEC
999 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1000 t->vrsave = mfspr(SPRN_VRSAVE);
1001 #endif
1002 #ifdef CONFIG_PPC_BOOK3S_64
1003 if (cpu_has_feature(CPU_FTR_DSCR))
1004 t->dscr = mfspr(SPRN_DSCR);
1005
1006 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1007 t->bescr = mfspr(SPRN_BESCR);
1008 t->ebbhr = mfspr(SPRN_EBBHR);
1009 t->ebbrr = mfspr(SPRN_EBBRR);
1010
1011 t->fscr = mfspr(SPRN_FSCR);
1012
1013 /*
1014 * Note that the TAR is not available for use in the kernel.
1015 * (To provide this, the TAR should be backed up/restored on
1016 * exception entry/exit instead, and be in pt_regs. FIXME,
1017 * this should be in pt_regs anyway (for debug).)
1018 */
1019 t->tar = mfspr(SPRN_TAR);
1020 }
1021
1022 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1023 /* Conditionally save Load Monitor registers, if enabled */
1024 if (t->fscr & FSCR_LM) {
1025 t->lmrr = mfspr(SPRN_LMRR);
1026 t->lmser = mfspr(SPRN_LMSER);
1027 }
1028 }
1029 #endif
1030 }
1031
1032 static inline void restore_sprs(struct thread_struct *old_thread,
1033 struct thread_struct *new_thread)
1034 {
1035 #ifdef CONFIG_ALTIVEC
1036 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1037 old_thread->vrsave != new_thread->vrsave)
1038 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1039 #endif
1040 #ifdef CONFIG_PPC_BOOK3S_64
1041 if (cpu_has_feature(CPU_FTR_DSCR)) {
1042 u64 dscr = get_paca()->dscr_default;
1043 if (new_thread->dscr_inherit)
1044 dscr = new_thread->dscr;
1045
1046 if (old_thread->dscr != dscr)
1047 mtspr(SPRN_DSCR, dscr);
1048 }
1049
1050 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1051 if (old_thread->bescr != new_thread->bescr)
1052 mtspr(SPRN_BESCR, new_thread->bescr);
1053 if (old_thread->ebbhr != new_thread->ebbhr)
1054 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1055 if (old_thread->ebbrr != new_thread->ebbrr)
1056 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1057
1058 if (old_thread->fscr != new_thread->fscr)
1059 mtspr(SPRN_FSCR, new_thread->fscr);
1060
1061 if (old_thread->tar != new_thread->tar)
1062 mtspr(SPRN_TAR, new_thread->tar);
1063 }
1064
1065 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1066 /* Conditionally restore Load Monitor registers, if enabled */
1067 if (new_thread->fscr & FSCR_LM) {
1068 if (old_thread->lmrr != new_thread->lmrr)
1069 mtspr(SPRN_LMRR, new_thread->lmrr);
1070 if (old_thread->lmser != new_thread->lmser)
1071 mtspr(SPRN_LMSER, new_thread->lmser);
1072 }
1073 }
1074 #endif
1075 }
1076
1077 struct task_struct *__switch_to(struct task_struct *prev,
1078 struct task_struct *new)
1079 {
1080 struct thread_struct *new_thread, *old_thread;
1081 struct task_struct *last;
1082 #ifdef CONFIG_PPC_BOOK3S_64
1083 struct ppc64_tlb_batch *batch;
1084 #endif
1085
1086 new_thread = &new->thread;
1087 old_thread = &current->thread;
1088
1089 WARN_ON(!irqs_disabled());
1090
1091 #ifdef CONFIG_PPC64
1092 /*
1093 * Collect processor utilization data per process
1094 */
1095 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1096 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1097 long unsigned start_tb, current_tb;
1098 start_tb = old_thread->start_tb;
1099 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1100 old_thread->accum_tb += (current_tb - start_tb);
1101 new_thread->start_tb = current_tb;
1102 }
1103 #endif /* CONFIG_PPC64 */
1104
1105 #ifdef CONFIG_PPC_STD_MMU_64
1106 batch = this_cpu_ptr(&ppc64_tlb_batch);
1107 if (batch->active) {
1108 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1109 if (batch->index)
1110 __flush_tlb_pending(batch);
1111 batch->active = 0;
1112 }
1113 #endif /* CONFIG_PPC_STD_MMU_64 */
1114
1115 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1116 switch_booke_debug_regs(&new->thread.debug);
1117 #else
1118 /*
1119 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1120 * schedule DABR
1121 */
1122 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1123 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1124 __set_breakpoint(&new->thread.hw_brk);
1125 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1126 #endif
1127
1128 /*
1129 * We need to save SPRs before treclaim/trecheckpoint as these will
1130 * change a number of them.
