]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/process.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/smp.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/elf.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/export.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
37 #include <linux/ftrace.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/personality.h>
40 #include <linux/random.h>
41 #include <linux/hw_breakpoint.h>
42 #include <linux/uaccess.h>
43 #include <linux/elf-randomize.h>
44
45 #include <asm/pgtable.h>
46 #include <asm/io.h>
47 #include <asm/processor.h>
48 #include <asm/mmu.h>
49 #include <asm/prom.h>
50 #include <asm/machdep.h>
51 #include <asm/time.h>
52 #include <asm/runlatch.h>
53 #include <asm/syscalls.h>
54 #include <asm/switch_to.h>
55 #include <asm/tm.h>
56 #include <asm/debug.h>
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65
66 #include <linux/kprobes.h>
67 #include <linux/kdebug.h>
68
69 /* Transactional Memory debug */
70 #ifdef TM_DEBUG_SW
71 #define TM_DEBUG(x...) printk(KERN_INFO x)
72 #else
73 #define TM_DEBUG(x...) do { } while(0)
74 #endif
75
76 extern unsigned long _get_SP(void);
77
78 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
79 static void check_if_tm_restore_required(struct task_struct *tsk)
80 {
81 /*
82 * If we are saving the current thread's registers, and the
83 * thread is in a transactional state, set the TIF_RESTORE_TM
84 * bit so that we know to restore the registers before
85 * returning to userspace.
86 */
87 if (tsk == current && tsk->thread.regs &&
88 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
89 !test_thread_flag(TIF_RESTORE_TM)) {
90 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
91 set_thread_flag(TIF_RESTORE_TM);
92 }
93 }
94
95 static inline bool msr_tm_active(unsigned long msr)
96 {
97 return MSR_TM_ACTIVE(msr);
98 }
99 #else
100 static inline bool msr_tm_active(unsigned long msr) { return false; }
101 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
103
104 bool strict_msr_control;
105 EXPORT_SYMBOL(strict_msr_control);
106
107 static int __init enable_strict_msr_control(char *str)
108 {
109 strict_msr_control = true;
110 pr_info("Enabling strict facility control\n");
111
112 return 0;
113 }
114 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
115
116 unsigned long msr_check_and_set(unsigned long bits)
117 {
118 unsigned long oldmsr = mfmsr();
119 unsigned long newmsr;
120
121 newmsr = oldmsr | bits;
122
123 #ifdef CONFIG_VSX
124 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
125 newmsr |= MSR_VSX;
126 #endif
127
128 if (oldmsr != newmsr)
129 mtmsr_isync(newmsr);
130
131 return newmsr;
132 }
133
134 void __msr_check_and_clear(unsigned long bits)
135 {
136 unsigned long oldmsr = mfmsr();
137 unsigned long newmsr;
138
139 newmsr = oldmsr & ~bits;
140
141 #ifdef CONFIG_VSX
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr &= ~MSR_VSX;
144 #endif
145
146 if (oldmsr != newmsr)
147 mtmsr_isync(newmsr);
148 }
149 EXPORT_SYMBOL(__msr_check_and_clear);
150
151 #ifdef CONFIG_PPC_FPU
152 void __giveup_fpu(struct task_struct *tsk)
153 {
154 unsigned long msr;
155
156 save_fpu(tsk);
157 msr = tsk->thread.regs->msr;
158 msr &= ~MSR_FP;
159 #ifdef CONFIG_VSX
160 if (cpu_has_feature(CPU_FTR_VSX))
161 msr &= ~MSR_VSX;
162 #endif
163 tsk->thread.regs->msr = msr;
164 }
165
166 void giveup_fpu(struct task_struct *tsk)
167 {
168 check_if_tm_restore_required(tsk);
169
170 msr_check_and_set(MSR_FP);
171 __giveup_fpu(tsk);
172 msr_check_and_clear(MSR_FP);
173 }
174 EXPORT_SYMBOL(giveup_fpu);
175
176 /*
177 * Make sure the floating-point register state in the
178 * the thread_struct is up to date for task tsk.
179 */
180 void flush_fp_to_thread(struct task_struct *tsk)
181 {
182 if (tsk->thread.regs) {
183 /*
184 * We need to disable preemption here because if we didn't,
185 * another process could get scheduled after the regs->msr
186 * test but before we have finished saving the FP registers
187 * to the thread_struct. That process could take over the
188 * FPU, and then when we get scheduled again we would store
189 * bogus values for the remaining FP registers.
