]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/process.c
[SERIAL] add PNP IDs for FPI based touchscreens
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51
52 extern unsigned long _get_SP(void);
53
54 #ifndef CONFIG_SMP
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86 #endif
87 giveup_fpu(current);
88 }
89 preempt_enable();
90 }
91 }
92
93 void enable_kernel_fp(void)
94 {
95 WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102 #else
103 giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 {
110 if (!tsk->thread.regs)
111 return 0;
112 flush_fp_to_thread(current);
113
114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115
116 return 1;
117 }
118
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
121 {
122 WARN_ON(preemptible());
123
124 #ifdef CONFIG_SMP
125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126 giveup_altivec(current);
127 else
128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
129 #else
130 giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
132 }
133 EXPORT_SYMBOL(enable_kernel_altivec);
134
135 /*
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
138 */
139 void flush_altivec_to_thread(struct task_struct *tsk)
140 {
141 if (tsk->thread.regs) {
142 preempt_disable();
143 if (tsk->thread.regs->msr & MSR_VEC) {
144 #ifdef CONFIG_SMP
145 BUG_ON(tsk != current);
146 #endif
147 giveup_altivec(current);
148 }
149 preempt_enable();
150 }
151 }
152
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 {
155 flush_altivec_to_thread(current);
156 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157 return 1;
158 }
159 #endif /* CONFIG_ALTIVEC */
160
161 #ifdef CONFIG_SPE
162
163 void enable_kernel_spe(void)
164 {
165 WARN_ON(preemptible());
166
167 #ifdef CONFIG_SMP
168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169 giveup_spe(current);
170 else
171 giveup_spe(NULL); /* just enable SPE for kernel - force */
172 #else
173 giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
175 }
176 EXPORT_SYMBOL(enable_kernel_spe);
177
178 void flush_spe_to_thread(struct task_struct *tsk)
179 {
180 if (tsk->thread.regs) {
181 preempt_disable();
182 if (tsk->thread.regs->msr & MSR_SPE) {
183 #ifdef CONFIG_SMP
184 BUG_ON(tsk != current);
185 #endif
186 giveup_spe(current);
187 }
188 preempt_enable();
189 }
190 }
191
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 {
194 flush_spe_to_thread(current);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197 return 1;
198 }
199 #endif /* CONFIG_SPE */
200
201 #ifndef CONFIG_SMP
202 /*
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
205 */
206 void discard_lazy_cpu_state(void)
207 {
208 preempt_disable();
209 if (last_task_used_math == current)
210 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec == current)
213 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
215 #ifdef CONFIG_SPE
216 if (last_task_used_spe == current)
217 last_task_used_spe = NULL;
218 #endif
219 preempt_enable();
220 }
221 #endif /* CONFIG_SMP */
222
223 #ifdef CONFIG_PPC_MERGE /* XXX for now */
224 int set_dabr(unsigned long dabr)
225 {
226 if (ppc_md.set_dabr)
227 return ppc_md.set_dabr(dabr);
228
229 mtspr(SPRN_DABR, dabr);
230 return 0;
231 }
232 #endif
233
234 #ifdef CONFIG_PPC64
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
237 #endif
238
239 struct task_struct *__switch_to(struct task_struct *prev,
240 struct task_struct *new)
241 {
242 struct thread_struct *new_thread, *old_thread;
243 unsigned long flags;
244 struct task_struct *last;
245
246 #ifdef CONFIG_SMP
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
250 *
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
254 * -- Cort
255 */
256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257 giveup_fpu(prev);
258 #ifdef CONFIG_ALTIVEC
259 /*
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
265 *
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
