]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/process.c
Merge branch 'topic/livepatch' into next
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61
62 #include <linux/kprobes.h>
63 #include <linux/kdebug.h>
64
65 /* Transactional Memory debug */
66 #ifdef TM_DEBUG_SW
67 #define TM_DEBUG(x...) printk(KERN_INFO x)
68 #else
69 #define TM_DEBUG(x...) do { } while(0)
70 #endif
71
72 extern unsigned long _get_SP(void);
73
74 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
75 static void check_if_tm_restore_required(struct task_struct *tsk)
76 {
77 /*
78 * If we are saving the current thread's registers, and the
79 * thread is in a transactional state, set the TIF_RESTORE_TM
80 * bit so that we know to restore the registers before
81 * returning to userspace.
82 */
83 if (tsk == current && tsk->thread.regs &&
84 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
85 !test_thread_flag(TIF_RESTORE_TM)) {
86 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
87 set_thread_flag(TIF_RESTORE_TM);
88 }
89 }
90 #else
91 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
92 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
93
94 bool strict_msr_control;
95 EXPORT_SYMBOL(strict_msr_control);
96
97 static int __init enable_strict_msr_control(char *str)
98 {
99 strict_msr_control = true;
100 pr_info("Enabling strict facility control\n");
101
102 return 0;
103 }
104 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
105
106 void msr_check_and_set(unsigned long bits)
107 {
108 unsigned long oldmsr = mfmsr();
109 unsigned long newmsr;
110
111 newmsr = oldmsr | bits;
112
113 #ifdef CONFIG_VSX
114 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
115 newmsr |= MSR_VSX;
116 #endif
117
118 if (oldmsr != newmsr)
119 mtmsr_isync(newmsr);
120 }
121
122 void __msr_check_and_clear(unsigned long bits)
123 {
124 unsigned long oldmsr = mfmsr();
125 unsigned long newmsr;
126
127 newmsr = oldmsr & ~bits;
128
129 #ifdef CONFIG_VSX
130 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
131 newmsr &= ~MSR_VSX;
132 #endif
133
134 if (oldmsr != newmsr)
135 mtmsr_isync(newmsr);
136 }
137 EXPORT_SYMBOL(__msr_check_and_clear);
138
139 #ifdef CONFIG_PPC_FPU
140 void __giveup_fpu(struct task_struct *tsk)
141 {
142 save_fpu(tsk);
143 tsk->thread.regs->msr &= ~MSR_FP;
144 #ifdef CONFIG_VSX
145 if (cpu_has_feature(CPU_FTR_VSX))
146 tsk->thread.regs->msr &= ~MSR_VSX;
147 #endif
148 }
149
150 void giveup_fpu(struct task_struct *tsk)
151 {
152 check_if_tm_restore_required(tsk);
153
154 msr_check_and_set(MSR_FP);
155 __giveup_fpu(tsk);
156 msr_check_and_clear(MSR_FP);
157 }
158 EXPORT_SYMBOL(giveup_fpu);
159
160 /*
161 * Make sure the floating-point register state in the
162 * the thread_struct is up to date for task tsk.
163 */
164 void flush_fp_to_thread(struct task_struct *tsk)
165 {
166 if (tsk->thread.regs) {
167 /*
168 * We need to disable preemption here because if we didn't,
169 * another process could get scheduled after the regs->msr
170 * test but before we have finished saving the FP registers
171 * to the thread_struct. That process could take over the
172 * FPU, and then when we get scheduled again we would store
173 * bogus values for the remaining FP registers.
174 */
175 preempt_disable();
176 if (tsk->thread.regs->msr & MSR_FP) {
177 /*
178 * This should only ever be called for current or
179 * for a stopped child process. Since we save away
180 * the FP register state on context switch,
181 * there is something wrong if a stopped child appears
182 * to still have its FP state in the CPU registers.
183 */
184 BUG_ON(tsk != current);
185 giveup_fpu(tsk);
186 }
187 preempt_enable();
188 }
189 }
190 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
191
192 void enable_kernel_fp(void)
193 {
194 WARN_ON(preemptible());
195
196 msr_check_and_set(MSR_FP);
197
198 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
199 check_if_tm_restore_required(current);
200 __giveup_fpu(current);
201 }
202 }
203 EXPORT_SYMBOL(enable_kernel_fp);
204
205 static int restore_fp(struct task_struct *tsk) {
206 if (tsk->thread.load_fp) {
207 load_fp_state(&current->thread.fp_state);
208 current->thread.load_fp++;
209 return 1;
210 }
211 return 0;
212 }
213 #else
214 static int restore_fp(struct task_struct *tsk) { return 0; }
215 #endif /* CONFIG_PPC_FPU */
216
217 #ifdef CONFIG_ALTIVEC
218 #define loadvec(thr) ((thr).load_vec)
219
220 static void __giveup_altivec(struct task_struct *tsk)
221 {
222 save_altivec(tsk);
223 tsk->thread.regs->msr &= ~MSR_VEC;
224 #ifdef CONFIG_VSX
225 if (cpu_has_feature(CPU_FTR_VSX))
226 tsk->thread.regs->msr &= ~MSR_VSX;
227 #endif
228 }
229
230 void giveup_altivec(struct task_struct *tsk)
231 {
232 check_if_tm_restore_required(tsk);
233
234 msr_check_and_set(MSR_VEC);
235 __giveup_altivec(tsk);
236 msr_check_and_clear(MSR_VEC);
237 }
238 EXPORT_SYMBOL(giveup_altivec);
239
240 void enable_kernel_altivec(void)
241 {
242 WARN_ON(preemptible());
243
244 msr_check_and_set(MSR_VEC);
245
246 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
247 check_if_tm_restore_required(current);
248 __giveup_altivec(current);
249 }
250 }
251 EXPORT_SYMBOL(enable_kernel_altivec);
252
253 /*
254 * Make sure the VMX/Altivec register state in the
255 * the thread_struct is up to date for task tsk.