1131 */
1132 save_sprs(&prev->thread);
1133
1134 __switch_to_tm(prev);
1135
1136 /* Save FPU, Altivec, VSX and SPE state */
1137 giveup_all(prev);
1138
1139 /*
1140 * We can't take a PMU exception inside _switch() since there is a
1141 * window where the kernel stack SLB and the kernel stack are out
1142 * of sync. Hard disable here.
1143 */
1144 hard_irq_disable();
1145
1146 tm_recheckpoint_new_task(new);
1147
1148 /*
1149 * Call restore_sprs() before calling _switch(). If we move it after
1150 * _switch() then we miss out on calling it for new tasks. The reason
1151 * for this is we manually create a stack frame for new tasks that
1152 * directly returns through ret_from_fork() or
1153 * ret_from_kernel_thread(). See copy_thread() for details.
1154 */
1155 restore_sprs(old_thread, new_thread);
1156
1157 last = _switch(old_thread, new_thread);
1158
1159 #ifdef CONFIG_PPC_STD_MMU_64
1160 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1161 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1162 batch = this_cpu_ptr(&ppc64_tlb_batch);
1163 batch->active = 1;
1164 }
1165
1166 if (current_thread_info()->task->thread.regs)
1167 restore_math(current_thread_info()->task->thread.regs);
1168 #endif /* CONFIG_PPC_STD_MMU_64 */
1169
1170 return last;
1171 }
1172
1173 static int instructions_to_print = 16;
1174
1175 static void show_instructions(struct pt_regs *regs)
1176 {
1177 int i;
1178 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1179 sizeof(int));
1180
1181 printk("Instruction dump:");
1182
1183 for (i = 0; i < instructions_to_print; i++) {
1184 int instr;
1185
1186 if (!(i % 8))
1187 printk("\n");
1188
1189 #if !defined(CONFIG_BOOKE)
1190 /* If executing with the IMMU off, adjust pc rather
1191 * than print XXXXXXXX.