268 * -- Cort
269 */
270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
273 #ifdef CONFIG_SPE
274 /*
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
277 *
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
280 */
281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282 giveup_spe(prev);
283 #endif /* CONFIG_SPE */
284
285 #else /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
289 */
290 if (new->thread.regs && last_task_used_altivec == new)
291 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_SPE
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
296 */
297 if (new->thread.regs && last_task_used_spe == new)
298 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
300
301 #endif /* CONFIG_SMP */
302
303 #ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305 set_dabr(new->thread.dabr);
306 __get_cpu_var(current_dabr) = new->thread.dabr;
307 }
308
309 flush_tlb_pending();
310 #endif
311
312 new_thread = &new->thread;
313 old_thread = &current->thread;
314
315 #ifdef CONFIG_PPC64
316 /*
317 * Collect processor utilization data per process
318 */
319 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321 long unsigned start_tb, current_tb;
322 start_tb = old_thread->start_tb;
323 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324 old_thread->accum_tb += (current_tb - start_tb);
325 new_thread->start_tb = current_tb;
326 }
327 #endif
328
329 local_irq_save(flags);
330
331 account_system_vtime(current);
332 account_process_vtime(current);
333 calculate_steal_time();
334
335 last = _switch(old_thread, new_thread);
336
337 local_irq_restore(flags);
338
339 return last;
340 }
341
342 static int instructions_to_print = 16;
343
344 #ifdef CONFIG_PPC64
345 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \
346 (REGION_ID(pc) != VMALLOC_REGION_ID))
347 #else
348 #define BAD_PC(pc) ((pc) < KERNELBASE)
349 #endif
350
351 static void show_instructions(struct pt_regs *regs)
352 {
353 int i;
354 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
355 sizeof(int));
356
357 printk("Instruction dump:");
358
359 for (i = 0; i < instructions_to_print; i++) {
360 int instr;
361
362 if (!(i % 8))
363 printk("\n");
364
365 /* We use __get_user here *only* to avoid an OOPS on a
366 * bad address because the pc *should* only be a
367 * kernel address.
368 */
369 if (BAD_PC(pc) || __get_user(instr, (unsigned int __user *)pc)) {
370 printk("XXXXXXXX ");
371 } else {
372 if (regs->nip == pc)
373 printk("<%08x> ", instr);
374 else
375 printk("%08x ", instr);
376 }
377
378 pc += sizeof(int);
379 }
380
381 printk("\n");
382 }
383
384 static struct regbit {
385 unsigned long bit;
386 const char *name;
387 } msr_bits[] = {
388 {MSR_EE, "EE"},
389 {MSR_PR, "PR"},
390 {MSR_FP, "FP"},
391 {MSR_ME, "ME"},
392 {MSR_IR, "IR"},
393 {MSR_DR, "DR"},
394 {0, NULL}
395 };
396
397 static void printbits(unsigned long val, struct regbit *bits)
398 {
399 const char *sep = "";
400
401 printk("<");
402 for (; bits->bit; ++bits)
403 if (val & bits->bit) {
404 printk("%s%s", sep, bits->name);
405 sep = ",";
406 }
407 printk(">");
408 }
409
410 #ifdef CONFIG_PPC64
411 #define REG "%016lX"
412 #define REGS_PER_LINE 4
413 #define LAST_VOLATILE 13
414 #else
415 #define REG "%08lX"
416 #define REGS_PER_LINE 8
417 #define LAST_VOLATILE 12
418 #endif
419
420 void show_regs(struct pt_regs * regs)
421 {
422 int i, trap;
423
424 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
425 regs->nip, regs->link, regs->ctr);
426 printk("REGS: %p TRAP: %04lx %s (%s)\n",
427 regs, regs->trap, print_tainted(), system_utsname.release);
428 printk("MSR: "REG" ", regs->msr);
429 printbits(regs->msr, msr_bits);
430 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
431 trap = TRAP(regs);
432 if (trap == 0x300 || trap == 0x600)
433 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
434 printk("TASK = %p[%d] '%s' THREAD: %p",