256 */
257 void flush_altivec_to_thread(struct task_struct *tsk)
258 {
259 if (tsk->thread.regs) {
260 preempt_disable();
261 if (tsk->thread.regs->msr & MSR_VEC) {
262 BUG_ON(tsk != current);
263 giveup_altivec(tsk);
264 }
265 preempt_enable();
266 }
267 }
268 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
269
270 static int restore_altivec(struct task_struct *tsk)
271 {
272 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
273 load_vr_state(&tsk->thread.vr_state);
274 tsk->thread.used_vr = 1;
275 tsk->thread.load_vec++;
276
277 return 1;
278 }
279 return 0;
280 }
281 #else
282 #define loadvec(thr) 0
283 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
284 #endif /* CONFIG_ALTIVEC */
285
286 #ifdef CONFIG_VSX
287 static void __giveup_vsx(struct task_struct *tsk)
288 {
289 if (tsk->thread.regs->msr & MSR_FP)
290 __giveup_fpu(tsk);
291 if (tsk->thread.regs->msr & MSR_VEC)
292 __giveup_altivec(tsk);
293 tsk->thread.regs->msr &= ~MSR_VSX;
294 }
295
296 static void giveup_vsx(struct task_struct *tsk)
297 {
298 check_if_tm_restore_required(tsk);
299
300 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
301 __giveup_vsx(tsk);
302 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
303 }
304
305 static void save_vsx(struct task_struct *tsk)
306 {
307 if (tsk->thread.regs->msr & MSR_FP)
308 save_fpu(tsk);
309 if (tsk->thread.regs->msr & MSR_VEC)
310 save_altivec(tsk);
311 }
312
313 void enable_kernel_vsx(void)
314 {
315 WARN_ON(preemptible());
316
317 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
318
319 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
320 check_if_tm_restore_required(current);
321 if (current->thread.regs->msr & MSR_FP)
322 __giveup_fpu(current);
323 if (current->thread.regs->msr & MSR_VEC)
324 __giveup_altivec(current);
325 __giveup_vsx(current);
326 }
327 }
328 EXPORT_SYMBOL(enable_kernel_vsx);
329
330 void flush_vsx_to_thread(struct task_struct *tsk)
331 {
332 if (tsk->thread.regs) {
333 preempt_disable();
334 if (tsk->thread.regs->msr & MSR_VSX) {
335 BUG_ON(tsk != current);
336 giveup_vsx(tsk);
337 }
338 preempt_enable();
339 }
340 }
341 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
342
343 static int restore_vsx(struct task_struct *tsk)
344 {
345 if (cpu_has_feature(CPU_FTR_VSX)) {
346 tsk->thread.used_vsr = 1;
347 return 1;
348 }
349
350 return 0;
351 }
352 #else
353 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
354 static inline void save_vsx(struct task_struct *tsk) { }
355 #endif /* CONFIG_VSX */
356
357 #ifdef CONFIG_SPE
358 void giveup_spe(struct task_struct *tsk)
359 {
360 check_if_tm_restore_required(tsk);
361
362 msr_check_and_set(MSR_SPE);
363 __giveup_spe(tsk);
364 msr_check_and_clear(MSR_SPE);
365 }
366 EXPORT_SYMBOL(giveup_spe);
367
368 void enable_kernel_spe(void)
369 {
370 WARN_ON(preemptible());
371
372 msr_check_and_set(MSR_SPE);
373
374 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
375 check_if_tm_restore_required(current);
376 __giveup_spe(current);
377 }
378 }
379 EXPORT_SYMBOL(enable_kernel_spe);
380
381 void flush_spe_to_thread(struct task_struct *tsk)
382 {
383 if (tsk->thread.regs) {
384 preempt_disable();
385 if (tsk->thread.regs->msr & MSR_SPE) {
386 BUG_ON(tsk != current);
387 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
388 giveup_spe(tsk);
389 }
390 preempt_enable();
391 }
392 }
393 #endif /* CONFIG_SPE */
394
395 static unsigned long msr_all_available;
396
397 static int __init init_msr_all_available(void)
398 {
399 #ifdef CONFIG_PPC_FPU
400 msr_all_available |= MSR_FP;
401 #endif
402 #ifdef CONFIG_ALTIVEC
403 if (cpu_has_feature(CPU_FTR_ALTIVEC))
404 msr_all_available |= MSR_VEC;
405 #endif
406 #ifdef CONFIG_VSX
407 if (cpu_has_feature(CPU_FTR_VSX))
408 msr_all_available |= MSR_VSX;
409 #endif
410 #ifdef CONFIG_SPE
411 if (cpu_has_feature(CPU_FTR_SPE))
412 msr_all_available |= MSR_SPE;
413 #endif
414
415 return 0;
416 }
417 early_initcall(init_msr_all_available);
418
419 void giveup_all(struct task_struct *tsk)
420 {
421 unsigned long usermsr;
422
423 if (!tsk->thread.regs)
424 return;
425
426 usermsr = tsk->thread.regs->msr;
427
428 if ((usermsr & msr_all_available) == 0)
429 return;
430
431 msr_check_and_set(msr_all_available);
432
433 #ifdef CONFIG_PPC_FPU
434 if (usermsr & MSR_FP)
435 __giveup_fpu(tsk);
436 #endif
437 #ifdef CONFIG_ALTIVEC
438 if (usermsr & MSR_VEC)
439 __giveup_altivec(tsk);
440 #endif
441 #ifdef CONFIG_VSX
442 if (usermsr & MSR_VSX)
443 __giveup_vsx(tsk);
444 #endif
445 #ifdef CONFIG_SPE
446 if (usermsr & MSR_SPE)
447 __giveup_spe(tsk);
448 #endif
449
450 msr_check_and_clear(msr_all_available);
451 }
452 EXPORT_SYMBOL(giveup_all);
453
454 void restore_math(struct pt_regs *regs)
455 {
456 unsigned long msr;
457
458 if (!current->thread.load_fp && !loadvec(current->thread))
459 return;
460
461 msr = regs->msr;
462 msr_check_and_set(msr_all_available);
463
464 /*
465 * Only reload if the bit is not set in the user MSR, the bit BEING set
466 * indicates that the registers are hot
467 */
468 if ((!(msr & MSR_FP)) && restore_fp(current))
469 msr |= MSR_FP | current->thread.fpexc_mode;
470
471 if ((!(msr & MSR_VEC)) && restore_altivec(current))
472 msr |= MSR_VEC;
473
474 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
475 restore_vsx(current)) {
476 msr |= MSR_VSX;
477 }
478
479 msr_check_and_clear(msr_all_available);
480
481 regs->msr = msr;
482 }
483
484 void save_all(struct task_struct *tsk)
485 {
486 unsigned long usermsr;
487
488 if (!tsk->thread.regs)
489 return;
490
491 usermsr = tsk->thread.regs->msr;
492
493 if ((usermsr & msr_all_available) == 0)
494 return;
495
496 msr_check_and_set(msr_all_available);
497
498 /*
499 * Saving the way the register space is in hardware, save_vsx boils
500 * down to a save_fpu() and save_altivec()
501 */
502 if (usermsr & MSR_VSX) {
503 save_vsx(tsk);
504 } else {
505 if (usermsr & MSR_FP)
506 save_fpu(tsk);
507
508 if (usermsr & MSR_VEC)
509 save_altivec(tsk);
510 }
511
512 if (usermsr & MSR_SPE)
513 __giveup_spe(tsk);
514
515 msr_check_and_clear(msr_all_available);
516 }
517
518 void flush_all_to_thread(struct task_struct *tsk)
519 {
520 if (tsk->thread.regs) {
521 preempt_disable();
522 BUG_ON(tsk != current);
523 save_all(tsk);
524
525 #ifdef CONFIG_SPE
526 if (tsk->thread.regs->msr & MSR_SPE)
527 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
528 #endif
529
530 preempt_enable();
531 }
532 }
533 EXPORT_SYMBOL(flush_all_to_thread);
534
535 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
536 void do_send_trap(struct pt_regs *regs, unsigned long address,
537 unsigned long error_code, int signal_code, int breakpt)
538 {
539 siginfo_t info;
540
541 current->thread.trap_nr = signal_code;
542 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
543 11, SIGSEGV) == NOTIFY_STOP)
544 return;
545
546 /* Deliver the signal to userspace */
547 info.si_signo = SIGTRAP;
548 info.si_errno = breakpt; /* breakpoint or watchpoint id */
549 info.si_code = signal_code;
550 info.si_addr = (void __user *)address;
551 force_sig_info(SIGTRAP, &info, current);
552 }
553 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
554 void do_break (struct pt_regs *regs, unsigned long address,
555 unsigned long error_code)
556 {
557 siginfo_t info;
558
559 current->thread.trap_nr = TRAP_HWBKPT;
560 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
561 11, SIGSEGV) == NOTIFY_STOP)
562 return;
563
564 if (debugger_break_match(regs))
565 return;
566
567 /* Clear the breakpoint */
568 hw_breakpoint_disable();
569
570 /* Deliver the signal to userspace */
571 info.si_signo = SIGTRAP;
572 info.si_errno = 0;
573 info.si_code = TRAP_HWBKPT;
574 info.si_addr = (void __user *)address;
575 force_sig_info(SIGTRAP, &info, current);
576 }
577 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
578
579 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
580
581 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
582 /*
583 * Set the debug registers back to their default "safe" values.
