]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/process.c
a38ce49648cb76e5bf184291ce5b73f11551314d
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/livepatch.h>
59
60 #include <linux/kprobes.h>
61 #include <linux/kdebug.h>
62
63 /* Transactional Memory debug */
64 #ifdef TM_DEBUG_SW
65 #define TM_DEBUG(x...) printk(KERN_INFO x)
66 #else
67 #define TM_DEBUG(x...) do { } while(0)
68 #endif
69
70 extern unsigned long _get_SP(void);
71
72 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
73 static void check_if_tm_restore_required(struct task_struct *tsk)
74 {
75 /*
76 * If we are saving the current thread's registers, and the
77 * thread is in a transactional state, set the TIF_RESTORE_TM
78 * bit so that we know to restore the registers before
79 * returning to userspace.
80 */
81 if (tsk == current && tsk->thread.regs &&
82 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
83 !test_thread_flag(TIF_RESTORE_TM)) {
84 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
85 set_thread_flag(TIF_RESTORE_TM);
86 }
87 }
88 #else
89 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
90 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
91
92 bool strict_msr_control;
93 EXPORT_SYMBOL(strict_msr_control);
94
95 static int __init enable_strict_msr_control(char *str)
96 {
97 strict_msr_control = true;
98 pr_info("Enabling strict facility control\n");
99
100 return 0;
101 }
102 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
103
104 void msr_check_and_set(unsigned long bits)
105 {
106 unsigned long oldmsr = mfmsr();
107 unsigned long newmsr;
108
109 newmsr = oldmsr | bits;
110
111 #ifdef CONFIG_VSX
112 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
113 newmsr |= MSR_VSX;
114 #endif
115
116 if (oldmsr != newmsr)
117 mtmsr_isync(newmsr);
118 }
119
120 void __msr_check_and_clear(unsigned long bits)
121 {
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
124
125 newmsr = oldmsr & ~bits;
126
127 #ifdef CONFIG_VSX
128 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 newmsr &= ~MSR_VSX;
130 #endif
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134 }
135 EXPORT_SYMBOL(__msr_check_and_clear);
136
137 #ifdef CONFIG_PPC_FPU
138 void giveup_fpu(struct task_struct *tsk)
139 {
140 check_if_tm_restore_required(tsk);
141
142 msr_check_and_set(MSR_FP);
143 __giveup_fpu(tsk);
144 msr_check_and_clear(MSR_FP);
145 }
146 EXPORT_SYMBOL(giveup_fpu);
147
148 /*
149 * Make sure the floating-point register state in the
150 * the thread_struct is up to date for task tsk.
151 */
152 void flush_fp_to_thread(struct task_struct *tsk)
153 {
154 if (tsk->thread.regs) {
155 /*
156 * We need to disable preemption here because if we didn't,
157 * another process could get scheduled after the regs->msr
158 * test but before we have finished saving the FP registers
159 * to the thread_struct. That process could take over the
160 * FPU, and then when we get scheduled again we would store
161 * bogus values for the remaining FP registers.
162 */
163 preempt_disable();
164 if (tsk->thread.regs->msr & MSR_FP) {
165 /*
166 * This should only ever be called for current or
167 * for a stopped child process. Since we save away
168 * the FP register state on context switch,
169 * there is something wrong if a stopped child appears
170 * to still have its FP state in the CPU registers.
171 */
172 BUG_ON(tsk != current);
173 giveup_fpu(tsk);
174 }
175 preempt_enable();
176 }
177 }
178 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
179
180 void enable_kernel_fp(void)
181 {
182 WARN_ON(preemptible());
183
184 msr_check_and_set(MSR_FP);
185
186 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
187 check_if_tm_restore_required(current);
188 __giveup_fpu(current);
189 }
190 }
191 EXPORT_SYMBOL(enable_kernel_fp);
192 #endif /* CONFIG_PPC_FPU */
193
194 #ifdef CONFIG_ALTIVEC
195 void giveup_altivec(struct task_struct *tsk)
196 {
197 check_if_tm_restore_required(tsk);
198
199 msr_check_and_set(MSR_VEC);
200 __giveup_altivec(tsk);
201 msr_check_and_clear(MSR_VEC);
202 }
203 EXPORT_SYMBOL(giveup_altivec);
204
205 void enable_kernel_altivec(void)
206 {
207 WARN_ON(preemptible());
208
209 msr_check_and_set(MSR_VEC);
210
211 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
212 check_if_tm_restore_required(current);
213 __giveup_altivec(current);
214 }
215 }
216 EXPORT_SYMBOL(enable_kernel_altivec);
217
218 /*
219 * Make sure the VMX/Altivec register state in the
220 * the thread_struct is up to date for task tsk.
221 */
222 void flush_altivec_to_thread(struct task_struct *tsk)
223 {
224 if (tsk->thread.regs) {
225 preempt_disable();
226 if (tsk->thread.regs->msr & MSR_VEC) {
227 BUG_ON(tsk != current);
228 giveup_altivec(tsk);
229 }
230 preempt_enable();
231 }
232 }
233 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
234 #endif /* CONFIG_ALTIVEC */
235
236 #ifdef CONFIG_VSX
237 void giveup_vsx(struct task_struct *tsk)
238 {
239 check_if_tm_restore_required(tsk);
240
241 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
242 if (tsk->thread.regs->msr & MSR_FP)
243 __giveup_fpu(tsk);
244 if (tsk->thread.regs->msr & MSR_VEC)
245 __giveup_altivec(tsk);
246 __giveup_vsx(tsk);
247 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
248 }
249 EXPORT_SYMBOL(giveup_vsx);
250
251 void enable_kernel_vsx(void)
252 {
253 WARN_ON(preemptible());
254
255 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
256
257 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
258 check_if_tm_restore_required(current);
259 if (current->thread.regs->msr & MSR_FP)
260 __giveup_fpu(current);
261 if (current->thread.regs->msr & MSR_VEC)
262 __giveup_altivec(current);
263 __giveup_vsx(current);
264 }
265 }
266 EXPORT_SYMBOL(enable_kernel_vsx);
267
268 void flush_vsx_to_thread(struct task_struct *tsk)
269 {
270 if (tsk->thread.regs) {
271 preempt_disable();
272 if (tsk->thread.regs->msr & MSR_VSX) {
273 BUG_ON(tsk != current);
274 giveup_vsx(tsk);
275 }
276 preempt_enable();
277 }
278 }
279 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