435 current, current->pid, current->comm, task_thread_info(current));
436
437 #ifdef CONFIG_SMP
438 printk(" CPU: %d", smp_processor_id());
439 #endif /* CONFIG_SMP */
440
441 for (i = 0; i < 32; i++) {
442 if ((i % REGS_PER_LINE) == 0)
443 printk("\n" KERN_INFO "GPR%02d: ", i);
444 printk(REG " ", regs->gpr[i]);
445 if (i == LAST_VOLATILE && !FULL_REGS(regs))
446 break;
447 }
448 printk("\n");
449 #ifdef CONFIG_KALLSYMS
450 /*
451 * Lookup NIP late so we have the best change of getting the
452 * above info out without failing
453 */
454 printk("NIP ["REG"] ", regs->nip);
455 print_symbol("%s\n", regs->nip);
456 printk("LR ["REG"] ", regs->link);
457 print_symbol("%s\n", regs->link);
458 #endif
459 show_stack(current, (unsigned long *) regs->gpr[1]);
460 if (!user_mode(regs))
461 show_instructions(regs);
462 }
463
464 void exit_thread(void)
465 {
466 discard_lazy_cpu_state();
467 }
468
469 void flush_thread(void)
470 {
471 #ifdef CONFIG_PPC64
472 struct thread_info *t = current_thread_info();
473
474 if (t->flags & _TIF_ABI_PENDING)
475 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
476 #endif
477
478 discard_lazy_cpu_state();
479
480 #ifdef CONFIG_PPC64 /* for now */
481 if (current->thread.dabr) {
482 current->thread.dabr = 0;
483 set_dabr(0);
484 }
485 #endif
486 }
487
488 void
489 release_thread(struct task_struct *t)
490 {
491 }
492
493 /*
494 * This gets called before we allocate a new thread and copy
495 * the current task into it.
496 */
497 void prepare_to_copy(struct task_struct *tsk)
498 {
499 flush_fp_to_thread(current);
500 flush_altivec_to_thread(current);
501 flush_spe_to_thread(current);
502 }
503
504 /*
505 * Copy a thread..
506 */
507 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
508 unsigned long unused, struct task_struct *p,
509 struct pt_regs *regs)
510 {
511 struct pt_regs *childregs, *kregs;
512 extern void ret_from_fork(void);
513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
514
515 CHECK_FULL_REGS(regs);
516 /* Copy registers */
517 sp -= sizeof(struct pt_regs);
518 childregs = (struct pt_regs *) sp;
519 *childregs = *regs;
520 if ((childregs->msr & MSR_PR) == 0) {
521 /* for kernel thread, set `current' and stackptr in new task */
522 childregs->gpr[1] = sp + sizeof(struct pt_regs);
523 #ifdef CONFIG_PPC32
524 childregs->gpr[2] = (unsigned long) p;
525 #else
526 clear_tsk_thread_flag(p, TIF_32BIT);
527 #endif
528 p->thread.regs = NULL; /* no user register state */
529 } else {
530 childregs->gpr[1] = usp;
531 p->thread.regs = childregs;
532 if (clone_flags & CLONE_SETTLS) {
533 #ifdef CONFIG_PPC64
534 if (!test_thread_flag(TIF_32BIT))
535 childregs->gpr[13] = childregs->gpr[6];
536 else
537 #endif
538 childregs->gpr[2] = childregs->gpr[6];
539 }
540 }
541 childregs->gpr[3] = 0; /* Result from fork() */
542 sp -= STACK_FRAME_OVERHEAD;
543
544 /*
545 * The way this works is that at some point in the future
546 * some task will call _switch to switch to the new task.
547 * That will pop off the stack frame created below and start
548 * the new task running at ret_from_fork. The new task will
549 * do some house keeping and then return from the fork or clone
550 * system call, using the stack frame created above.
551 */
552 sp -= sizeof(struct pt_regs);
553 kregs = (struct pt_regs *) sp;
554 sp -= STACK_FRAME_OVERHEAD;
555 p->thread.ksp = sp;
556
557 #ifdef CONFIG_PPC64
558 if (cpu_has_feature(CPU_FTR_SLB)) {
559 unsigned long sp_vsid = get_kernel_vsid(sp);
560 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
561
562 sp_vsid <<= SLB_VSID_SHIFT;
563 sp_vsid |= SLB_VSID_KERNEL | llp;
564 p->thread.ksp_vsid = sp_vsid;
565 }
566
567 /*
568 * The PPC64 ABI makes use of a TOC to contain function
569 * pointers. The function (ret_from_except) is actually a pointer
570 * to the TOC entry. The first entry is a pointer to the actual
571 * function.