584 */
585 static void set_debug_reg_defaults(struct thread_struct *thread)
586 {
587 thread->debug.iac1 = thread->debug.iac2 = 0;
588 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
589 thread->debug.iac3 = thread->debug.iac4 = 0;
590 #endif
591 thread->debug.dac1 = thread->debug.dac2 = 0;
592 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
593 thread->debug.dvc1 = thread->debug.dvc2 = 0;
594 #endif
595 thread->debug.dbcr0 = 0;
596 #ifdef CONFIG_BOOKE
597 /*
598 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
599 */
600 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
601 DBCR1_IAC3US | DBCR1_IAC4US;
602 /*
603 * Force Data Address Compare User/Supervisor bits to be User-only
604 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
605 */
606 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
607 #else
608 thread->debug.dbcr1 = 0;
609 #endif
610 }
611
612 static void prime_debug_regs(struct debug_reg *debug)
613 {
614 /*
615 * We could have inherited MSR_DE from userspace, since
616 * it doesn't get cleared on exception entry. Make sure
617 * MSR_DE is clear before we enable any debug events.
618 */
619 mtmsr(mfmsr() & ~MSR_DE);
620
621 mtspr(SPRN_IAC1, debug->iac1);
622 mtspr(SPRN_IAC2, debug->iac2);
623 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
624 mtspr(SPRN_IAC3, debug->iac3);
625 mtspr(SPRN_IAC4, debug->iac4);
626 #endif
627 mtspr(SPRN_DAC1, debug->dac1);
628 mtspr(SPRN_DAC2, debug->dac2);
629 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
630 mtspr(SPRN_DVC1, debug->dvc1);
631 mtspr(SPRN_DVC2, debug->dvc2);
632 #endif
633 mtspr(SPRN_DBCR0, debug->dbcr0);
634 mtspr(SPRN_DBCR1, debug->dbcr1);
635 #ifdef CONFIG_BOOKE
636 mtspr(SPRN_DBCR2, debug->dbcr2);
637 #endif
638 }
639 /*
640 * Unless neither the old or new thread are making use of the
641 * debug registers, set the debug registers from the values
642 * stored in the new thread.
643 */
644 void switch_booke_debug_regs(struct debug_reg *new_debug)
645 {
646 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
647 || (new_debug->dbcr0 & DBCR0_IDM))
648 prime_debug_regs(new_debug);
649 }
650 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
651 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
652 #ifndef CONFIG_HAVE_HW_BREAKPOINT
653 static void set_debug_reg_defaults(struct thread_struct *thread)
654 {
655 thread->hw_brk.address = 0;
656 thread->hw_brk.type = 0;
657 set_breakpoint(&thread->hw_brk);
658 }
659 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
660 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
661
662 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
663 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
664 {
665 mtspr(SPRN_DAC1, dabr);
666 #ifdef CONFIG_PPC_47x
667 isync();
668 #endif
669 return 0;
670 }
671 #elif defined(CONFIG_PPC_BOOK3S)
672 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
673 {
674 mtspr(SPRN_DABR, dabr);
675 if (cpu_has_feature(CPU_FTR_DABRX))
676 mtspr(SPRN_DABRX, dabrx);
677 return 0;
678 }
679 #else
680 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
681 {
682 return -EINVAL;
683 }
684 #endif
685
686 static inline int set_dabr(struct arch_hw_breakpoint *brk)
687 {
688 unsigned long dabr, dabrx;
689
690 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
691 dabrx = ((brk->type >> 3) & 0x7);
692
693 if (ppc_md.set_dabr)
694 return ppc_md.set_dabr(dabr, dabrx);
695
696 return __set_dabr(dabr, dabrx);
697 }
698
699 static inline int set_dawr(struct arch_hw_breakpoint *brk)
700 {
701 unsigned long dawr, dawrx, mrd;
702
703 dawr = brk->address;
704
705 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
706 << (63 - 58); //* read/write bits */
707 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
708 << (63 - 59); //* translate */
709 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
710 >> 3; //* PRIM bits */
711 /* dawr length is stored in field MDR bits 48:53. Matches range in
712 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
713 0b111111=64DW.
714 brk->len is in bytes.
715 This aligns up to double word size, shifts and does the bias.
716 */
717 mrd = ((brk->len + 7) >> 3) - 1;
718 dawrx |= (mrd & 0x3f) << (63 - 53);
719
720 if (ppc_md.set_dawr)
721 return ppc_md.set_dawr(dawr, dawrx);
722 mtspr(SPRN_DAWR, dawr);
723 mtspr(SPRN_DAWRX, dawrx);
724 return 0;
725 }
726
727 void __set_breakpoint(struct arch_hw_breakpoint *brk)
728 {
729 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
730
731 if (cpu_has_feature(CPU_FTR_DAWR))
732 set_dawr(brk);
733 else
734 set_dabr(brk);
735 }
736
737 void set_breakpoint(struct arch_hw_breakpoint *brk)
738 {
739 preempt_disable();
740 __set_breakpoint(brk);
741 preempt_enable();
742 }
743
744 #ifdef CONFIG_PPC64
745 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
746 #endif
747
748 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
749 struct arch_hw_breakpoint *b)
750 {
751 if (a->address != b->address)
752 return false;
753 if (a->type != b->type)
754 return false;
755 if (a->len != b->len)
756 return false;
757 return true;
758 }
759
760 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
761 static void tm_reclaim_thread(struct thread_struct *thr,
762 struct thread_info *ti, uint8_t cause)
763 {
764 unsigned long msr_diff = 0;
765
766 /*
767 * If FP/VSX registers have been already saved to the
768 * thread_struct, move them to the transact_fp array.
769 * We clear the TIF_RESTORE_TM bit since after the reclaim
770 * the thread will no longer be transactional.
771 */
772 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
773 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
774 if (msr_diff & MSR_FP)
775 memcpy(&thr->transact_fp, &thr->fp_state,
776 sizeof(struct thread_fp_state));
777 if (msr_diff & MSR_VEC)
778 memcpy(&thr->transact_vr, &thr->vr_state,
779 sizeof(struct thread_vr_state));
780 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
781 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
782 }
783
784 /*
785 * Use the current MSR TM suspended bit to track if we have
786 * checkpointed state outstanding.
787 * On signal delivery, we'd normally reclaim the checkpointed
788 * state to obtain stack pointer (see:get_tm_stackpointer()).
789 * This will then directly return to userspace without going
790 * through __switch_to(). However, if the stack frame is bad,
791 * we need to exit this thread which calls __switch_to() which
792 * will again attempt to reclaim the already saved tm state.