1192 */
1193 if (!(regs->msr & MSR_IR))
1194 pc = (unsigned long)phys_to_virt(pc);
1195 #endif
1196
1197 if (!__kernel_text_address(pc) ||
1198 probe_kernel_address((unsigned int __user *)pc, instr)) {
1199 printk(KERN_CONT "XXXXXXXX ");
1200 } else {
1201 if (regs->nip == pc)
1202 printk(KERN_CONT "<%08x> ", instr);
1203 else
1204 printk(KERN_CONT "%08x ", instr);
1205 }
1206
1207 pc += sizeof(int);
1208 }
1209
1210 printk("\n");
1211 }
1212
1213 struct regbit {
1214 unsigned long bit;
1215 const char *name;
1216 };
1217
1218 static struct regbit msr_bits[] = {
1219 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1220 {MSR_SF, "SF"},
1221 {MSR_HV, "HV"},
1222 #endif
1223 {MSR_VEC, "VEC"},
1224 {MSR_VSX, "VSX"},
1225 #ifdef CONFIG_BOOKE
1226 {MSR_CE, "CE"},
1227 #endif
1228 {MSR_EE, "EE"},
1229 {MSR_PR, "PR"},
1230 {MSR_FP, "FP"},
1231 {MSR_ME, "ME"},
1232 #ifdef CONFIG_BOOKE
1233 {MSR_DE, "DE"},
1234 #else
1235 {MSR_SE, "SE"},
1236 {MSR_BE, "BE"},
1237 #endif
1238 {MSR_IR, "IR"},
1239 {MSR_DR, "DR"},
1240 {MSR_PMM, "PMM"},
1241 #ifndef CONFIG_BOOKE
1242 {MSR_RI, "RI"},
1243 {MSR_LE, "LE"},
1244 #endif
1245 {0, NULL}
1246 };
1247
1248 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1249 {
1250 const char *s = "";
1251
1252 for (; bits->bit; ++bits)
1253 if (val & bits->bit) {
1254 printk("%s%s", s, bits->name);
1255 s = sep;
1256 }
1257 }
1258
1259 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1260 static struct regbit msr_tm_bits[] = {
1261 {MSR_TS_T, "T"},
1262 {MSR_TS_S, "S"},
1263 {MSR_TM, "E"},
1264 {0, NULL}
1265 };
1266
1267 static void print_tm_bits(unsigned long val)
1268 {
1269 /*
1270 * This only prints something if at least one of the TM bit is set.
1271 * Inside the TM[], the output means:
1272 * E: Enabled (bit 32)
1273 * S: Suspended (bit 33)
1274 * T: Transactional (bit 34)
1275 */
1276 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1277 printk(",TM[");
1278 print_bits(val, msr_tm_bits, "");
1279 printk("]");
1280 }
1281 }
1282 #else
1283 static void print_tm_bits(unsigned long val) {}
1284 #endif
1285
1286 static void print_msr_bits(unsigned long val)
1287 {
1288 printk("<");
1289 print_bits(val, msr_bits, ",");
1290 print_tm_bits(val);
1291 printk(">");
1292 }
1293
1294 #ifdef CONFIG_PPC64
1295 #define REG "%016lx"
1296 #define REGS_PER_LINE 4
1297 #define LAST_VOLATILE 13
1298 #else
1299 #define REG "%08lx"
1300 #define REGS_PER_LINE 8
1301 #define LAST_VOLATILE 12
1302 #endif
1303
1304 void show_regs(struct pt_regs * regs)
1305 {
1306 int i, trap;
1307
1308 show_regs_print_info(KERN_DEFAULT);
1309
1310 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1311 regs->nip, regs->link, regs->ctr);
1312 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1313 regs, regs->trap, print_tainted(), init_utsname()->release);
1314 printk("MSR: "REG" ", regs->msr);
1315 print_msr_bits(regs->msr);
1316 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1317 trap = TRAP(regs);
1318 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1319 printk("CFAR: "REG" ", regs->orig_gpr3);
1320 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1321 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1322 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1323 #else
1324 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1325 #endif
1326 #ifdef CONFIG_PPC64
1327 printk("SOFTE: %ld ", regs->softe);
1328 #endif
1329 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1330 if (MSR_TM_ACTIVE(regs->msr))
1331 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1332 #endif
1333
1334 for (i = 0; i < 32; i++) {
1335 if ((i % REGS_PER_LINE) == 0)
1336 printk("\nGPR%02d: ", i);
1337 printk(REG " ", regs->gpr[i]);
1338 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1339 break;
1340 }
1341 printk("\n");
1342 #ifdef CONFIG_KALLSYMS
1343 /*
1344 * Lookup NIP late so we have the best change of getting the
1345 * above info out without failing
1346 */
1347 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1348 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1349 #endif
1350 show_stack(current, (unsigned long *) regs->gpr[1]);
1351 if (!user_mode(regs))
1352 show_instructions(regs);
1353 }
1354
1355 void flush_thread(void)
1356 {
1357 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1358 flush_ptrace_hw_breakpoint(current);
1359 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1360 set_debug_reg_defaults(&current->thread);
1361 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1362 }
1363
1364 void
1365 release_thread(struct task_struct *t)
1366 {
1367 }
1368
1369 /*
1370 * this gets called so that we can store coprocessor state into memory and
1371 * copy the current task into the new thread.