190 */
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_FP) {
193 /*
194 * This should only ever be called for current or
195 * for a stopped child process. Since we save away
196 * the FP register state on context switch,
197 * there is something wrong if a stopped child appears
198 * to still have its FP state in the CPU registers.
199 */
200 BUG_ON(tsk != current);
201 giveup_fpu(tsk);
202 }
203 preempt_enable();
204 }
205 }
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207
208 void enable_kernel_fp(void)
209 {
210 unsigned long cpumsr;
211
212 WARN_ON(preemptible());
213
214 cpumsr = msr_check_and_set(MSR_FP);
215
216 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217 check_if_tm_restore_required(current);
218 /*
219 * If a thread has already been reclaimed then the
220 * checkpointed registers are on the CPU but have definitely
221 * been saved by the reclaim code. Don't need to and *cannot*
222 * giveup as this would save to the 'live' structure not the
223 * checkpointed structure.
224 */
225 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
226 return;
227 __giveup_fpu(current);
228 }
229 }
230 EXPORT_SYMBOL(enable_kernel_fp);
231
232 static int restore_fp(struct task_struct *tsk) {
233 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
234 load_fp_state(&current->thread.fp_state);
235 current->thread.load_fp++;
236 return 1;
237 }
238 return 0;
239 }
240 #else
241 static int restore_fp(struct task_struct *tsk) { return 0; }
242 #endif /* CONFIG_PPC_FPU */
243
244 #ifdef CONFIG_ALTIVEC
245 #define loadvec(thr) ((thr).load_vec)
246
247 static void __giveup_altivec(struct task_struct *tsk)
248 {
249 unsigned long msr;
250
251 save_altivec(tsk);
252 msr = tsk->thread.regs->msr;
253 msr &= ~MSR_VEC;
254 #ifdef CONFIG_VSX
255 if (cpu_has_feature(CPU_FTR_VSX))
256 msr &= ~MSR_VSX;
257 #endif
258 tsk->thread.regs->msr = msr;
259 }
260
261 void giveup_altivec(struct task_struct *tsk)
262 {
263 check_if_tm_restore_required(tsk);
264
265 msr_check_and_set(MSR_VEC);
266 __giveup_altivec(tsk);
267 msr_check_and_clear(MSR_VEC);
268 }
269 EXPORT_SYMBOL(giveup_altivec);
270
271 void enable_kernel_altivec(void)
272 {
273 unsigned long cpumsr;
274
275 WARN_ON(preemptible());
276
277 cpumsr = msr_check_and_set(MSR_VEC);
278
279 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
280 check_if_tm_restore_required(current);
281 /*
282 * If a thread has already been reclaimed then the
283 * checkpointed registers are on the CPU but have definitely
284 * been saved by the reclaim code. Don't need to and *cannot*
285 * giveup as this would save to the 'live' structure not the
286 * checkpointed structure.
287 */
288 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
289 return;
290 __giveup_altivec(current);
291 }
292 }
293 EXPORT_SYMBOL(enable_kernel_altivec);
294
295 /*
296 * Make sure the VMX/Altivec register state in the
297 * the thread_struct is up to date for task tsk.