793 * Hence we need to check that we've not already reclaimed
794 * this state.
795 * We do this using the current MSR, rather tracking it in
796 * some specific thread_struct bit, as it has the additional
797 * benifit of checking for a potential TM bad thing exception.
798 */
799 if (!MSR_TM_SUSPENDED(mfmsr()))
800 return;
801
802 tm_reclaim(thr, thr->regs->msr, cause);
803
804 /* Having done the reclaim, we now have the checkpointed
805 * FP/VSX values in the registers. These might be valid
806 * even if we have previously called enable_kernel_fp() or
807 * flush_fp_to_thread(), so update thr->regs->msr to
808 * indicate their current validity.
809 */
810 thr->regs->msr |= msr_diff;
811 }
812
813 void tm_reclaim_current(uint8_t cause)
814 {
815 tm_enable();
816 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
817 }
818
819 static inline void tm_reclaim_task(struct task_struct *tsk)
820 {
821 /* We have to work out if we're switching from/to a task that's in the
822 * middle of a transaction.
823 *
824 * In switching we need to maintain a 2nd register state as
825 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
826 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
827 * (current) FPRs into oldtask->thread.transact_fpr[].
828 *
829 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
830 */
831 struct thread_struct *thr = &tsk->thread;
832
833 if (!thr->regs)
834 return;
835
836 if (!MSR_TM_ACTIVE(thr->regs->msr))
837 goto out_and_saveregs;
838
839 /* Stash the original thread MSR, as giveup_fpu et al will
840 * modify it. We hold onto it to see whether the task used
841 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
842 * ckpt_regs.msr is already set.
843 */
844 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
845 thr->ckpt_regs.msr = thr->regs->msr;
846
847 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
848 "ccr=%lx, msr=%lx, trap=%lx)\n",
849 tsk->pid, thr->regs->nip,
850 thr->regs->ccr, thr->regs->msr,
851 thr->regs->trap);
852
853 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
854
855 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
856 tsk->pid);
857
858 out_and_saveregs:
859 /* Always save the regs here, even if a transaction's not active.
860 * This context-switches a thread's TM info SPRs. We do it here to
861 * be consistent with the restore path (in recheckpoint) which
862 * cannot happen later in _switch().
863 */
864 tm_save_sprs(thr);
865 }
866
867 extern void __tm_recheckpoint(struct thread_struct *thread,
868 unsigned long orig_msr);
869
870 void tm_recheckpoint(struct thread_struct *thread,
871 unsigned long orig_msr)
872 {
873 unsigned long flags;
874
875 /* We really can't be interrupted here as the TEXASR registers can't
876 * change and later in the trecheckpoint code, we have a userspace R1.
877 * So let's hard disable over this region.
878 */
879 local_irq_save(flags);
880 hard_irq_disable();
881
882 /* The TM SPRs are restored here, so that TEXASR.FS can be set
883 * before the trecheckpoint and no explosion occurs.
884 */
885 tm_restore_sprs(thread);
886
887 __tm_recheckpoint(thread, orig_msr);
888
889 local_irq_restore(flags);
890 }
891
892 static inline void tm_recheckpoint_new_task(struct task_struct *new)
893 {
894 unsigned long msr;
895
896 if (!cpu_has_feature(CPU_FTR_TM))
897 return;
898
899 /* Recheckpoint the registers of the thread we're about to switch to.
900 *
901 * If the task was using FP, we non-lazily reload both the original and
902 * the speculative FP register states. This is because the kernel
903 * doesn't see if/when a TM rollback occurs, so if we take an FP
904 * unavoidable later, we are unable to determine which set of FP regs
905 * need to be restored.
906 */
907 if (!new->thread.regs)
908 return;
909
910 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
911 tm_restore_sprs(&new->thread);
912 return;
913 }
914 msr = new->thread.ckpt_regs.msr;
915 /* Recheckpoint to restore original checkpointed register state. */
916 TM_DEBUG("*** tm_recheckpoint of pid %d "
917 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
918 new->pid, new->thread.regs->msr, msr);
919
920 /* This loads the checkpointed FP/VEC state, if used */
921 tm_recheckpoint(&new->thread, msr);
922
923 /* This loads the speculative FP/VEC state, if used */
924 if (msr & MSR_FP) {
925 do_load_up_transact_fpu(&new->thread);
926 new->thread.regs->msr |=
927 (MSR_FP | new->thread.fpexc_mode);
928 }
929 #ifdef CONFIG_ALTIVEC
930 if (msr & MSR_VEC) {
931 do_load_up_transact_altivec(&new->thread);
932 new->thread.regs->msr |= MSR_VEC;
933 }
934 #endif
935 /* We may as well turn on VSX too since all the state is restored now */
936 if (msr & MSR_VSX)
937 new->thread.regs->msr |= MSR_VSX;
938
939 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
940 "(kernel msr 0x%lx)\n",
941 new->pid, mfmsr());
942 }
943
944 static inline void __switch_to_tm(struct task_struct *prev)
945 {
946 if (cpu_has_feature(CPU_FTR_TM)) {
947 tm_enable();
948 tm_reclaim_task(prev);
949 }
950 }
951
952 /*
953 * This is called if we are on the way out to userspace and the
954 * TIF_RESTORE_TM flag is set. It checks if we need to reload
955 * FP and/or vector state and does so if necessary.
956 * If userspace is inside a transaction (whether active or
957 * suspended) and FP/VMX/VSX instructions have ever been enabled
958 * inside that transaction, then we have to keep them enabled
959 * and keep the FP/VMX/VSX state loaded while ever the transaction
960 * continues. The reason is that if we didn't, and subsequently
961 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
962 * we don't know whether it's the same transaction, and thus we
963 * don't know which of the checkpointed state and the transactional
964 * state to use.
965 */
966 void restore_tm_state(struct pt_regs *regs)
967 {
968 unsigned long msr_diff;
969
970 clear_thread_flag(TIF_RESTORE_TM);
971 if (!MSR_TM_ACTIVE(regs->msr))
972 return;
973
974 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
975 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
976
977 restore_math(regs);
978
979 regs->msr |= msr_diff;
980 }
981
982 #else
983 #define tm_recheckpoint_new_task(new)
984 #define __switch_to_tm(prev)
985 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
986
987 static inline void save_sprs(struct thread_struct *t)
988 {
989 #ifdef CONFIG_ALTIVEC
990 if (cpu_has_feature(CPU_FTR_ALTIVEC))
991 t->vrsave = mfspr(SPRN_VRSAVE);
992 #endif
993 #ifdef CONFIG_PPC_BOOK3S_64
994 if (cpu_has_feature(CPU_FTR_DSCR))
995 t->dscr = mfspr(SPRN_DSCR);
996
997 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
998 t->bescr = mfspr(SPRN_BESCR);
999 t->ebbhr = mfspr(SPRN_EBBHR);
1000 t->ebbrr = mfspr(SPRN_EBBRR);
1001
1002 t->fscr = mfspr(SPRN_FSCR);
1003
1004 /*
1005 * Note that the TAR is not available for use in the kernel.
1006 * (To provide this, the TAR should be backed up/restored on
1007 * exception entry/exit instead, and be in pt_regs. FIXME,
1008 * this should be in pt_regs anyway (for debug).)