1372 */
1373 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1374 {
1375 flush_all_to_thread(src);
1376 /*
1377 * Flush TM state out so we can copy it. __switch_to_tm() does this
1378 * flush but it removes the checkpointed state from the current CPU and
1379 * transitions the CPU out of TM mode. Hence we need to call
1380 * tm_recheckpoint_new_task() (on the same task) to restore the
1381 * checkpointed state back and the TM mode.
1382 */
1383 __switch_to_tm(src);
1384 tm_recheckpoint_new_task(src);
1385
1386 *dst = *src;
1387
1388 clear_task_ebb(dst);
1389
1390 return 0;
1391 }
1392
1393 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1394 {
1395 #ifdef CONFIG_PPC_STD_MMU_64
1396 unsigned long sp_vsid;
1397 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1398
1399 if (radix_enabled())
1400 return;
1401
1402 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1403 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1404 << SLB_VSID_SHIFT_1T;
1405 else
1406 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1407 << SLB_VSID_SHIFT;
1408 sp_vsid |= SLB_VSID_KERNEL | llp;
1409 p->thread.ksp_vsid = sp_vsid;
1410 #endif
1411 }
1412
1413 /*
1414 * Copy a thread..
1415 */
1416
1417 /*
1418 * Copy architecture-specific thread state
1419 */
1420 int copy_thread(unsigned long clone_flags, unsigned long usp,
1421 unsigned long kthread_arg, struct task_struct *p)
1422 {
1423 struct pt_regs *childregs, *kregs;
1424 extern void ret_from_fork(void);
1425 extern void ret_from_kernel_thread(void);
1426 void (*f)(void);
1427 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1428 struct thread_info *ti = task_thread_info(p);
1429
1430 klp_init_thread_info(ti);
1431
1432 /* Copy registers */
1433 sp -= sizeof(struct pt_regs);
1434 childregs = (struct pt_regs *) sp;
1435 if (unlikely(p->flags & PF_KTHREAD)) {
1436 /* kernel thread */
1437 memset(childregs, 0, sizeof(struct pt_regs));
1438 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1439 /* function */
1440 if (usp)
1441 childregs->gpr[14] = ppc_function_entry((void *)usp);
1442 #ifdef CONFIG_PPC64
1443 clear_tsk_thread_flag(p, TIF_32BIT);
1444 childregs->softe = 1;
1445 #endif
1446 childregs->gpr[15] = kthread_arg;
1447 p->thread.regs = NULL; /* no user register state */
1448 ti->flags |= _TIF_RESTOREALL;
1449 f = ret_from_kernel_thread;
1450 } else {
1451 /* user thread */
1452 struct pt_regs *regs = current_pt_regs();
1453 CHECK_FULL_REGS(regs);
1454 *childregs = *regs;
1455 if (usp)
1456 childregs->gpr[1] = usp;
1457 p->thread.regs = childregs;
1458 childregs->gpr[3] = 0; /* Result from fork() */
1459 if (clone_flags & CLONE_SETTLS) {
1460 #ifdef CONFIG_PPC64
1461 if (!is_32bit_task())
1462 childregs->gpr[13] = childregs->gpr[6];
1463 else
1464 #endif
1465 childregs->gpr[2] = childregs->gpr[6];
1466 }
1467
1468 f = ret_from_fork;
1469 }
1470 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1471 sp -= STACK_FRAME_OVERHEAD;
1472
1473 /*
1474 * The way this works is that at some point in the future
1475 * some task will call _switch to switch to the new task.
1476 * That will pop off the stack frame created below and start
1477 * the new task running at ret_from_fork. The new task will
1478 * do some house keeping and then return from the fork or clone
1479 * system call, using the stack frame created above.