280 #endif /* CONFIG_VSX */
281
282 #ifdef CONFIG_SPE
283 void giveup_spe(struct task_struct *tsk)
284 {
285 check_if_tm_restore_required(tsk);
286
287 msr_check_and_set(MSR_SPE);
288 __giveup_spe(tsk);
289 msr_check_and_clear(MSR_SPE);
290 }
291 EXPORT_SYMBOL(giveup_spe);
292
293 void enable_kernel_spe(void)
294 {
295 WARN_ON(preemptible());
296
297 msr_check_and_set(MSR_SPE);
298
299 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
300 check_if_tm_restore_required(current);
301 __giveup_spe(current);
302 }
303 }
304 EXPORT_SYMBOL(enable_kernel_spe);
305
306 void flush_spe_to_thread(struct task_struct *tsk)
307 {
308 if (tsk->thread.regs) {
309 preempt_disable();
310 if (tsk->thread.regs->msr & MSR_SPE) {
311 BUG_ON(tsk != current);
312 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
313 giveup_spe(tsk);
314 }
315 preempt_enable();
316 }
317 }
318 #endif /* CONFIG_SPE */
319
320 static unsigned long msr_all_available;
321
322 static int __init init_msr_all_available(void)
323 {
324 #ifdef CONFIG_PPC_FPU
325 msr_all_available |= MSR_FP;
326 #endif
327 #ifdef CONFIG_ALTIVEC
328 if (cpu_has_feature(CPU_FTR_ALTIVEC))
329 msr_all_available |= MSR_VEC;
330 #endif
331 #ifdef CONFIG_VSX
332 if (cpu_has_feature(CPU_FTR_VSX))
333 msr_all_available |= MSR_VSX;
334 #endif
335 #ifdef CONFIG_SPE
336 if (cpu_has_feature(CPU_FTR_SPE))
337 msr_all_available |= MSR_SPE;
338 #endif
339
340 return 0;
341 }
342 early_initcall(init_msr_all_available);
343
344 void giveup_all(struct task_struct *tsk)
345 {
346 unsigned long usermsr;
347
348 if (!tsk->thread.regs)
349 return;
350
351 usermsr = tsk->thread.regs->msr;
352
353 if ((usermsr & msr_all_available) == 0)
354 return;
355
356 msr_check_and_set(msr_all_available);
357
358 #ifdef CONFIG_PPC_FPU
359 if (usermsr & MSR_FP)
360 __giveup_fpu(tsk);
361 #endif
362 #ifdef CONFIG_ALTIVEC
363 if (usermsr & MSR_VEC)
364 __giveup_altivec(tsk);
365 #endif
366 #ifdef CONFIG_VSX
367 if (usermsr & MSR_VSX)
368 __giveup_vsx(tsk);
369 #endif
370 #ifdef CONFIG_SPE
371 if (usermsr & MSR_SPE)
372 __giveup_spe(tsk);
373 #endif
374
375 msr_check_and_clear(msr_all_available);
376 }
377 EXPORT_SYMBOL(giveup_all);
378
379 void flush_all_to_thread(struct task_struct *tsk)
380 {
381 if (tsk->thread.regs) {
382 preempt_disable();
383 BUG_ON(tsk != current);
384 giveup_all(tsk);
385
386 #ifdef CONFIG_SPE
387 if (tsk->thread.regs->msr & MSR_SPE)
388 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
389 #endif
390
391 preempt_enable();
392 }
393 }
394 EXPORT_SYMBOL(flush_all_to_thread);
395
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 void do_send_trap(struct pt_regs *regs, unsigned long address,
398 unsigned long error_code, int signal_code, int breakpt)
399 {
400 siginfo_t info;
401
402 current->thread.trap_nr = signal_code;
403 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
404 11, SIGSEGV) == NOTIFY_STOP)
405 return;
406
407 /* Deliver the signal to userspace */
408 info.si_signo = SIGTRAP;
409 info.si_errno = breakpt; /* breakpoint or watchpoint id */
410 info.si_code = signal_code;
411 info.si_addr = (void __user *)address;
412 force_sig_info(SIGTRAP, &info, current);
413 }
414 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
415 void do_break (struct pt_regs *regs, unsigned long address,
416 unsigned long error_code)
417 {
418 siginfo_t info;
419
420 current->thread.trap_nr = TRAP_HWBKPT;
421 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
422 11, SIGSEGV) == NOTIFY_STOP)
423 return;
424
425 if (debugger_break_match(regs))
426 return;
427
428 /* Clear the breakpoint */
429 hw_breakpoint_disable();
430
431 /* Deliver the signal to userspace */
432 info.si_signo = SIGTRAP;
433 info.si_errno = 0;
434 info.si_code = TRAP_HWBKPT;
435 info.si_addr = (void __user *)address;
436 force_sig_info(SIGTRAP, &info, current);
437 }
438 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
439
440 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
441
442 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
443 /*
444 * Set the debug registers back to their default "safe" values.
445 */
446 static void set_debug_reg_defaults(struct thread_struct *thread)
447 {
448 thread->debug.iac1 = thread->debug.iac2 = 0;
449 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
450 thread->debug.iac3 = thread->debug.iac4 = 0;
451 #endif
452 thread->debug.dac1 = thread->debug.dac2 = 0;
453 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
454 thread->debug.dvc1 = thread->debug.dvc2 = 0;
455 #endif
456 thread->debug.dbcr0 = 0;
457 #ifdef CONFIG_BOOKE
458 /*
459 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
460 */
461 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
462 DBCR1_IAC3US | DBCR1_IAC4US;
463 /*
464 * Force Data Address Compare User/Supervisor bits to be User-only
465 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
466 */
467 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
468 #else
469 thread->debug.dbcr1 = 0;
470 #endif
471 }
472
473 static void prime_debug_regs(struct debug_reg *debug)
474 {
475 /*
476 * We could have inherited MSR_DE from userspace, since
477 * it doesn't get cleared on exception entry. Make sure
478 * MSR_DE is clear before we enable any debug events.
479 */
480 mtmsr(mfmsr() & ~MSR_DE);
481
482 mtspr(SPRN_IAC1, debug->iac1);
483 mtspr(SPRN_IAC2, debug->iac2);
484 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
485 mtspr(SPRN_IAC3, debug->iac3);
486 mtspr(SPRN_IAC4, debug->iac4);
487 #endif
488 mtspr(SPRN_DAC1, debug->dac1);
489 mtspr(SPRN_DAC2, debug->dac2);
490 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
491 mtspr(SPRN_DVC1, debug->dvc1);
492 mtspr(SPRN_DVC2, debug->dvc2);
493 #endif
494 mtspr(SPRN_DBCR0, debug->dbcr0);
495 mtspr(SPRN_DBCR1, debug->dbcr1);
496 #ifdef CONFIG_BOOKE
497 mtspr(SPRN_DBCR2, debug->dbcr2);
498 #endif
499 }
500 /*
501 * Unless neither the old or new thread are making use of the
502 * debug registers, set the debug registers from the values
503 * stored in the new thread.