1009 */
1010 t->tar = mfspr(SPRN_TAR);
1011 }
1012 #endif
1013 }
1014
1015 static inline void restore_sprs(struct thread_struct *old_thread,
1016 struct thread_struct *new_thread)
1017 {
1018 #ifdef CONFIG_ALTIVEC
1019 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1020 old_thread->vrsave != new_thread->vrsave)
1021 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1022 #endif
1023 #ifdef CONFIG_PPC_BOOK3S_64
1024 if (cpu_has_feature(CPU_FTR_DSCR)) {
1025 u64 dscr = get_paca()->dscr_default;
1026 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1027
1028 if (new_thread->dscr_inherit) {
1029 dscr = new_thread->dscr;
1030 fscr |= FSCR_DSCR;
1031 }
1032
1033 if (old_thread->dscr != dscr)
1034 mtspr(SPRN_DSCR, dscr);
1035
1036 if (old_thread->fscr != fscr)
1037 mtspr(SPRN_FSCR, fscr);
1038 }
1039
1040 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1041 if (old_thread->bescr != new_thread->bescr)
1042 mtspr(SPRN_BESCR, new_thread->bescr);
1043 if (old_thread->ebbhr != new_thread->ebbhr)
1044 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1045 if (old_thread->ebbrr != new_thread->ebbrr)
1046 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1047
1048 if (old_thread->tar != new_thread->tar)
1049 mtspr(SPRN_TAR, new_thread->tar);
1050 }
1051 #endif
1052 }
1053
1054 struct task_struct *__switch_to(struct task_struct *prev,
1055 struct task_struct *new)
1056 {
1057 struct thread_struct *new_thread, *old_thread;
1058 struct task_struct *last;
1059 #ifdef CONFIG_PPC_BOOK3S_64
1060 struct ppc64_tlb_batch *batch;
1061 #endif
1062
1063 new_thread = &new->thread;
1064 old_thread = &current->thread;
1065
1066 WARN_ON(!irqs_disabled());
1067
1068 #ifdef CONFIG_PPC64
1069 /*
1070 * Collect processor utilization data per process
1071 */
1072 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1073 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1074 long unsigned start_tb, current_tb;
1075 start_tb = old_thread->start_tb;
1076 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1077 old_thread->accum_tb += (current_tb - start_tb);
1078 new_thread->start_tb = current_tb;
1079 }
1080 #endif /* CONFIG_PPC64 */
1081
1082 #ifdef CONFIG_PPC_BOOK3S_64
1083 batch = this_cpu_ptr(&ppc64_tlb_batch);
1084 if (batch->active) {
1085 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1086 if (batch->index)
1087 __flush_tlb_pending(batch);
1088 batch->active = 0;
1089 }
1090 #endif /* CONFIG_PPC_BOOK3S_64 */
1091
1092 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1093 switch_booke_debug_regs(&new->thread.debug);
1094 #else
1095 /*
1096 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1097 * schedule DABR
1098 */
1099 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1100 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1101 __set_breakpoint(&new->thread.hw_brk);
1102 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1103 #endif
1104
1105 /*
1106 * We need to save SPRs before treclaim/trecheckpoint as these will
1107 * change a number of them.
1108 */
1109 save_sprs(&prev->thread);
1110
1111 __switch_to_tm(prev);
1112
1113 /* Save FPU, Altivec, VSX and SPE state */
1114 giveup_all(prev);
1115
1116 /*
1117 * We can't take a PMU exception inside _switch() since there is a
1118 * window where the kernel stack SLB and the kernel stack are out
1119 * of sync. Hard disable here.
1120 */
1121 hard_irq_disable();
1122
1123 tm_recheckpoint_new_task(new);
1124
1125 /*
1126 * Call restore_sprs() before calling _switch(). If we move it after
1127 * _switch() then we miss out on calling it for new tasks. The reason
1128 * for this is we manually create a stack frame for new tasks that
1129 * directly returns through ret_from_fork() or
1130 * ret_from_kernel_thread(). See copy_thread() for details.
1131 */
1132 restore_sprs(old_thread, new_thread);
1133
1134 last = _switch(old_thread, new_thread);
1135
1136 #ifdef CONFIG_PPC_BOOK3S_64
1137 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1138 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1139 batch = this_cpu_ptr(&ppc64_tlb_batch);
1140 batch->active = 1;
1141 }
1142
1143 if (current_thread_info()->task->thread.regs)
1144 restore_math(current_thread_info()->task->thread.regs);
1145
1146 #endif /* CONFIG_PPC_BOOK3S_64 */
1147
1148 return last;
1149 }
1150
1151 static int instructions_to_print = 16;
1152
1153 static void show_instructions(struct pt_regs *regs)
1154 {
1155 int i;
1156 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1157 sizeof(int));
1158
1159 printk("Instruction dump:");
1160
1161 for (i = 0; i < instructions_to_print; i++) {
1162 int instr;
1163
1164 if (!(i % 8))
1165 printk("\n");
1166
1167 #if !defined(CONFIG_BOOKE)
1168 /* If executing with the IMMU off, adjust pc rather
1169 * than print XXXXXXXX.
1170 */
1171 if (!(regs->msr & MSR_IR))
1172 pc = (unsigned long)phys_to_virt(pc);
1173 #endif
1174
1175 if (!__kernel_text_address(pc) ||
1176 probe_kernel_address((unsigned int __user *)pc, instr)) {
1177 printk(KERN_CONT "XXXXXXXX ");
1178 } else {
1179 if (regs->nip == pc)
1180 printk(KERN_CONT "<%08x> ", instr);
1181 else
1182 printk(KERN_CONT "%08x ", instr);
1183 }
1184
1185 pc += sizeof(int);
1186 }
1187
1188 printk("\n");
1189 }
1190
1191 struct regbit {
1192 unsigned long bit;
1193 const char *name;
1194 };
1195
1196 static struct regbit msr_bits[] = {
1197 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1198 {MSR_SF, "SF"},
1199 {MSR_HV, "HV"},
1200 #endif
1201 {MSR_VEC, "VEC"},
1202 {MSR_VSX, "VSX"},
1203 #ifdef CONFIG_BOOKE
1204 {MSR_CE, "CE"},
1205 #endif
1206 {MSR_EE, "EE"},
1207 {MSR_PR, "PR"},
1208 {MSR_FP, "FP"},
1209 {MSR_ME, "ME"},
1210 #ifdef CONFIG_BOOKE
1211 {MSR_DE, "DE"},
1212 #else
1213 {MSR_SE, "SE"},
1214 {MSR_BE, "BE"},
1215 #endif
1216 {MSR_IR, "IR"},
1217 {MSR_DR, "DR"},
1218 {MSR_PMM, "PMM"},
1219 #ifndef CONFIG_BOOKE
1220 {MSR_RI, "RI"},
1221 {MSR_LE, "LE"},
1222 #endif
1223 {0, NULL}
1224 };
1225
1226 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1227 {
1228 const char *s = "";
1229
1230 for (; bits->bit; ++bits)
1231 if (val & bits->bit) {
1232 printk("%s%s", s, bits->name);
1233 s = sep;
1234 }
1235 }
1236
1237 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1238 static struct regbit msr_tm_bits[] = {
1239 {MSR_TS_T, "T"},
1240 {MSR_TS_S, "S"},
1241 {MSR_TM, "E"},
1242 {0, NULL}
1243 };
1244
1245 static void print_tm_bits(unsigned long val)
1246 {
1247 /*
1248 * This only prints something if at least one of the TM bit is set.