1480 */
1481 ((unsigned long *)sp)[0] = 0;
1482 sp -= sizeof(struct pt_regs);
1483 kregs = (struct pt_regs *) sp;
1484 sp -= STACK_FRAME_OVERHEAD;
1485 p->thread.ksp = sp;
1486 #ifdef CONFIG_PPC32
1487 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1488 _ALIGN_UP(sizeof(struct thread_info), 16);
1489 #endif
1490 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1491 p->thread.ptrace_bps[0] = NULL;
1492 #endif
1493
1494 p->thread.fp_save_area = NULL;
1495 #ifdef CONFIG_ALTIVEC
1496 p->thread.vr_save_area = NULL;
1497 #endif
1498
1499 setup_ksp_vsid(p, sp);
1500
1501 #ifdef CONFIG_PPC64
1502 if (cpu_has_feature(CPU_FTR_DSCR)) {
1503 p->thread.dscr_inherit = current->thread.dscr_inherit;
1504 p->thread.dscr = mfspr(SPRN_DSCR);
1505 }
1506 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1507 p->thread.ppr = INIT_PPR;
1508 #endif
1509 kregs->nip = ppc_function_entry(f);
1510 return 0;
1511 }
1512
1513 /*
1514 * Set up a thread for executing a new program
1515 */
1516 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1517 {
1518 #ifdef CONFIG_PPC64
1519 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1520 #endif
1521
1522 /*
1523 * If we exec out of a kernel thread then thread.regs will not be
1524 * set. Do it now.
1525 */
1526 if (!current->thread.regs) {
1527 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1528 current->thread.regs = regs - 1;
1529 }
1530
1531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1532 /*
1533 * Clear any transactional state, we're exec()ing. The cause is
1534 * not important as there will never be a recheckpoint so it's not
1535 * user visible.
1536 */
1537 if (MSR_TM_SUSPENDED(mfmsr()))
1538 tm_reclaim_current(0);
1539 #endif
1540
1541 memset(regs->gpr, 0, sizeof(regs->gpr));
1542 regs->ctr = 0;
1543 regs->link = 0;
1544 regs->xer = 0;
1545 regs->ccr = 0;
1546 regs->gpr[1] = sp;
1547
1548 /*
1549 * We have just cleared all the nonvolatile GPRs, so make
1550 * FULL_REGS(regs) return true. This is necessary to allow
1551 * ptrace to examine the thread immediately after exec.
1552 */
1553 regs->trap &= ~1UL;
1554
1555 #ifdef CONFIG_PPC32
1556 regs->mq = 0;
1557 regs->nip = start;
1558 regs->msr = MSR_USER;
1559 #else
1560 if (!is_32bit_task()) {
1561 unsigned long entry;
1562
1563 if (is_elf2_task()) {
1564 /* Look ma, no function descriptors! */
1565 entry = start;
1566
1567 /*
1568 * Ulrich says:
1569 * The latest iteration of the ABI requires that when
1570 * calling a function (at its global entry point),
1571 * the caller must ensure r12 holds the entry point
1572 * address (so that the function can quickly
1573 * establish addressability).
1574 */
1575 regs->gpr[12] = start;
1576 /* Make sure that's restored on entry to userspace. */
1577 set_thread_flag(TIF_RESTOREALL);
1578 } else {
1579 unsigned long toc;
1580
1581 /* start is a relocated pointer to the function
1582 * descriptor for the elf _start routine. The first
1583 * entry in the function descriptor is the entry
1584 * address of _start and the second entry is the TOC
1585 * value we need to use.
1586 */
1587 __get_user(entry, (unsigned long __user *)start);
1588 __get_user(toc, (unsigned long __user *)start+1);
1589
1590 /* Check whether the e_entry function descriptor entries
1591 * need to be relocated before we can use them.