504 */
505 void switch_booke_debug_regs(struct debug_reg *new_debug)
506 {
507 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
508 || (new_debug->dbcr0 & DBCR0_IDM))
509 prime_debug_regs(new_debug);
510 }
511 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
512 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
513 #ifndef CONFIG_HAVE_HW_BREAKPOINT
514 static void set_debug_reg_defaults(struct thread_struct *thread)
515 {
516 thread->hw_brk.address = 0;
517 thread->hw_brk.type = 0;
518 set_breakpoint(&thread->hw_brk);
519 }
520 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
521 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
522
523 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
524 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
525 {
526 mtspr(SPRN_DAC1, dabr);
527 #ifdef CONFIG_PPC_47x
528 isync();
529 #endif
530 return 0;
531 }
532 #elif defined(CONFIG_PPC_BOOK3S)
533 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
534 {
535 mtspr(SPRN_DABR, dabr);
536 if (cpu_has_feature(CPU_FTR_DABRX))
537 mtspr(SPRN_DABRX, dabrx);
538 return 0;
539 }
540 #else
541 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
542 {
543 return -EINVAL;
544 }
545 #endif
546
547 static inline int set_dabr(struct arch_hw_breakpoint *brk)
548 {
549 unsigned long dabr, dabrx;
550
551 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
552 dabrx = ((brk->type >> 3) & 0x7);
553
554 if (ppc_md.set_dabr)
555 return ppc_md.set_dabr(dabr, dabrx);
556
557 return __set_dabr(dabr, dabrx);
558 }
559
560 static inline int set_dawr(struct arch_hw_breakpoint *brk)
561 {
562 unsigned long dawr, dawrx, mrd;
563
564 dawr = brk->address;
565
566 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
567 << (63 - 58); //* read/write bits */
568 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
569 << (63 - 59); //* translate */
570 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
571 >> 3; //* PRIM bits */
572 /* dawr length is stored in field MDR bits 48:53. Matches range in
573 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
574 0b111111=64DW.
575 brk->len is in bytes.
576 This aligns up to double word size, shifts and does the bias.
577 */
578 mrd = ((brk->len + 7) >> 3) - 1;
579 dawrx |= (mrd & 0x3f) << (63 - 53);
580
581 if (ppc_md.set_dawr)
582 return ppc_md.set_dawr(dawr, dawrx);
583 mtspr(SPRN_DAWR, dawr);
584 mtspr(SPRN_DAWRX, dawrx);
585 return 0;
586 }
587
588 void __set_breakpoint(struct arch_hw_breakpoint *brk)
589 {
590 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
591
592 if (cpu_has_feature(CPU_FTR_DAWR))
593 set_dawr(brk);
594 else
595 set_dabr(brk);
596 }
597
598 void set_breakpoint(struct arch_hw_breakpoint *brk)
599 {
600 preempt_disable();
601 __set_breakpoint(brk);
602 preempt_enable();
603 }
604
605 #ifdef CONFIG_PPC64
606 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
607 #endif
608
609 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
610 struct arch_hw_breakpoint *b)
611 {
612 if (a->address != b->address)
613 return false;
614 if (a->type != b->type)
615 return false;
616 if (a->len != b->len)
617 return false;
618 return true;
619 }
620
621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
622 static void tm_reclaim_thread(struct thread_struct *thr,
623 struct thread_info *ti, uint8_t cause)
624 {
625 unsigned long msr_diff = 0;
626
627 /*
628 * If FP/VSX registers have been already saved to the
629 * thread_struct, move them to the transact_fp array.
630 * We clear the TIF_RESTORE_TM bit since after the reclaim
631 * the thread will no longer be transactional.
632 */
633 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
634 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
635 if (msr_diff & MSR_FP)
636 memcpy(&thr->transact_fp, &thr->fp_state,
637 sizeof(struct thread_fp_state));
638 if (msr_diff & MSR_VEC)
639 memcpy(&thr->transact_vr, &thr->vr_state,
640 sizeof(struct thread_vr_state));
641 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
642 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
643 }
644
645 /*
646 * Use the current MSR TM suspended bit to track if we have
647 * checkpointed state outstanding.
648 * On signal delivery, we'd normally reclaim the checkpointed
649 * state to obtain stack pointer (see:get_tm_stackpointer()).
650 * This will then directly return to userspace without going
651 * through __switch_to(). However, if the stack frame is bad,
652 * we need to exit this thread which calls __switch_to() which
653 * will again attempt to reclaim the already saved tm state.
654 * Hence we need to check that we've not already reclaimed
655 * this state.
656 * We do this using the current MSR, rather tracking it in
657 * some specific thread_struct bit, as it has the additional
658 * benifit of checking for a potential TM bad thing exception.
659 */
660 if (!MSR_TM_SUSPENDED(mfmsr()))
661 return;
662
663 tm_reclaim(thr, thr->regs->msr, cause);
664
665 /* Having done the reclaim, we now have the checkpointed
666 * FP/VSX values in the registers. These might be valid
667 * even if we have previously called enable_kernel_fp() or
668 * flush_fp_to_thread(), so update thr->regs->msr to
669 * indicate their current validity.
670 */
671 thr->regs->msr |= msr_diff;
672 }
673
674 void tm_reclaim_current(uint8_t cause)
675 {
676 tm_enable();
677 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
678 }
679
680 static inline void tm_reclaim_task(struct task_struct *tsk)
681 {
682 /* We have to work out if we're switching from/to a task that's in the
683 * middle of a transaction.
684 *
685 * In switching we need to maintain a 2nd register state as
686 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
687 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
688 * (current) FPRs into oldtask->thread.transact_fpr[].
689 *
690 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
691 */
692 struct thread_struct *thr = &tsk->thread;
693
694 if (!thr->regs)
695 return;
696
697 if (!MSR_TM_ACTIVE(thr->regs->msr))
698 goto out_and_saveregs;
699
700 /* Stash the original thread MSR, as giveup_fpu et al will
701 * modify it. We hold onto it to see whether the task used
702 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
703 * ckpt_regs.msr is already set.
704 */
705 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
706 thr->ckpt_regs.msr = thr->regs->msr;
707
708 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
709 "ccr=%lx, msr=%lx, trap=%lx)\n",
710 tsk->pid, thr->regs->nip,
711 thr->regs->ccr, thr->regs->msr,
712 thr->regs->trap);
713
714 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
715
716 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
717 tsk->pid);
718
719 out_and_saveregs:
720 /* Always save the regs here, even if a transaction's not active.
721 * This context-switches a thread's TM info SPRs. We do it here to
722 * be consistent with the restore path (in recheckpoint) which
723 * cannot happen later in _switch().
724 */
725 tm_save_sprs(thr);
726 }
727
728 extern void __tm_recheckpoint(struct thread_struct *thread,
729 unsigned long orig_msr);
730
731 void tm_recheckpoint(struct thread_struct *thread,
732 unsigned long orig_msr)
733 {
734 unsigned long flags;
735
736 /* We really can't be interrupted here as the TEXASR registers can't
737 * change and later in the trecheckpoint code, we have a userspace R1.