1249 * Inside the TM[], the output means:
1250 * E: Enabled (bit 32)
1251 * S: Suspended (bit 33)
1252 * T: Transactional (bit 34)
1253 */
1254 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1255 printk(",TM[");
1256 print_bits(val, msr_tm_bits, "");
1257 printk("]");
1258 }
1259 }
1260 #else
1261 static void print_tm_bits(unsigned long val) {}
1262 #endif
1263
1264 static void print_msr_bits(unsigned long val)
1265 {
1266 printk("<");
1267 print_bits(val, msr_bits, ",");
1268 print_tm_bits(val);
1269 printk(">");
1270 }
1271
1272 #ifdef CONFIG_PPC64
1273 #define REG "%016lx"
1274 #define REGS_PER_LINE 4
1275 #define LAST_VOLATILE 13
1276 #else
1277 #define REG "%08lx"
1278 #define REGS_PER_LINE 8
1279 #define LAST_VOLATILE 12
1280 #endif
1281
1282 void show_regs(struct pt_regs * regs)
1283 {
1284 int i, trap;
1285
1286 show_regs_print_info(KERN_DEFAULT);
1287
1288 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1289 regs->nip, regs->link, regs->ctr);
1290 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1291 regs, regs->trap, print_tainted(), init_utsname()->release);
1292 printk("MSR: "REG" ", regs->msr);
1293 print_msr_bits(regs->msr);
1294 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1295 trap = TRAP(regs);
1296 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1297 printk("CFAR: "REG" ", regs->orig_gpr3);
1298 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1299 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1300 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1301 #else
1302 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1303 #endif
1304 #ifdef CONFIG_PPC64
1305 printk("SOFTE: %ld ", regs->softe);
1306 #endif
1307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1308 if (MSR_TM_ACTIVE(regs->msr))
1309 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1310 #endif
1311
1312 for (i = 0; i < 32; i++) {
1313 if ((i % REGS_PER_LINE) == 0)
1314 printk("\nGPR%02d: ", i);
1315 printk(REG " ", regs->gpr[i]);
1316 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1317 break;
1318 }
1319 printk("\n");
1320 #ifdef CONFIG_KALLSYMS
1321 /*
1322 * Lookup NIP late so we have the best change of getting the
1323 * above info out without failing
1324 */
1325 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1326 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1327 #endif
1328 show_stack(current, (unsigned long *) regs->gpr[1]);
1329 if (!user_mode(regs))
1330 show_instructions(regs);
1331 }
1332
1333 void exit_thread(void)
1334 {
1335 }
1336
1337 void flush_thread(void)
1338 {
1339 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1340 flush_ptrace_hw_breakpoint(current);
1341 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1342 set_debug_reg_defaults(&current->thread);
1343 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1344 }
1345
1346 void
1347 release_thread(struct task_struct *t)
1348 {
1349 }
1350
1351 /*
1352 * this gets called so that we can store coprocessor state into memory and
1353 * copy the current task into the new thread.
1354 */
1355 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1356 {
1357 flush_all_to_thread(src);
1358 /*
1359 * Flush TM state out so we can copy it. __switch_to_tm() does this
1360 * flush but it removes the checkpointed state from the current CPU and
1361 * transitions the CPU out of TM mode. Hence we need to call
1362 * tm_recheckpoint_new_task() (on the same task) to restore the
1363 * checkpointed state back and the TM mode.
1364 */
1365 __switch_to_tm(src);
1366 tm_recheckpoint_new_task(src);
1367
1368 *dst = *src;
1369
1370 clear_task_ebb(dst);
1371
1372 return 0;
1373 }
1374
1375 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1376 {
1377 #ifdef CONFIG_PPC_STD_MMU_64
1378 unsigned long sp_vsid;
1379 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1380
1381 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1382 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1383 << SLB_VSID_SHIFT_1T;
1384 else
1385 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1386 << SLB_VSID_SHIFT;
1387 sp_vsid |= SLB_VSID_KERNEL | llp;
1388 p->thread.ksp_vsid = sp_vsid;
1389 #endif
1390 }
1391
1392 /*
1393 * Copy a thread..
1394 */
1395
1396 /*
1397 * Copy architecture-specific thread state
1398 */
1399 int copy_thread(unsigned long clone_flags, unsigned long usp,
1400 unsigned long kthread_arg, struct task_struct *p)
1401 {
1402 struct pt_regs *childregs, *kregs;
1403 extern void ret_from_fork(void);
1404 extern void ret_from_kernel_thread(void);
1405 void (*f)(void);
1406 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1407 struct thread_info *ti = task_thread_info(p);
1408
1409 klp_init_thread_info(ti);
1410
1411 /* Copy registers */
1412 sp -= sizeof(struct pt_regs);
1413 childregs = (struct pt_regs *) sp;
1414 if (unlikely(p->flags & PF_KTHREAD)) {
1415 /* kernel thread */
1416 memset(childregs, 0, sizeof(struct pt_regs));
1417 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1418 /* function */
1419 if (usp)
1420 childregs->gpr[14] = ppc_function_entry((void *)usp);
1421 #ifdef CONFIG_PPC64
1422 clear_tsk_thread_flag(p, TIF_32BIT);
1423 childregs->softe = 1;
1424 #endif
1425 childregs->gpr[15] = kthread_arg;
1426 p->thread.regs = NULL; /* no user register state */
1427 ti->flags |= _TIF_RESTOREALL;
1428 f = ret_from_kernel_thread;
1429 } else {
1430 /* user thread */
1431 struct pt_regs *regs = current_pt_regs();
1432 CHECK_FULL_REGS(regs);
1433 *childregs = *regs;
1434 if (usp)
1435 childregs->gpr[1] = usp;
1436 p->thread.regs = childregs;
1437 childregs->gpr[3] = 0; /* Result from fork() */
1438 if (clone_flags & CLONE_SETTLS) {
1439 #ifdef CONFIG_PPC64
1440 if (!is_32bit_task())
1441 childregs->gpr[13] = childregs->gpr[6];
1442 else
1443 #endif
1444 childregs->gpr[2] = childregs->gpr[6];
1445 }
1446
1447 f = ret_from_fork;
1448 }
1449 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1450 sp -= STACK_FRAME_OVERHEAD;
1451
1452 /*
1453 * The way this works is that at some point in the future
1454 * some task will call _switch to switch to the new task.
1455 * That will pop off the stack frame created below and start
1456 * the new task running at ret_from_fork. The new task will
1457 * do some house keeping and then return from the fork or clone
1458 * system call, using the stack frame created above.