1592 */
1593 if (load_addr != 0) {
1594 entry += load_addr;
1595 toc += load_addr;
1596 }
1597 regs->gpr[2] = toc;
1598 }
1599 regs->nip = entry;
1600 regs->msr = MSR_USER64;
1601 } else {
1602 regs->nip = start;
1603 regs->gpr[2] = 0;
1604 regs->msr = MSR_USER32;
1605 }
1606 #endif
1607 #ifdef CONFIG_VSX
1608 current->thread.used_vsr = 0;
1609 #endif
1610 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1611 current->thread.fp_save_area = NULL;
1612 #ifdef CONFIG_ALTIVEC
1613 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1614 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1615 current->thread.vr_save_area = NULL;
1616 current->thread.vrsave = 0;
1617 current->thread.used_vr = 0;
1618 #endif /* CONFIG_ALTIVEC */
1619 #ifdef CONFIG_SPE
1620 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1621 current->thread.acc = 0;
1622 current->thread.spefscr = 0;
1623 current->thread.used_spe = 0;
1624 #endif /* CONFIG_SPE */
1625 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1626 if (cpu_has_feature(CPU_FTR_TM))
1627 regs->msr |= MSR_TM;
1628 current->thread.tm_tfhar = 0;
1629 current->thread.tm_texasr = 0;
1630 current->thread.tm_tfiar = 0;
1631 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1632 }
1633 EXPORT_SYMBOL(start_thread);
1634
1635 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1636 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1637
1638 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1639 {
1640 struct pt_regs *regs = tsk->thread.regs;
1641
1642 /* This is a bit hairy. If we are an SPE enabled processor
1643 * (have embedded fp) we store the IEEE exception enable flags in
1644 * fpexc_mode. fpexc_mode is also used for setting FP exception
1645 * mode (asyn, precise, disabled) for 'Classic' FP. */
1646 if (val & PR_FP_EXC_SW_ENABLE) {
1647 #ifdef CONFIG_SPE
1648 if (cpu_has_feature(CPU_FTR_SPE)) {
1649 /*
1650 * When the sticky exception bits are set
1651 * directly by userspace, it must call prctl
1652 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1653 * in the existing prctl settings) or
1654 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1655 * the bits being set). <fenv.h> functions
1656 * saving and restoring the whole
1657 * floating-point environment need to do so
1658 * anyway to restore the prctl settings from
1659 * the saved environment.
1660 */
1661 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1662 tsk->thread.fpexc_mode = val &
1663 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1664 return 0;
1665 } else {
1666 return -EINVAL;
1667 }
1668 #else
1669 return -EINVAL;
1670 #endif
1671 }
1672
1673 /* on a CONFIG_SPE this does not hurt us. The bits that
1674 * __pack_fe01 use do not overlap with bits used for
1675 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1676 * on CONFIG_SPE implementations are reserved so writing to
1677 * them does not change anything */
1678 if (val > PR_FP_EXC_PRECISE)
1679 return -EINVAL;
1680 tsk->thread.fpexc_mode = __pack_fe01(val);
1681 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1682 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1683 | tsk->thread.fpexc_mode;
1684 return 0;
1685 }
1686
1687 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1688 {
1689 unsigned int val;
1690
1691 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1692 #ifdef CONFIG_SPE
1693 if (cpu_has_feature(CPU_FTR_SPE)) {
1694 /*
1695 * When the sticky exception bits are set
1696 * directly by userspace, it must call prctl
1697 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1698 * in the existing prctl settings) or
1699 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1700 * the bits being set). <fenv.h> functions
1701 * saving and restoring the whole
1702 * floating-point environment need to do so
1703 * anyway to restore the prctl settings from
1704 * the saved environment.