738 * So let's hard disable over this region.
739 */
740 local_irq_save(flags);
741 hard_irq_disable();
742
743 /* The TM SPRs are restored here, so that TEXASR.FS can be set
744 * before the trecheckpoint and no explosion occurs.
745 */
746 tm_restore_sprs(thread);
747
748 __tm_recheckpoint(thread, orig_msr);
749
750 local_irq_restore(flags);
751 }
752
753 static inline void tm_recheckpoint_new_task(struct task_struct *new)
754 {
755 unsigned long msr;
756
757 if (!cpu_has_feature(CPU_FTR_TM))
758 return;
759
760 /* Recheckpoint the registers of the thread we're about to switch to.
761 *
762 * If the task was using FP, we non-lazily reload both the original and
763 * the speculative FP register states. This is because the kernel
764 * doesn't see if/when a TM rollback occurs, so if we take an FP
765 * unavoidable later, we are unable to determine which set of FP regs
766 * need to be restored.
767 */
768 if (!new->thread.regs)
769 return;
770
771 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
772 tm_restore_sprs(&new->thread);
773 return;
774 }
775 msr = new->thread.ckpt_regs.msr;
776 /* Recheckpoint to restore original checkpointed register state. */
777 TM_DEBUG("*** tm_recheckpoint of pid %d "
778 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
779 new->pid, new->thread.regs->msr, msr);
780
781 /* This loads the checkpointed FP/VEC state, if used */
782 tm_recheckpoint(&new->thread, msr);
783
784 /* This loads the speculative FP/VEC state, if used */
785 if (msr & MSR_FP) {
786 do_load_up_transact_fpu(&new->thread);
787 new->thread.regs->msr |=
788 (MSR_FP | new->thread.fpexc_mode);
789 }
790 #ifdef CONFIG_ALTIVEC
791 if (msr & MSR_VEC) {
792 do_load_up_transact_altivec(&new->thread);
793 new->thread.regs->msr |= MSR_VEC;
794 }
795 #endif
796 /* We may as well turn on VSX too since all the state is restored now */
797 if (msr & MSR_VSX)
798 new->thread.regs->msr |= MSR_VSX;
799
800 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
801 "(kernel msr 0x%lx)\n",
802 new->pid, mfmsr());
803 }
804
805 static inline void __switch_to_tm(struct task_struct *prev)
806 {
807 if (cpu_has_feature(CPU_FTR_TM)) {
808 tm_enable();
809 tm_reclaim_task(prev);
810 }
811 }
812
813 /*
814 * This is called if we are on the way out to userspace and the
815 * TIF_RESTORE_TM flag is set. It checks if we need to reload
816 * FP and/or vector state and does so if necessary.
817 * If userspace is inside a transaction (whether active or
818 * suspended) and FP/VMX/VSX instructions have ever been enabled
819 * inside that transaction, then we have to keep them enabled
820 * and keep the FP/VMX/VSX state loaded while ever the transaction
821 * continues. The reason is that if we didn't, and subsequently
822 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
823 * we don't know whether it's the same transaction, and thus we
824 * don't know which of the checkpointed state and the transactional
825 * state to use.
826 */
827 void restore_tm_state(struct pt_regs *regs)
828 {
829 unsigned long msr_diff;
830
831 clear_thread_flag(TIF_RESTORE_TM);
832 if (!MSR_TM_ACTIVE(regs->msr))
833 return;
834
835 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
836 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
837 if (msr_diff & MSR_FP) {
838 msr_check_and_set(MSR_FP);
839 load_fp_state(&current->thread.fp_state);
840 msr_check_and_clear(MSR_FP);
841 regs->msr |= current->thread.fpexc_mode;
842 }
843 if (msr_diff & MSR_VEC) {
844 msr_check_and_set(MSR_VEC);
845 load_vr_state(&current->thread.vr_state);
846 msr_check_and_clear(MSR_VEC);
847 }
848 regs->msr |= msr_diff;
849 }
850
851 #else
852 #define tm_recheckpoint_new_task(new)
853 #define __switch_to_tm(prev)
854 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
855
856 static inline void save_sprs(struct thread_struct *t)
857 {
858 #ifdef CONFIG_ALTIVEC
859 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
860 t->vrsave = mfspr(SPRN_VRSAVE);
861 #endif
862 #ifdef CONFIG_PPC_BOOK3S_64
863 if (cpu_has_feature(CPU_FTR_DSCR))
864 t->dscr = mfspr(SPRN_DSCR);
865
866 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
867 t->bescr = mfspr(SPRN_BESCR);
868 t->ebbhr = mfspr(SPRN_EBBHR);
869 t->ebbrr = mfspr(SPRN_EBBRR);
870
871 t->fscr = mfspr(SPRN_FSCR);
872
873 /*
874 * Note that the TAR is not available for use in the kernel.
875 * (To provide this, the TAR should be backed up/restored on
876 * exception entry/exit instead, and be in pt_regs. FIXME,
877 * this should be in pt_regs anyway (for debug).)
878 */
879 t->tar = mfspr(SPRN_TAR);
880 }
881 #endif
882 }
883
884 static inline void restore_sprs(struct thread_struct *old_thread,
885 struct thread_struct *new_thread)
886 {
887 #ifdef CONFIG_ALTIVEC
888 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
889 old_thread->vrsave != new_thread->vrsave)
890 mtspr(SPRN_VRSAVE, new_thread->vrsave);
891 #endif
892 #ifdef CONFIG_PPC_BOOK3S_64
893 if (cpu_has_feature(CPU_FTR_DSCR)) {
894 u64 dscr = get_paca()->dscr_default;
895 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
896
897 if (new_thread->dscr_inherit) {
898 dscr = new_thread->dscr;
899 fscr |= FSCR_DSCR;
900 }
901
902 if (old_thread->dscr != dscr)
903 mtspr(SPRN_DSCR, dscr);
904
905 if (old_thread->fscr != fscr)
906 mtspr(SPRN_FSCR, fscr);
907 }
908
909 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
910 if (old_thread->bescr != new_thread->bescr)
911 mtspr(SPRN_BESCR, new_thread->bescr);
912 if (old_thread->ebbhr != new_thread->ebbhr)
913 mtspr(SPRN_EBBHR, new_thread->ebbhr);
914 if (old_thread->ebbrr != new_thread->ebbrr)
915 mtspr(SPRN_EBBRR, new_thread->ebbrr);
916
917 if (old_thread->tar != new_thread->tar)
918 mtspr(SPRN_TAR, new_thread->tar);
919 }
920 #endif
921 }
922
923 struct task_struct *__switch_to(struct task_struct *prev,
924 struct task_struct *new)
925 {
926 struct thread_struct *new_thread, *old_thread;
927 struct task_struct *last;
928 #ifdef CONFIG_PPC_BOOK3S_64
929 struct ppc64_tlb_batch *batch;
930 #endif
931
932 new_thread = &new->thread;
933 old_thread = &current->thread;
934
935 WARN_ON(!irqs_disabled());
936
937 #ifdef CONFIG_PPC64
938 /*
939 * Collect processor utilization data per process
940 */
941 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
942 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
943 long unsigned start_tb, current_tb;
944 start_tb = old_thread->start_tb;
945 cu->current_tb = current_tb = mfspr(SPRN_PURR);
946 old_thread->accum_tb += (current_tb - start_tb);
947 new_thread->start_tb = current_tb;
948 }
949 #endif /* CONFIG_PPC64 */
950
951 #ifdef CONFIG_PPC_BOOK3S_64
952 batch = this_cpu_ptr(&ppc64_tlb_batch);
953 if (batch->active) {
954 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
955 if (batch->index)
956 __flush_tlb_pending(batch);
957 batch->active = 0;
958 }
959 #endif /* CONFIG_PPC_BOOK3S_64 */
960
961 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
962 switch_booke_debug_regs(&new->thread.debug);
963 #else
964 /*
965 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
966 * schedule DABR
967 */
968 #ifndef CONFIG_HAVE_HW_BREAKPOINT
969 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
970 __set_breakpoint(&new->thread.hw_brk);
971 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
972 #endif
973
974 /*
975 * We need to save SPRs before treclaim/trecheckpoint as these will
976 * change a number of them.