1459 */
1460 ((unsigned long *)sp)[0] = 0;
1461 sp -= sizeof(struct pt_regs);
1462 kregs = (struct pt_regs *) sp;
1463 sp -= STACK_FRAME_OVERHEAD;
1464 p->thread.ksp = sp;
1465 #ifdef CONFIG_PPC32
1466 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1467 _ALIGN_UP(sizeof(struct thread_info), 16);
1468 #endif
1469 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1470 p->thread.ptrace_bps[0] = NULL;
1471 #endif
1472
1473 p->thread.fp_save_area = NULL;
1474 #ifdef CONFIG_ALTIVEC
1475 p->thread.vr_save_area = NULL;
1476 #endif
1477
1478 setup_ksp_vsid(p, sp);
1479
1480 #ifdef CONFIG_PPC64
1481 if (cpu_has_feature(CPU_FTR_DSCR)) {
1482 p->thread.dscr_inherit = current->thread.dscr_inherit;
1483 p->thread.dscr = mfspr(SPRN_DSCR);
1484 }
1485 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1486 p->thread.ppr = INIT_PPR;
1487 #endif
1488 kregs->nip = ppc_function_entry(f);
1489 return 0;
1490 }
1491
1492 /*
1493 * Set up a thread for executing a new program
1494 */
1495 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1496 {
1497 #ifdef CONFIG_PPC64
1498 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1499 #endif
1500
1501 /*
1502 * If we exec out of a kernel thread then thread.regs will not be
1503 * set. Do it now.
1504 */
1505 if (!current->thread.regs) {
1506 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1507 current->thread.regs = regs - 1;
1508 }
1509
1510 memset(regs->gpr, 0, sizeof(regs->gpr));
1511 regs->ctr = 0;
1512 regs->link = 0;
1513 regs->xer = 0;
1514 regs->ccr = 0;
1515 regs->gpr[1] = sp;
1516
1517 /*
1518 * We have just cleared all the nonvolatile GPRs, so make
1519 * FULL_REGS(regs) return true. This is necessary to allow
1520 * ptrace to examine the thread immediately after exec.
1521 */
1522 regs->trap &= ~1UL;
1523
1524 #ifdef CONFIG_PPC32
1525 regs->mq = 0;
1526 regs->nip = start;
1527 regs->msr = MSR_USER;
1528 #else
1529 if (!is_32bit_task()) {
1530 unsigned long entry;
1531
1532 if (is_elf2_task()) {
1533 /* Look ma, no function descriptors! */
1534 entry = start;
1535
1536 /*
1537 * Ulrich says:
1538 * The latest iteration of the ABI requires that when
1539 * calling a function (at its global entry point),
1540 * the caller must ensure r12 holds the entry point
1541 * address (so that the function can quickly
1542 * establish addressability).
1543 */
1544 regs->gpr[12] = start;
1545 /* Make sure that's restored on entry to userspace. */
1546 set_thread_flag(TIF_RESTOREALL);
1547 } else {
1548 unsigned long toc;
1549
1550 /* start is a relocated pointer to the function
1551 * descriptor for the elf _start routine. The first
1552 * entry in the function descriptor is the entry
1553 * address of _start and the second entry is the TOC
1554 * value we need to use.
1555 */
1556 __get_user(entry, (unsigned long __user *)start);
1557 __get_user(toc, (unsigned long __user *)start+1);
1558
1559 /* Check whether the e_entry function descriptor entries
1560 * need to be relocated before we can use them.
1561 */
1562 if (load_addr != 0) {
1563 entry += load_addr;
1564 toc += load_addr;
1565 }
1566 regs->gpr[2] = toc;
1567 }
1568 regs->nip = entry;
1569 regs->msr = MSR_USER64;
1570 } else {
1571 regs->nip = start;
1572 regs->gpr[2] = 0;
1573 regs->msr = MSR_USER32;
1574 }
1575 #endif
1576 #ifdef CONFIG_VSX
1577 current->thread.used_vsr = 0;
1578 #endif
1579 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1580 current->thread.fp_save_area = NULL;
1581 #ifdef CONFIG_ALTIVEC
1582 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1583 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1584 current->thread.vr_save_area = NULL;
1585 current->thread.vrsave = 0;
1586 current->thread.used_vr = 0;
1587 #endif /* CONFIG_ALTIVEC */
1588 #ifdef CONFIG_SPE
1589 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1590 current->thread.acc = 0;
1591 current->thread.spefscr = 0;
1592 current->thread.used_spe = 0;
1593 #endif /* CONFIG_SPE */
1594 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1595 if (cpu_has_feature(CPU_FTR_TM))
1596 regs->msr |= MSR_TM;
1597 current->thread.tm_tfhar = 0;
1598 current->thread.tm_texasr = 0;
1599 current->thread.tm_tfiar = 0;
1600 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1601 }
1602 EXPORT_SYMBOL(start_thread);
1603
1604 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1605 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1606
1607 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1608 {
1609 struct pt_regs *regs = tsk->thread.regs;
1610
1611 /* This is a bit hairy. If we are an SPE enabled processor
1612 * (have embedded fp) we store the IEEE exception enable flags in
1613 * fpexc_mode. fpexc_mode is also used for setting FP exception
1614 * mode (asyn, precise, disabled) for 'Classic' FP. */
1615 if (val & PR_FP_EXC_SW_ENABLE) {
1616 #ifdef CONFIG_SPE
1617 if (cpu_has_feature(CPU_FTR_SPE)) {
1618 /*
1619 * When the sticky exception bits are set
1620 * directly by userspace, it must call prctl
1621 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1622 * in the existing prctl settings) or
1623 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1624 * the bits being set). <fenv.h> functions
1625 * saving and restoring the whole
1626 * floating-point environment need to do so
1627 * anyway to restore the prctl settings from
1628 * the saved environment.
1629 */
1630 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1631 tsk->thread.fpexc_mode = val &
1632 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1633 return 0;
1634 } else {
1635 return -EINVAL;
1636 }
1637 #else
1638 return -EINVAL;
1639 #endif
1640 }
1641
1642 /* on a CONFIG_SPE this does not hurt us. The bits that
1643 * __pack_fe01 use do not overlap with bits used for
1644 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1645 * on CONFIG_SPE implementations are reserved so writing to
1646 * them does not change anything */
1647 if (val > PR_FP_EXC_PRECISE)
1648 return -EINVAL;
1649 tsk->thread.fpexc_mode = __pack_fe01(val);
1650 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1651 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1652 | tsk->thread.fpexc_mode;
1653 return 0;
1654 }
1655
1656 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1657 {
1658 unsigned int val;
1659
1660 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1661 #ifdef CONFIG_SPE
1662 if (cpu_has_feature(CPU_FTR_SPE)) {
1663 /*
1664 * When the sticky exception bits are set
1665 * directly by userspace, it must call prctl
1666 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1667 * in the existing prctl settings) or
1668 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1669 * the bits being set). <fenv.h> functions
1670 * saving and restoring the whole
1671 * floating-point environment need to do so
1672 * anyway to restore the prctl settings from
1673 * the saved environment.