572 */
573 kregs->nip = *((unsigned long *)ret_from_fork);
574 #else
575 kregs->nip = (unsigned long)ret_from_fork;
576 p->thread.last_syscall = -1;
577 #endif
578
579 return 0;
580 }
581
582 /*
583 * Set up a thread for executing a new program
584 */
585 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
586 {
587 #ifdef CONFIG_PPC64
588 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
589 #endif
590
591 set_fs(USER_DS);
592
593 /*
594 * If we exec out of a kernel thread then thread.regs will not be
595 * set. Do it now.
596 */
597 if (!current->thread.regs) {
598 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
599 current->thread.regs = regs - 1;
600 }
601
602 memset(regs->gpr, 0, sizeof(regs->gpr));
603 regs->ctr = 0;
604 regs->link = 0;
605 regs->xer = 0;
606 regs->ccr = 0;
607 regs->gpr[1] = sp;
608
609 #ifdef CONFIG_PPC32
610 regs->mq = 0;
611 regs->nip = start;
612 regs->msr = MSR_USER;
613 #else
614 if (!test_thread_flag(TIF_32BIT)) {
615 unsigned long entry, toc;
616
617 /* start is a relocated pointer to the function descriptor for
618 * the elf _start routine. The first entry in the function
619 * descriptor is the entry address of _start and the second
620 * entry is the TOC value we need to use.
621 */
622 __get_user(entry, (unsigned long __user *)start);
623 __get_user(toc, (unsigned long __user *)start+1);
624
625 /* Check whether the e_entry function descriptor entries
626 * need to be relocated before we can use them.
627 */
628 if (load_addr != 0) {
629 entry += load_addr;
630 toc += load_addr;
631 }
632 regs->nip = entry;
633 regs->gpr[2] = toc;
634 regs->msr = MSR_USER64;
635 } else {
636 regs->nip = start;
637 regs->gpr[2] = 0;
638 regs->msr = MSR_USER32;
639 }
640 #endif
641
642 discard_lazy_cpu_state();
643 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
644 current->thread.fpscr.val = 0;
645 #ifdef CONFIG_ALTIVEC
646 memset(current->thread.vr, 0, sizeof(current->thread.vr));
647 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
648 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
649 current->thread.vrsave = 0;
650 current->thread.used_vr = 0;
651 #endif /* CONFIG_ALTIVEC */
652 #ifdef CONFIG_SPE
653 memset(current->thread.evr, 0, sizeof(current->thread.evr));
654 current->thread.acc = 0;
655 current->thread.spefscr = 0;
656 current->thread.used_spe = 0;
657 #endif /* CONFIG_SPE */
658 }
659
660 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
661 | PR_FP_EXC_RES | PR_FP_EXC_INV)
662
663 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
664 {
665 struct pt_regs *regs = tsk->thread.regs;
666
667 /* This is a bit hairy. If we are an SPE enabled processor
668 * (have embedded fp) we store the IEEE exception enable flags in
669 * fpexc_mode. fpexc_mode is also used for setting FP exception
670 * mode (asyn, precise, disabled) for 'Classic' FP. */
671 if (val & PR_FP_EXC_SW_ENABLE) {
672 #ifdef CONFIG_SPE
673 tsk->thread.fpexc_mode = val &
674 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
675 return 0;
676 #else
677 return -EINVAL;
678 #endif
679 }
680
681 /* on a CONFIG_SPE this does not hurt us. The bits that
682 * __pack_fe01 use do not overlap with bits used for
683 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
684 * on CONFIG_SPE implementations are reserved so writing to
685 * them does not change anything */
686 if (val > PR_FP_EXC_PRECISE)
687 return -EINVAL;
688 tsk->thread.fpexc_mode = __pack_fe01(val);
689 if (regs != NULL && (regs->msr & MSR_FP) != 0)
690 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
691 | tsk->thread.fpexc_mode;
692 return 0;
693 }
694