977 */
978 save_sprs(&prev->thread);
979
980 __switch_to_tm(prev);
981
982 /* Save FPU, Altivec, VSX and SPE state */
983 giveup_all(prev);
984
985 /*
986 * We can't take a PMU exception inside _switch() since there is a
987 * window where the kernel stack SLB and the kernel stack are out
988 * of sync. Hard disable here.
989 */
990 hard_irq_disable();
991
992 tm_recheckpoint_new_task(new);
993
994 /*
995 * Call restore_sprs() before calling _switch(). If we move it after
996 * _switch() then we miss out on calling it for new tasks. The reason
997 * for this is we manually create a stack frame for new tasks that
998 * directly returns through ret_from_fork() or
999 * ret_from_kernel_thread(). See copy_thread() for details.
1000 */
1001 restore_sprs(old_thread, new_thread);
1002
1003 last = _switch(old_thread, new_thread);
1004
1005 #ifdef CONFIG_PPC_BOOK3S_64
1006 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1007 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1008 batch = this_cpu_ptr(&ppc64_tlb_batch);
1009 batch->active = 1;
1010 }
1011 #endif /* CONFIG_PPC_BOOK3S_64 */
1012
1013 return last;
1014 }
1015
1016 static int instructions_to_print = 16;
1017
1018 static void show_instructions(struct pt_regs *regs)
1019 {
1020 int i;
1021 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1022 sizeof(int));
1023
1024 printk("Instruction dump:");
1025
1026 for (i = 0; i < instructions_to_print; i++) {
1027 int instr;
1028
1029 if (!(i % 8))
1030 printk("\n");
1031
1032 #if !defined(CONFIG_BOOKE)
1033 /* If executing with the IMMU off, adjust pc rather
1034 * than print XXXXXXXX.
1035 */
1036 if (!(regs->msr & MSR_IR))
1037 pc = (unsigned long)phys_to_virt(pc);
1038 #endif
1039
1040 if (!__kernel_text_address(pc) ||
1041 probe_kernel_address((unsigned int __user *)pc, instr)) {
1042 printk(KERN_CONT "XXXXXXXX ");
1043 } else {
1044 if (regs->nip == pc)
1045 printk(KERN_CONT "<%08x> ", instr);
1046 else
1047 printk(KERN_CONT "%08x ", instr);
1048 }
1049
1050 pc += sizeof(int);
1051 }
1052
1053 printk("\n");
1054 }
1055
1056 struct regbit {
1057 unsigned long bit;
1058 const char *name;
1059 };
1060
1061 static struct regbit msr_bits[] = {
1062 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1063 {MSR_SF, "SF"},
1064 {MSR_HV, "HV"},
1065 #endif
1066 {MSR_VEC, "VEC"},
1067 {MSR_VSX, "VSX"},
1068 #ifdef CONFIG_BOOKE
1069 {MSR_CE, "CE"},
1070 #endif
1071 {MSR_EE, "EE"},
1072 {MSR_PR, "PR"},
1073 {MSR_FP, "FP"},
1074 {MSR_ME, "ME"},
1075 #ifdef CONFIG_BOOKE
1076 {MSR_DE, "DE"},
1077 #else
1078 {MSR_SE, "SE"},
1079 {MSR_BE, "BE"},
1080 #endif
1081 {MSR_IR, "IR"},
1082 {MSR_DR, "DR"},
1083 {MSR_PMM, "PMM"},
1084 #ifndef CONFIG_BOOKE
1085 {MSR_RI, "RI"},
1086 {MSR_LE, "LE"},
1087 #endif
1088 {0, NULL}
1089 };
1090
1091 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1092 {
1093 const char *s = "";
1094
1095 for (; bits->bit; ++bits)
1096 if (val & bits->bit) {
1097 printk("%s%s", s, bits->name);
1098 s = sep;
1099 }
1100 }
1101
1102 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1103 static struct regbit msr_tm_bits[] = {
1104 {MSR_TS_T, "T"},
1105 {MSR_TS_S, "S"},
1106 {MSR_TM, "E"},
1107 {0, NULL}
1108 };
1109
1110 static void print_tm_bits(unsigned long val)
1111 {
1112 /*
1113 * This only prints something if at least one of the TM bit is set.