1705 */
1706 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1707 val = tsk->thread.fpexc_mode;
1708 } else
1709 return -EINVAL;
1710 #else
1711 return -EINVAL;
1712 #endif
1713 else
1714 val = __unpack_fe01(tsk->thread.fpexc_mode);
1715 return put_user(val, (unsigned int __user *) adr);
1716 }
1717
1718 int set_endian(struct task_struct *tsk, unsigned int val)
1719 {
1720 struct pt_regs *regs = tsk->thread.regs;
1721
1722 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1723 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1724 return -EINVAL;
1725
1726 if (regs == NULL)
1727 return -EINVAL;
1728
1729 if (val == PR_ENDIAN_BIG)
1730 regs->msr &= ~MSR_LE;
1731 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1732 regs->msr |= MSR_LE;
1733 else
1734 return -EINVAL;
1735
1736 return 0;
1737 }
1738
1739 int get_endian(struct task_struct *tsk, unsigned long adr)
1740 {
1741 struct pt_regs *regs = tsk->thread.regs;
1742 unsigned int val;
1743
1744 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1745 !cpu_has_feature(CPU_FTR_REAL_LE))
1746 return -EINVAL;
1747
1748 if (regs == NULL)
1749 return -EINVAL;
1750
1751 if (regs->msr & MSR_LE) {
1752 if (cpu_has_feature(CPU_FTR_REAL_LE))
1753 val = PR_ENDIAN_LITTLE;
1754 else
1755 val = PR_ENDIAN_PPC_LITTLE;
1756 } else
1757 val = PR_ENDIAN_BIG;
1758
1759 return put_user(val, (unsigned int __user *)adr);
1760 }
1761
1762 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1763 {
1764 tsk->thread.align_ctl = val;
1765 return 0;
1766 }
1767
1768 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1769 {
1770 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1771 }
1772
1773 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1774 unsigned long nbytes)
1775 {
1776 unsigned long stack_page;
1777 unsigned long cpu = task_cpu(p);
1778
1779 /*
1780 * Avoid crashing if the stack has overflowed and corrupted
1781 * task_cpu(p), which is in the thread_info struct.
1782 */
1783 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1784 stack_page = (unsigned long) hardirq_ctx[cpu];
1785 if (sp >= stack_page + sizeof(struct thread_struct)
1786 && sp <= stack_page + THREAD_SIZE - nbytes)
1787 return 1;
1788
1789 stack_page = (unsigned long) softirq_ctx[cpu];
1790 if (sp >= stack_page + sizeof(struct thread_struct)
1791 && sp <= stack_page + THREAD_SIZE - nbytes)
1792 return 1;
1793 }
1794 return 0;
1795 }
1796
1797 int validate_sp(unsigned long sp, struct task_struct *p,
1798 unsigned long nbytes)
1799 {
1800 unsigned long stack_page = (unsigned long)task_stack_page(p);
1801
1802 if (sp >= stack_page + sizeof(struct thread_struct)
1803 && sp <= stack_page + THREAD_SIZE - nbytes)
1804 return 1;
1805
1806 return valid_irq_stack(sp, p, nbytes);
1807 }
1808
1809 EXPORT_SYMBOL(validate_sp);
1810
1811 unsigned long get_wchan(struct task_struct *p)
1812 {
1813 unsigned long ip, sp;
1814 int count = 0;
1815
1816 if (!p || p == current || p->state == TASK_RUNNING)
1817 return 0;
1818
1819 sp = p->thread.ksp;
1820 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1821 return 0;
1822
1823 do {
1824 sp = *(unsigned long *)sp;
1825 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1826 return 0;
1827 if (count > 0) {
1828 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1829 if (!in_sched_functions(ip))
1830 return ip;
1831 }
1832 } while (count++ < 16);
1833 return 0;
1834 }
1835
1836 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1837
1838 void show_stack(struct task_struct *tsk, unsigned long *stack)
1839 {
1840 unsigned long sp, ip, lr, newsp;
1841 int count = 0;
1842 int firstframe = 1;
1843 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1844 int curr_frame = current->curr_ret_stack;
1845 extern void return_to_handler(void);
1846 unsigned long rth = (unsigned long)return_to_handler;
1847 #endif
1848
1849 sp = (unsigned long) stack;
1850 if (tsk == NULL)
1851 tsk = current;
1852 if (sp == 0) {
1853 if (tsk == current)
1854 sp = current_stack_pointer();
1855 else
1856 sp = tsk->thread.ksp;
1857 }
1858
1859 lr = 0;
1860 printk("Call Trace:\n");
1861 do {
1862 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1863 return;
1864
1865 stack = (unsigned long *) sp;
1866 newsp = stack[0];
1867 ip = stack[STACK_FRAME_LR_SAVE];
1868 if (!firstframe || ip != lr) {
1869 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1870 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1871 if ((ip == rth) && curr_frame >= 0) {
1872 printk(" (%pS)",
1873 (void *)current->ret_stack[curr_frame].ret);
1874 curr_frame--;
1875 }
1876 #endif
1877 if (firstframe)
1878 printk(" (unreliable)");
1879 printk("\n");
1880 }
1881 firstframe = 0;
1882
1883 /*
1884 * See if this is an exception frame.