298 */
299 void flush_altivec_to_thread(struct task_struct *tsk)
300 {
301 if (tsk->thread.regs) {
302 preempt_disable();
303 if (tsk->thread.regs->msr & MSR_VEC) {
304 BUG_ON(tsk != current);
305 giveup_altivec(tsk);
306 }
307 preempt_enable();
308 }
309 }
310 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
311
312 static int restore_altivec(struct task_struct *tsk)
313 {
314 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
315 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
316 load_vr_state(&tsk->thread.vr_state);
317 tsk->thread.used_vr = 1;
318 tsk->thread.load_vec++;
319
320 return 1;
321 }
322 return 0;
323 }
324 #else
325 #define loadvec(thr) 0
326 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
327 #endif /* CONFIG_ALTIVEC */
328
329 #ifdef CONFIG_VSX
330 static void __giveup_vsx(struct task_struct *tsk)
331 {
332 if (tsk->thread.regs->msr & MSR_FP)
333 __giveup_fpu(tsk);
334 if (tsk->thread.regs->msr & MSR_VEC)
335 __giveup_altivec(tsk);
336 tsk->thread.regs->msr &= ~MSR_VSX;
337 }
338
339 static void giveup_vsx(struct task_struct *tsk)
340 {
341 check_if_tm_restore_required(tsk);
342
343 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
344 __giveup_vsx(tsk);
345 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
346 }
347
348 static void save_vsx(struct task_struct *tsk)
349 {
350 if (tsk->thread.regs->msr & MSR_FP)
351 save_fpu(tsk);
352 if (tsk->thread.regs->msr & MSR_VEC)
353 save_altivec(tsk);
354 }
355
356 void enable_kernel_vsx(void)
357 {
358 unsigned long cpumsr;
359
360 WARN_ON(preemptible());
361
362 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
363
364 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
365 check_if_tm_restore_required(current);
366 /*
367 * If a thread has already been reclaimed then the
368 * checkpointed registers are on the CPU but have definitely
369 * been saved by the reclaim code. Don't need to and *cannot*
370 * giveup as this would save to the 'live' structure not the
371 * checkpointed structure.
372 */
373 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
374 return;
375 if (current->thread.regs->msr & MSR_FP)
376 __giveup_fpu(current);
377 if (current->thread.regs->msr & MSR_VEC)
378 __giveup_altivec(current);
379 __giveup_vsx(current);
380 }
381 }
382 EXPORT_SYMBOL(enable_kernel_vsx);
383
384 void flush_vsx_to_thread(struct task_struct *tsk)
385 {
386 if (tsk->thread.regs) {
387 preempt_disable();
388 if (tsk->thread.regs->msr & MSR_VSX) {
389 BUG_ON(tsk != current);
390 giveup_vsx(tsk);
391 }
392 preempt_enable();
393 }
394 }
395 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
396
397 static int restore_vsx(struct task_struct *tsk)
398 {
399 if (cpu_has_feature(CPU_FTR_VSX)) {
400 tsk->thread.used_vsr = 1;
401 return 1;
402 }
403
404 return 0;
405 }
406 #else
407 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
408 static inline void save_vsx(struct task_struct *tsk) { }
409 #endif /* CONFIG_VSX */
410
411 #ifdef CONFIG_SPE
412 void giveup_spe(struct task_struct *tsk)
413 {
414 check_if_tm_restore_required(tsk);
415
416 msr_check_and_set(MSR_SPE);
417 __giveup_spe(tsk);
418 msr_check_and_clear(MSR_SPE);
419 }
420 EXPORT_SYMBOL(giveup_spe);
421
422 void enable_kernel_spe(void)
423 {
424 WARN_ON(preemptible());
425
426 msr_check_and_set(MSR_SPE);
427
428 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
429 check_if_tm_restore_required(current);
430 __giveup_spe(current);
431 }
432 }
433 EXPORT_SYMBOL(enable_kernel_spe);
434
435 void flush_spe_to_thread(struct task_struct *tsk)
436 {
437 if (tsk->thread.regs) {
438 preempt_disable();
439 if (tsk->thread.regs->msr & MSR_SPE) {
440 BUG_ON(tsk != current);
441 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
442 giveup_spe(tsk);
443 }
444 preempt_enable();
445 }
446 }
447 #endif /* CONFIG_SPE */
448
449 static unsigned long msr_all_available;
450
451 static int __init init_msr_all_available(void)
452 {
453 #ifdef CONFIG_PPC_FPU
454 msr_all_available |= MSR_FP;