1114 * Inside the TM[], the output means:
1115 * E: Enabled (bit 32)
1116 * S: Suspended (bit 33)
1117 * T: Transactional (bit 34)
1118 */
1119 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1120 printk(",TM[");
1121 print_bits(val, msr_tm_bits, "");
1122 printk("]");
1123 }
1124 }
1125 #else
1126 static void print_tm_bits(unsigned long val) {}
1127 #endif
1128
1129 static void print_msr_bits(unsigned long val)
1130 {
1131 printk("<");
1132 print_bits(val, msr_bits, ",");
1133 print_tm_bits(val);
1134 printk(">");
1135 }
1136
1137 #ifdef CONFIG_PPC64
1138 #define REG "%016lx"
1139 #define REGS_PER_LINE 4
1140 #define LAST_VOLATILE 13
1141 #else
1142 #define REG "%08lx"
1143 #define REGS_PER_LINE 8
1144 #define LAST_VOLATILE 12
1145 #endif
1146
1147 void show_regs(struct pt_regs * regs)
1148 {
1149 int i, trap;
1150
1151 show_regs_print_info(KERN_DEFAULT);
1152
1153 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1154 regs->nip, regs->link, regs->ctr);
1155 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1156 regs, regs->trap, print_tainted(), init_utsname()->release);
1157 printk("MSR: "REG" ", regs->msr);
1158 print_msr_bits(regs->msr);
1159 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1160 trap = TRAP(regs);
1161 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1162 printk("CFAR: "REG" ", regs->orig_gpr3);
1163 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1164 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1165 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1166 #else
1167 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1168 #endif
1169 #ifdef CONFIG_PPC64
1170 printk("SOFTE: %ld ", regs->softe);
1171 #endif
1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173 if (MSR_TM_ACTIVE(regs->msr))
1174 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1175 #endif
1176
1177 for (i = 0; i < 32; i++) {
1178 if ((i % REGS_PER_LINE) == 0)
1179 printk("\nGPR%02d: ", i);
1180 printk(REG " ", regs->gpr[i]);
1181 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1182 break;
1183 }
1184 printk("\n");
1185 #ifdef CONFIG_KALLSYMS
1186 /*
1187 * Lookup NIP late so we have the best change of getting the
1188 * above info out without failing
1189 */
1190 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1191 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1192 #endif
1193 show_stack(current, (unsigned long *) regs->gpr[1]);
1194 if (!user_mode(regs))
1195 show_instructions(regs);
1196 }
1197
1198 void exit_thread(void)
1199 {
1200 }
1201
1202 void flush_thread(void)
1203 {
1204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1205 flush_ptrace_hw_breakpoint(current);
1206 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1207 set_debug_reg_defaults(&current->thread);
1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1209 }
1210
1211 void
1212 release_thread(struct task_struct *t)
1213 {
1214 }
1215
1216 /*
1217 * this gets called so that we can store coprocessor state into memory and
1218 * copy the current task into the new thread.
1219 */
1220 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1221 {
1222 flush_all_to_thread(src);
1223 /*
1224 * Flush TM state out so we can copy it. __switch_to_tm() does this
1225 * flush but it removes the checkpointed state from the current CPU and
1226 * transitions the CPU out of TM mode. Hence we need to call
1227 * tm_recheckpoint_new_task() (on the same task) to restore the
1228 * checkpointed state back and the TM mode.
1229 */
1230 __switch_to_tm(src);
1231 tm_recheckpoint_new_task(src);
1232
1233 *dst = *src;
1234
1235 clear_task_ebb(dst);
1236
1237 return 0;
1238 }
1239
1240 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1241 {
1242 #ifdef CONFIG_PPC_STD_MMU_64
1243 unsigned long sp_vsid;
1244 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1245
1246 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1247 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1248 << SLB_VSID_SHIFT_1T;
1249 else
1250 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1251 << SLB_VSID_SHIFT;
1252 sp_vsid |= SLB_VSID_KERNEL | llp;
1253 p->thread.ksp_vsid = sp_vsid;
1254 #endif
1255 }
1256
1257 /*
1258 * Copy a thread..
1259 */
1260
1261 /*
1262 * Copy architecture-specific thread state
1263 */
1264 int copy_thread(unsigned long clone_flags, unsigned long usp,
1265 unsigned long kthread_arg, struct task_struct *p)
1266 {
1267 struct pt_regs *childregs, *kregs;
1268 extern void ret_from_fork(void);
1269 extern void ret_from_kernel_thread(void);
1270 void (*f)(void);
1271 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1272 struct thread_info *ti = task_thread_info(p);
1273
1274 klp_init_thread_info(ti);
1275
1276 /* Copy registers */
1277 sp -= sizeof(struct pt_regs);
1278 childregs = (struct pt_regs *) sp;
1279 if (unlikely(p->flags & PF_KTHREAD)) {
1280 /* kernel thread */
1281 memset(childregs, 0, sizeof(struct pt_regs));
1282 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1283 /* function */
1284 if (usp)
1285 childregs->gpr[14] = ppc_function_entry((void *)usp);
1286 #ifdef CONFIG_PPC64
1287 clear_tsk_thread_flag(p, TIF_32BIT);
1288 childregs->softe = 1;
1289 #endif
1290 childregs->gpr[15] = kthread_arg;
1291 p->thread.regs = NULL; /* no user register state */
1292 ti->flags |= _TIF_RESTOREALL;
1293 f = ret_from_kernel_thread;
1294 } else {
1295 /* user thread */
1296 struct pt_regs *regs = current_pt_regs();
1297 CHECK_FULL_REGS(regs);
1298 *childregs = *regs;
1299 if (usp)
1300 childregs->gpr[1] = usp;
1301 p->thread.regs = childregs;
1302 childregs->gpr[3] = 0; /* Result from fork() */
1303 if (clone_flags & CLONE_SETTLS) {
1304 #ifdef CONFIG_PPC64
1305 if (!is_32bit_task())
1306 childregs->gpr[13] = childregs->gpr[6];
1307 else
1308 #endif
1309 childregs->gpr[2] = childregs->gpr[6];
1310 }
1311
1312 f = ret_from_fork;
1313 }
1314 sp -= STACK_FRAME_OVERHEAD;
1315
1316 /*
1317 * The way this works is that at some point in the future
1318 * some task will call _switch to switch to the new task.
1319 * That will pop off the stack frame created below and start
1320 * the new task running at ret_from_fork. The new task will
1321 * do some house keeping and then return from the fork or clone
1322 * system call, using the stack frame created above.
1323 */
1324 ((unsigned long *)sp)[0] = 0;
1325 sp -= sizeof(struct pt_regs);
1326 kregs = (struct pt_regs *) sp;
1327 sp -= STACK_FRAME_OVERHEAD;
1328 p->thread.ksp = sp;
1329 #ifdef CONFIG_PPC32
1330 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1331 _ALIGN_UP(sizeof(struct thread_info), 16);
1332 #endif
1333 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1334 p->thread.ptrace_bps[0] = NULL;
1335 #endif
1336
1337 p->thread.fp_save_area = NULL;
1338 #ifdef CONFIG_ALTIVEC
1339 p->thread.vr_save_area = NULL;
1340 #endif
1341
1342 setup_ksp_vsid(p, sp);
1343
1344 #ifdef CONFIG_PPC64
1345 if (cpu_has_feature(CPU_FTR_DSCR)) {
1346 p->thread.dscr_inherit = current->thread.dscr_inherit;
1347 p->thread.dscr = mfspr(SPRN_DSCR);
1348 }
1349 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1350 p->thread.ppr = INIT_PPR;
1351 #endif
1352 kregs->nip = ppc_function_entry(f);
1353 return 0;
1354 }
1355
1356 /*
1357 * Set up a thread for executing a new program
1358 */
1359 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1360 {
1361 #ifdef CONFIG_PPC64
1362 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1363 #endif
1364
1365 /*
1366 * If we exec out of a kernel thread then thread.regs will not be
1367 * set. Do it now.