1885 * We look for the "regshere" marker in the current frame.
1886 */
1887 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1888 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1889 struct pt_regs *regs = (struct pt_regs *)
1890 (sp + STACK_FRAME_OVERHEAD);
1891 lr = regs->link;
1892 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1893 regs->trap, (void *)regs->nip, (void *)lr);
1894 firstframe = 1;
1895 }
1896
1897 sp = newsp;
1898 } while (count++ < kstack_depth_to_print);
1899 }
1900
1901 #ifdef CONFIG_PPC64
1902 /* Called with hard IRQs off */
1903 void notrace __ppc64_runlatch_on(void)
1904 {
1905 struct thread_info *ti = current_thread_info();
1906 unsigned long ctrl;
1907
1908 ctrl = mfspr(SPRN_CTRLF);
1909 ctrl |= CTRL_RUNLATCH;
1910 mtspr(SPRN_CTRLT, ctrl);
1911
1912 ti->local_flags |= _TLF_RUNLATCH;
1913 }
1914
1915 /* Called with hard IRQs off */
1916 void notrace __ppc64_runlatch_off(void)
1917 {
1918 struct thread_info *ti = current_thread_info();
1919 unsigned long ctrl;
1920
1921 ti->local_flags &= ~_TLF_RUNLATCH;
1922
1923 ctrl = mfspr(SPRN_CTRLF);
1924 ctrl &= ~CTRL_RUNLATCH;
1925 mtspr(SPRN_CTRLT, ctrl);
1926 }
1927 #endif /* CONFIG_PPC64 */
1928
1929 unsigned long arch_align_stack(unsigned long sp)
1930 {
1931 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1932 sp -= get_random_int() & ~PAGE_MASK;
1933 return sp & ~0xf;
1934 }
1935
1936 static inline unsigned long brk_rnd(void)
1937 {
1938 unsigned long rnd = 0;
1939
1940 /* 8MB for 32bit, 1GB for 64bit */
1941 if (is_32bit_task())
1942 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1943 else
1944 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1945
1946 return rnd << PAGE_SHIFT;
1947 }
1948
1949 unsigned long arch_randomize_brk(struct mm_struct *mm)
1950 {
1951 unsigned long base = mm->brk;
1952 unsigned long ret;
1953
1954 #ifdef CONFIG_PPC_STD_MMU_64
1955 /*
1956 * If we are using 1TB segments and we are allowed to randomise
1957 * the heap, we can put it above 1TB so it is backed by a 1TB
1958 * segment. Otherwise the heap will be in the bottom 1TB
1959 * which always uses 256MB segments and this may result in a
1960 * performance penalty. We don't need to worry about radix. For
1961 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1962 */
1963 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1964 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1965 #endif
1966
1967 ret = PAGE_ALIGN(base + brk_rnd());
1968
1969 if (ret < mm->brk)
1970 return mm->brk;
1971
1972 return ret;
1973 }
1974