695 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
696 {
697 unsigned int val;
698
699 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
700 #ifdef CONFIG_SPE
701 val = tsk->thread.fpexc_mode;
702 #else
703 return -EINVAL;
704 #endif
705 else
706 val = __unpack_fe01(tsk->thread.fpexc_mode);
707 return put_user(val, (unsigned int __user *) adr);
708 }
709
710 int set_endian(struct task_struct *tsk, unsigned int val)
711 {
712 struct pt_regs *regs = tsk->thread.regs;
713
714 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
715 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
716 return -EINVAL;
717
718 if (regs == NULL)
719 return -EINVAL;
720
721 if (val == PR_ENDIAN_BIG)
722 regs->msr &= ~MSR_LE;
723 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
724 regs->msr |= MSR_LE;
725 else
726 return -EINVAL;
727
728 return 0;
729 }
730
731 int get_endian(struct task_struct *tsk, unsigned long adr)
732 {
733 struct pt_regs *regs = tsk->thread.regs;
734 unsigned int val;
735
736 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
737 !cpu_has_feature(CPU_FTR_REAL_LE))
738 return -EINVAL;
739
740 if (regs == NULL)
741 return -EINVAL;
742
743 if (regs->msr & MSR_LE) {
744 if (cpu_has_feature(CPU_FTR_REAL_LE))
745 val = PR_ENDIAN_LITTLE;
746 else
747 val = PR_ENDIAN_PPC_LITTLE;
748 } else
749 val = PR_ENDIAN_BIG;
750
751 return put_user(val, (unsigned int __user *)adr);
752 }
753
754 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
755 {
756 tsk->thread.align_ctl = val;
757 return 0;
758 }
759
760 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
761 {
762 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
763 }
764
765 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
766
767 int sys_clone(unsigned long clone_flags, unsigned long usp,
768 int __user *parent_tidp, void __user *child_threadptr,
769 int __user *child_tidp, int p6,
770 struct pt_regs *regs)
771 {
772 CHECK_FULL_REGS(regs);
773 if (usp == 0)
774 usp = regs->gpr[1]; /* stack pointer for child */
775 #ifdef CONFIG_PPC64
776 if (test_thread_flag(TIF_32BIT)) {
777 parent_tidp = TRUNC_PTR(parent_tidp);
778 child_tidp = TRUNC_PTR(child_tidp);
779 }
780 #endif
781 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
782 }
783
784 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
785 unsigned long p4, unsigned long p5, unsigned long p6,
786 struct pt_regs *regs)
787 {
788 CHECK_FULL_REGS(regs);
789 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
790 }
791
792 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
793 unsigned long p4, unsigned long p5, unsigned long p6,
794 struct pt_regs *regs)
795 {
796 CHECK_FULL_REGS(regs);
797 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
798 regs, 0, NULL, NULL);
799 }
800
801 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
802 unsigned long a3, unsigned long a4, unsigned long a5,
803 struct pt_regs *regs)
804 {
805 int error;
806 char *filename;
807
808 filename = getname((char __user *) a0);
809 error = PTR_ERR(filename);
810 if (IS_ERR(filename))
811 goto out;
812 flush_fp_to_thread(current);
813 flush_altivec_to_thread(current);
814 flush_spe_to_thread(current);
815 error = do_execve(filename, (char __user * __user *) a1,
816 (char __user * __user *) a2, regs);
817 if (error == 0) {
818 task_lock(current);
819 current->ptrace &= ~PT_DTRACE;
820 task_unlock(current);
821 }
822 putname(filename);
823 out:
824 return error;
825 }
826
827 int validate_sp(unsigned long sp, struct task_struct *p,
828 unsigned long nbytes)
829 {
830 unsigned long stack_page = (unsigned long)task_stack_page(p);
831