1368 */
1369 if (!current->thread.regs) {
1370 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1371 current->thread.regs = regs - 1;
1372 }
1373
1374 memset(regs->gpr, 0, sizeof(regs->gpr));
1375 regs->ctr = 0;
1376 regs->link = 0;
1377 regs->xer = 0;
1378 regs->ccr = 0;
1379 regs->gpr[1] = sp;
1380
1381 /*
1382 * We have just cleared all the nonvolatile GPRs, so make
1383 * FULL_REGS(regs) return true. This is necessary to allow
1384 * ptrace to examine the thread immediately after exec.
1385 */
1386 regs->trap &= ~1UL;
1387
1388 #ifdef CONFIG_PPC32
1389 regs->mq = 0;
1390 regs->nip = start;
1391 regs->msr = MSR_USER;
1392 #else
1393 if (!is_32bit_task()) {
1394 unsigned long entry;
1395
1396 if (is_elf2_task()) {
1397 /* Look ma, no function descriptors! */
1398 entry = start;
1399
1400 /*
1401 * Ulrich says:
1402 * The latest iteration of the ABI requires that when
1403 * calling a function (at its global entry point),
1404 * the caller must ensure r12 holds the entry point
1405 * address (so that the function can quickly
1406 * establish addressability).
1407 */
1408 regs->gpr[12] = start;
1409 /* Make sure that's restored on entry to userspace. */
1410 set_thread_flag(TIF_RESTOREALL);
1411 } else {
1412 unsigned long toc;
1413
1414 /* start is a relocated pointer to the function
1415 * descriptor for the elf _start routine. The first
1416 * entry in the function descriptor is the entry
1417 * address of _start and the second entry is the TOC
1418 * value we need to use.
1419 */
1420 __get_user(entry, (unsigned long __user *)start);
1421 __get_user(toc, (unsigned long __user *)start+1);
1422
1423 /* Check whether the e_entry function descriptor entries
1424 * need to be relocated before we can use them.
1425 */
1426 if (load_addr != 0) {
1427 entry += load_addr;
1428 toc += load_addr;
1429 }
1430 regs->gpr[2] = toc;
1431 }
1432 regs->nip = entry;
1433 regs->msr = MSR_USER64;
1434 } else {
1435 regs->nip = start;
1436 regs->gpr[2] = 0;
1437 regs->msr = MSR_USER32;
1438 }
1439 #endif
1440 #ifdef CONFIG_VSX
1441 current->thread.used_vsr = 0;
1442 #endif
1443 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1444 current->thread.fp_save_area = NULL;
1445 #ifdef CONFIG_ALTIVEC
1446 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1447 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1448 current->thread.vr_save_area = NULL;
1449 current->thread.vrsave = 0;
1450 current->thread.used_vr = 0;
1451 #endif /* CONFIG_ALTIVEC */
1452 #ifdef CONFIG_SPE
1453 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1454 current->thread.acc = 0;
1455 current->thread.spefscr = 0;
1456 current->thread.used_spe = 0;
1457 #endif /* CONFIG_SPE */
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 if (cpu_has_feature(CPU_FTR_TM))
1460 regs->msr |= MSR_TM;
1461 current->thread.tm_tfhar = 0;
1462 current->thread.tm_texasr = 0;
1463 current->thread.tm_tfiar = 0;
1464 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1465 }
1466 EXPORT_SYMBOL(start_thread);
1467
1468 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1469 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1470
1471 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1472 {
1473 struct pt_regs *regs = tsk->thread.regs;
1474
1475 /* This is a bit hairy. If we are an SPE enabled processor
1476 * (have embedded fp) we store the IEEE exception enable flags in
1477 * fpexc_mode. fpexc_mode is also used for setting FP exception
1478 * mode (asyn, precise, disabled) for 'Classic' FP. */
1479 if (val & PR_FP_EXC_SW_ENABLE) {
1480 #ifdef CONFIG_SPE
1481 if (cpu_has_feature(CPU_FTR_SPE)) {
1482 /*
1483 * When the sticky exception bits are set
1484 * directly by userspace, it must call prctl
1485 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1486 * in the existing prctl settings) or
1487 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1488 * the bits being set). <fenv.h> functions
1489 * saving and restoring the whole
1490 * floating-point environment need to do so
1491 * anyway to restore the prctl settings from
1492 * the saved environment.
1493 */
1494 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1495 tsk->thread.fpexc_mode = val &
1496 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1497 return 0;
1498 } else {
1499 return -EINVAL;
1500 }
1501 #else
1502 return -EINVAL;
1503 #endif
1504 }
1505
1506 /* on a CONFIG_SPE this does not hurt us. The bits that
1507 * __pack_fe01 use do not overlap with bits used for
1508 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1509 * on CONFIG_SPE implementations are reserved so writing to
1510 * them does not change anything */
1511 if (val > PR_FP_EXC_PRECISE)
1512 return -EINVAL;
1513 tsk->thread.fpexc_mode = __pack_fe01(val);
1514 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1515 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1516 | tsk->thread.fpexc_mode;
1517 return 0;
1518 }
1519
1520 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1521 {
1522 unsigned int val;
1523
1524 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1525 #ifdef CONFIG_SPE
1526 if (cpu_has_feature(CPU_FTR_SPE)) {
1527 /*
1528 * When the sticky exception bits are set
1529 * directly by userspace, it must call prctl
1530 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1531 * in the existing prctl settings) or
1532 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1533 * the bits being set). <fenv.h> functions
1534 * saving and restoring the whole
1535 * floating-point environment need to do so
1536 * anyway to restore the prctl settings from
1537 * the saved environment.
1538 */
1539 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1540 val = tsk->thread.fpexc_mode;
1541 } else
1542 return -EINVAL;
1543 #else
1544 return -EINVAL;
1545 #endif
1546 else
1547 val = __unpack_fe01(tsk->thread.fpexc_mode);
1548 return put_user(val, (unsigned int __user *) adr);
1549 }
1550
1551 int set_endian(struct task_struct *tsk, unsigned int val)
1552 {
1553 struct pt_regs *regs = tsk->thread.regs;
1554
1555 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1556 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1557 return -EINVAL;
1558
1559 if (regs == NULL)
1560 return -EINVAL;
1561
1562 if (val == PR_ENDIAN_BIG)
1563 regs->msr &= ~MSR_LE;
1564 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1565 regs->msr |= MSR_LE;
1566 else
1567 return -EINVAL;
1568
1569 return 0;
1570 }
1571
1572 int get_endian(struct task_struct *tsk, unsigned long adr)
1573 {
1574 struct pt_regs *regs = tsk->thread.regs;
1575 unsigned int val;
1576
1577 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1578 !cpu_has_feature(CPU_FTR_REAL_LE))
1579 return -EINVAL;
1580
1581 if (regs == NULL)
1582 return -EINVAL;
1583
1584 if (regs->msr & MSR_LE) {
1585 if (cpu_has_feature(CPU_FTR_REAL_LE))
1586 val = PR_ENDIAN_LITTLE;
1587 else
1588 val = PR_ENDIAN_PPC_LITTLE;
1589 } else
1590 val = PR_ENDIAN_BIG;
1591
1592 return put_user(val, (unsigned int __user *)adr);
1593 }
1594
1595 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1596 {
1597 tsk->thread.align_ctl = val;
1598 return 0;
1599 }
1600
1601 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1602 {
1603 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1604 }
1605
1606 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1607 unsigned long nbytes)
1608 {
1609 unsigned long stack_page;
1610 unsigned long cpu = task_cpu(p);
1611
1612 /*
1613 * Avoid crashing if the stack has overflowed and corrupted
1614 * task_cpu(p), which is in the thread_info struct.