1674 */
1675 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1676 val = tsk->thread.fpexc_mode;
1677 } else
1678 return -EINVAL;
1679 #else
1680 return -EINVAL;
1681 #endif
1682 else
1683 val = __unpack_fe01(tsk->thread.fpexc_mode);
1684 return put_user(val, (unsigned int __user *) adr);
1685 }
1686
1687 int set_endian(struct task_struct *tsk, unsigned int val)
1688 {
1689 struct pt_regs *regs = tsk->thread.regs;
1690
1691 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1692 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1693 return -EINVAL;
1694
1695 if (regs == NULL)
1696 return -EINVAL;
1697
1698 if (val == PR_ENDIAN_BIG)
1699 regs->msr &= ~MSR_LE;
1700 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1701 regs->msr |= MSR_LE;
1702 else
1703 return -EINVAL;
1704
1705 return 0;
1706 }
1707
1708 int get_endian(struct task_struct *tsk, unsigned long adr)
1709 {
1710 struct pt_regs *regs = tsk->thread.regs;
1711 unsigned int val;
1712
1713 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1714 !cpu_has_feature(CPU_FTR_REAL_LE))
1715 return -EINVAL;
1716
1717 if (regs == NULL)
1718 return -EINVAL;
1719
1720 if (regs->msr & MSR_LE) {
1721 if (cpu_has_feature(CPU_FTR_REAL_LE))
1722 val = PR_ENDIAN_LITTLE;
1723 else
1724 val = PR_ENDIAN_PPC_LITTLE;
1725 } else
1726 val = PR_ENDIAN_BIG;
1727
1728 return put_user(val, (unsigned int __user *)adr);
1729 }
1730
1731 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1732 {
1733 tsk->thread.align_ctl = val;
1734 return 0;
1735 }
1736
1737 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1738 {
1739 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1740 }
1741
1742 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1743 unsigned long nbytes)
1744 {
1745 unsigned long stack_page;
1746 unsigned long cpu = task_cpu(p);
1747
1748 /*
1749 * Avoid crashing if the stack has overflowed and corrupted
1750 * task_cpu(p), which is in the thread_info struct.
1751 */
1752 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1753 stack_page = (unsigned long) hardirq_ctx[cpu];
1754 if (sp >= stack_page + sizeof(struct thread_struct)
1755 && sp <= stack_page + THREAD_SIZE - nbytes)
1756 return 1;
1757
1758 stack_page = (unsigned long) softirq_ctx[cpu];
1759 if (sp >= stack_page + sizeof(struct thread_struct)
1760 && sp <= stack_page + THREAD_SIZE - nbytes)
1761 return 1;
1762 }
1763 return 0;
1764 }
1765
1766 int validate_sp(unsigned long sp, struct task_struct *p,
1767 unsigned long nbytes)
1768 {
1769 unsigned long stack_page = (unsigned long)task_stack_page(p);
1770
1771 if (sp >= stack_page + sizeof(struct thread_struct)
1772 && sp <= stack_page + THREAD_SIZE - nbytes)
1773 return 1;
1774
1775 return valid_irq_stack(sp, p, nbytes);
1776 }
1777
1778 EXPORT_SYMBOL(validate_sp);
1779
1780 unsigned long get_wchan(struct task_struct *p)
1781 {
1782 unsigned long ip, sp;
1783 int count = 0;
1784
1785 if (!p || p == current || p->state == TASK_RUNNING)
1786 return 0;
1787
1788 sp = p->thread.ksp;
1789 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1790 return 0;
1791
1792 do {
1793 sp = *(unsigned long *)sp;
1794 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1795 return 0;
1796 if (count > 0) {
1797 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1798 if (!in_sched_functions(ip))
1799 return ip;
1800 }
1801 } while (count++ < 16);
1802 return 0;
1803 }
1804
1805 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1806
1807 void show_stack(struct task_struct *tsk, unsigned long *stack)
1808 {
1809 unsigned long sp, ip, lr, newsp;
1810 int count = 0;
1811 int firstframe = 1;
1812 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1813 int curr_frame = current->curr_ret_stack;
1814 extern void return_to_handler(void);
1815 unsigned long rth = (unsigned long)return_to_handler;
1816 #endif
1817
1818 sp = (unsigned long) stack;
1819 if (tsk == NULL)
1820 tsk = current;
1821 if (sp == 0) {
1822 if (tsk == current)
1823 sp = current_stack_pointer();
1824 else
1825 sp = tsk->thread.ksp;
1826 }
1827
1828 lr = 0;
1829 printk("Call Trace:\n");
1830 do {
1831 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1832 return;
1833
1834 stack = (unsigned long *) sp;
1835 newsp = stack[0];
1836 ip = stack[STACK_FRAME_LR_SAVE];
1837 if (!firstframe || ip != lr) {
1838 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1839 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1840 if ((ip == rth) && curr_frame >= 0) {
1841 printk(" (%pS)",
1842 (void *)current->ret_stack[curr_frame].ret);
1843 curr_frame--;
1844 }
1845 #endif
1846 if (firstframe)
1847 printk(" (unreliable)");
1848 printk("\n");
1849 }
1850 firstframe = 0;
1851
1852 /*
1853 * See if this is an exception frame.
1854 * We look for the "regshere" marker in the current frame.
1855 */
1856 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1857 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1858 struct pt_regs *regs = (struct pt_regs *)
1859 (sp + STACK_FRAME_OVERHEAD);
1860 lr = regs->link;
1861 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1862 regs->trap, (void *)regs->nip, (void *)lr);
1863 firstframe = 1;
1864 }
1865
1866 sp = newsp;
1867 } while (count++ < kstack_depth_to_print);
1868 }
1869
1870 #ifdef CONFIG_PPC64
1871 /* Called with hard IRQs off */
1872 void notrace __ppc64_runlatch_on(void)
1873 {
1874 struct thread_info *ti = current_thread_info();
1875 unsigned long ctrl;
1876
1877 ctrl = mfspr(SPRN_CTRLF);
1878 ctrl |= CTRL_RUNLATCH;
1879 mtspr(SPRN_CTRLT, ctrl);
1880
1881 ti->local_flags |= _TLF_RUNLATCH;
1882 }
1883
1884 /* Called with hard IRQs off */
1885 void notrace __ppc64_runlatch_off(void)
1886 {
1887 struct thread_info *ti = current_thread_info();
1888 unsigned long ctrl;
1889
1890 ti->local_flags &= ~_TLF_RUNLATCH;
1891
1892 ctrl = mfspr(SPRN_CTRLF);
1893 ctrl &= ~CTRL_RUNLATCH;
1894 mtspr(SPRN_CTRLT, ctrl);
1895 }
1896 #endif /* CONFIG_PPC64 */
1897
1898 unsigned long arch_align_stack(unsigned long sp)
1899 {
1900 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1901 sp -= get_random_int() & ~PAGE_MASK;
1902 return sp & ~0xf;
1903 }
1904
1905 static inline unsigned long brk_rnd(void)
1906 {
1907 unsigned long rnd = 0;
1908
1909 /* 8MB for 32bit, 1GB for 64bit */
1910 if (is_32bit_task())
1911 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1912 else
1913 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1914
1915 return rnd << PAGE_SHIFT;
1916 }
1917
1918 unsigned long arch_randomize_brk(struct mm_struct *mm)
1919 {
1920 unsigned long base = mm->brk;
1921 unsigned long ret;
1922
1923 #ifdef CONFIG_PPC_STD_MMU_64
1924 /*
1925 * If we are using 1TB segments and we are allowed to randomise
1926 * the heap, we can put it above 1TB so it is backed by a 1TB
1927 * segment. Otherwise the heap will be in the bottom 1TB
1928 * which always uses 256MB segments and this may result in a
1929 * performance penalty.
1930 */
1931 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1932 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1933 #endif
1934
1935 ret = PAGE_ALIGN(base + brk_rnd());
1936
1937 if (ret < mm->brk)
1938 return mm->brk;
1939
1940 return ret;
1941 }
1942