832 if (sp >= stack_page + sizeof(struct thread_struct)
833 && sp <= stack_page + THREAD_SIZE - nbytes)
834 return 1;
835
836 #ifdef CONFIG_IRQSTACKS
837 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
838 if (sp >= stack_page + sizeof(struct thread_struct)
839 && sp <= stack_page + THREAD_SIZE - nbytes)
840 return 1;
841
842 stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
843 if (sp >= stack_page + sizeof(struct thread_struct)
844 && sp <= stack_page + THREAD_SIZE - nbytes)
845 return 1;
846 #endif
847
848 return 0;
849 }
850
851 #ifdef CONFIG_PPC64
852 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
853 #define FRAME_LR_SAVE 2
854 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
855 #define REGS_MARKER 0x7265677368657265ul
856 #define FRAME_MARKER 12
857 #else
858 #define MIN_STACK_FRAME 16
859 #define FRAME_LR_SAVE 1
860 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
861 #define REGS_MARKER 0x72656773ul
862 #define FRAME_MARKER 2
863 #endif
864
865 EXPORT_SYMBOL(validate_sp);
866
867 unsigned long get_wchan(struct task_struct *p)
868 {
869 unsigned long ip, sp;
870 int count = 0;
871
872 if (!p || p == current || p->state == TASK_RUNNING)
873 return 0;
874
875 sp = p->thread.ksp;
876 if (!validate_sp(sp, p, MIN_STACK_FRAME))
877 return 0;
878
879 do {
880 sp = *(unsigned long *)sp;
881 if (!validate_sp(sp, p, MIN_STACK_FRAME))
882 return 0;
883 if (count > 0) {
884 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
885 if (!in_sched_functions(ip))
886 return ip;
887 }
888 } while (count++ < 16);
889 return 0;
890 }
891
892 static int kstack_depth_to_print = 64;
893
894 void show_stack(struct task_struct *tsk, unsigned long *stack)
895 {
896 unsigned long sp, ip, lr, newsp;
897 int count = 0;
898 int firstframe = 1;
899
900 sp = (unsigned long) stack;
901 if (tsk == NULL)
902 tsk = current;
903 if (sp == 0) {
904 if (tsk == current)
905 asm("mr %0,1" : "=r" (sp));
906 else
907 sp = tsk->thread.ksp;
908 }
909
910 lr = 0;
911 printk("Call Trace:\n");
912 do {
913 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
914 return;
915
916 stack = (unsigned long *) sp;
917 newsp = stack[0];
918 ip = stack[FRAME_LR_SAVE];
919 if (!firstframe || ip != lr) {
920 printk("["REG"] ["REG"] ", sp, ip);
921 print_symbol("%s", ip);
922 if (firstframe)
923 printk(" (unreliable)");
924 printk("\n");
925 }
926 firstframe = 0;
927
928 /*
929 * See if this is an exception frame.
930 * We look for the "regshere" marker in the current frame.
931 */
932 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
933 && stack[FRAME_MARKER] == REGS_MARKER) {
934 struct pt_regs *regs = (struct pt_regs *)
935 (sp + STACK_FRAME_OVERHEAD);
936 printk("--- Exception: %lx", regs->trap);
937 print_symbol(" at %s\n", regs->nip);
938 lr = regs->link;
939 print_symbol(" LR = %s\n", lr);
940 firstframe = 1;
941 }
942
943 sp = newsp;
944 } while (count++ < kstack_depth_to_print);
945 }
946
947 void dump_stack(void)
948 {
949 show_stack(current, NULL);
950 }
951 EXPORT_SYMBOL(dump_stack);
952
953 #ifdef CONFIG_PPC64
954 void ppc64_runlatch_on(void)
955 {
956 unsigned long ctrl;
957
958 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
959 HMT_medium();
960
961 ctrl = mfspr(SPRN_CTRLF);
962 ctrl |= CTRL_RUNLATCH;
963 mtspr(SPRN_CTRLT, ctrl);
964
965 set_thread_flag(TIF_RUNLATCH);
966 }
967 }
968
969 void ppc64_runlatch_off(void)
970 {
971 unsigned long ctrl;
972
973 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
974 HMT_medium();
975
976 clear_thread_flag(TIF_RUNLATCH);
977
978 ctrl = mfspr(SPRN_CTRLF);
979 ctrl &= ~CTRL_RUNLATCH;
980 mtspr(SPRN_CTRLT, ctrl);
981 }
982 }
983 #endif