1615 */
1616 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1617 stack_page = (unsigned long) hardirq_ctx[cpu];
1618 if (sp >= stack_page + sizeof(struct thread_struct)
1619 && sp <= stack_page + THREAD_SIZE - nbytes)
1620 return 1;
1621
1622 stack_page = (unsigned long) softirq_ctx[cpu];
1623 if (sp >= stack_page + sizeof(struct thread_struct)
1624 && sp <= stack_page + THREAD_SIZE - nbytes)
1625 return 1;
1626 }
1627 return 0;
1628 }
1629
1630 int validate_sp(unsigned long sp, struct task_struct *p,
1631 unsigned long nbytes)
1632 {
1633 unsigned long stack_page = (unsigned long)task_stack_page(p);
1634
1635 if (sp >= stack_page + sizeof(struct thread_struct)
1636 && sp <= stack_page + THREAD_SIZE - nbytes)
1637 return 1;
1638
1639 return valid_irq_stack(sp, p, nbytes);
1640 }
1641
1642 EXPORT_SYMBOL(validate_sp);
1643
1644 unsigned long get_wchan(struct task_struct *p)
1645 {
1646 unsigned long ip, sp;
1647 int count = 0;
1648
1649 if (!p || p == current || p->state == TASK_RUNNING)
1650 return 0;
1651
1652 sp = p->thread.ksp;
1653 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1654 return 0;
1655
1656 do {
1657 sp = *(unsigned long *)sp;
1658 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1659 return 0;
1660 if (count > 0) {
1661 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1662 if (!in_sched_functions(ip))
1663 return ip;
1664 }
1665 } while (count++ < 16);
1666 return 0;
1667 }
1668
1669 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1670
1671 void show_stack(struct task_struct *tsk, unsigned long *stack)
1672 {
1673 unsigned long sp, ip, lr, newsp;
1674 int count = 0;
1675 int firstframe = 1;
1676 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1677 int curr_frame = current->curr_ret_stack;
1678 extern void return_to_handler(void);
1679 unsigned long rth = (unsigned long)return_to_handler;
1680 #endif
1681
1682 sp = (unsigned long) stack;
1683 if (tsk == NULL)
1684 tsk = current;
1685 if (sp == 0) {
1686 if (tsk == current)
1687 sp = current_stack_pointer();
1688 else
1689 sp = tsk->thread.ksp;
1690 }
1691
1692 lr = 0;
1693 printk("Call Trace:\n");
1694 do {
1695 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1696 return;
1697
1698 stack = (unsigned long *) sp;
1699 newsp = stack[0];
1700 ip = stack[STACK_FRAME_LR_SAVE];
1701 if (!firstframe || ip != lr) {
1702 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1703 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1704 if ((ip == rth) && curr_frame >= 0) {
1705 printk(" (%pS)",
1706 (void *)current->ret_stack[curr_frame].ret);
1707 curr_frame--;
1708 }
1709 #endif
1710 if (firstframe)
1711 printk(" (unreliable)");
1712 printk("\n");
1713 }
1714 firstframe = 0;
1715
1716 /*
1717 * See if this is an exception frame.
1718 * We look for the "regshere" marker in the current frame.
1719 */
1720 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1721 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1722 struct pt_regs *regs = (struct pt_regs *)
1723 (sp + STACK_FRAME_OVERHEAD);
1724 lr = regs->link;
1725 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1726 regs->trap, (void *)regs->nip, (void *)lr);
1727 firstframe = 1;
1728 }
1729
1730 sp = newsp;
1731 } while (count++ < kstack_depth_to_print);
1732 }
1733
1734 #ifdef CONFIG_PPC64
1735 /* Called with hard IRQs off */
1736 void notrace __ppc64_runlatch_on(void)
1737 {
1738 struct thread_info *ti = current_thread_info();
1739 unsigned long ctrl;
1740
1741 ctrl = mfspr(SPRN_CTRLF);
1742 ctrl |= CTRL_RUNLATCH;
1743 mtspr(SPRN_CTRLT, ctrl);
1744
1745 ti->local_flags |= _TLF_RUNLATCH;
1746 }
1747
1748 /* Called with hard IRQs off */
1749 void notrace __ppc64_runlatch_off(void)
1750 {
1751 struct thread_info *ti = current_thread_info();
1752 unsigned long ctrl;
1753
1754 ti->local_flags &= ~_TLF_RUNLATCH;
1755
1756 ctrl = mfspr(SPRN_CTRLF);
1757 ctrl &= ~CTRL_RUNLATCH;
1758 mtspr(SPRN_CTRLT, ctrl);
1759 }
1760 #endif /* CONFIG_PPC64 */
1761
1762 unsigned long arch_align_stack(unsigned long sp)
1763 {
1764 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1765 sp -= get_random_int() & ~PAGE_MASK;
1766 return sp & ~0xf;
1767 }
1768
1769 static inline unsigned long brk_rnd(void)
1770 {
1771 unsigned long rnd = 0;
1772
1773 /* 8MB for 32bit, 1GB for 64bit */
1774 if (is_32bit_task())
1775 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1776 else
1777 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1778
1779 return rnd << PAGE_SHIFT;
1780 }
1781
1782 unsigned long arch_randomize_brk(struct mm_struct *mm)
1783 {
1784 unsigned long base = mm->brk;
1785 unsigned long ret;
1786
1787 #ifdef CONFIG_PPC_STD_MMU_64
1788 /*
1789 * If we are using 1TB segments and we are allowed to randomise
1790 * the heap, we can put it above 1TB so it is backed by a 1TB
1791 * segment. Otherwise the heap will be in the bottom 1TB
1792 * which always uses 256MB segments and this may result in a
1793 * performance penalty.
1794 */
1795 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1796 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1797 #endif
1798
1799 ret = PAGE_ALIGN(base + brk_rnd());
1800
1801 if (ret < mm->brk)
1802 return mm->brk;
1803
1804 return ret;
1805 }
1806