455 #endif
456 #ifdef CONFIG_ALTIVEC
457 if (cpu_has_feature(CPU_FTR_ALTIVEC))
458 msr_all_available |= MSR_VEC;
459 #endif
460 #ifdef CONFIG_VSX
461 if (cpu_has_feature(CPU_FTR_VSX))
462 msr_all_available |= MSR_VSX;
463 #endif
464 #ifdef CONFIG_SPE
465 if (cpu_has_feature(CPU_FTR_SPE))
466 msr_all_available |= MSR_SPE;
467 #endif
468
469 return 0;
470 }
471 early_initcall(init_msr_all_available);
472
473 void giveup_all(struct task_struct *tsk)
474 {
475 unsigned long usermsr;
476
477 if (!tsk->thread.regs)
478 return;
479
480 usermsr = tsk->thread.regs->msr;
481
482 if ((usermsr & msr_all_available) == 0)
483 return;
484
485 msr_check_and_set(msr_all_available);
486 check_if_tm_restore_required(tsk);
487
488 #ifdef CONFIG_PPC_FPU
489 if (usermsr & MSR_FP)
490 __giveup_fpu(tsk);
491 #endif
492 #ifdef CONFIG_ALTIVEC
493 if (usermsr & MSR_VEC)
494 __giveup_altivec(tsk);
495 #endif
496 #ifdef CONFIG_VSX
497 if (usermsr & MSR_VSX)
498 __giveup_vsx(tsk);
499 #endif
500 #ifdef CONFIG_SPE
501 if (usermsr & MSR_SPE)
502 __giveup_spe(tsk);
503 #endif
504
505 msr_check_and_clear(msr_all_available);
506 }
507 EXPORT_SYMBOL(giveup_all);
508
509 void restore_math(struct pt_regs *regs)
510 {
511 unsigned long msr;
512
513 if (!msr_tm_active(regs->msr) &&
514 !current->thread.load_fp && !loadvec(current->thread))
515 return;
516
517 msr = regs->msr;
518 msr_check_and_set(msr_all_available);
519
520 /*
521 * Only reload if the bit is not set in the user MSR, the bit BEING set
522 * indicates that the registers are hot
523 */
524 if ((!(msr & MSR_FP)) && restore_fp(current))
525 msr |= MSR_FP | current->thread.fpexc_mode;
526
527 if ((!(msr & MSR_VEC)) && restore_altivec(current))
528 msr |= MSR_VEC;
529
530 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
531 restore_vsx(current)) {
532 msr |= MSR_VSX;
533 }
534
535 msr_check_and_clear(msr_all_available);
536
537 regs->msr = msr;
538 }
539
540 void save_all(struct task_struct *tsk)
541 {
542 unsigned long usermsr;
543
544 if (!tsk->thread.regs)
545 return;
546
547 usermsr = tsk->thread.regs->msr;
548
549 if ((usermsr & msr_all_available) == 0)
550 return;
551
552 msr_check_and_set(msr_all_available);
553
554 /*
555 * Saving the way the register space is in hardware, save_vsx boils
556 * down to a save_fpu() and save_altivec()
557 */
558 if (usermsr & MSR_VSX) {
559 save_vsx(tsk);
560 } else {
561 if (usermsr & MSR_FP)
562 save_fpu(tsk);
563
564 if (usermsr & MSR_VEC)
565 save_altivec(tsk);
566 }
567
568 if (usermsr & MSR_SPE)
569 __giveup_spe(tsk);
570
571 msr_check_and_clear(msr_all_available);
572 }
573
574 void flush_all_to_thread(struct task_struct *tsk)
575 {
576 if (tsk->thread.regs) {
577 preempt_disable();
578 BUG_ON(tsk != current);
579 save_all(tsk);
580
581 #ifdef CONFIG_SPE
582 if (tsk->thread.regs->msr & MSR_SPE)
583 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
584 #endif
585
586 preempt_enable();
587 }
588 }
589 EXPORT_SYMBOL(flush_all_to_thread);
590
591 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
592 void do_send_trap(struct pt_regs *regs, unsigned long address,
593 unsigned long error_code, int signal_code, int breakpt)
594 {
595 siginfo_t info;
596
597 current->thread.trap_nr = signal_code;
598 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
599 11, SIGSEGV) == NOTIFY_STOP)
600 return;
601
602 /* Deliver the signal to userspace */
603 info.si_signo = SIGTRAP;
604 info.si_errno = breakpt; /* breakpoint or watchpoint id */
605 info.si_code = signal_code;
606 info.si_addr = (void __user *)address;
607 force_sig_info(SIGTRAP, &info, current);
608 }
609 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
610 void do_break (struct pt_regs *regs, unsigned long address,
611 unsigned long error_code)
612 {
613 siginfo_t info;
614
615 current->thread.trap_nr = TRAP_HWBKPT;
616 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
617 11, SIGSEGV) == NOTIFY_STOP)
618 return;
619
620 if (debugger_break_match(regs))
621 return;
622
623 /* Clear the breakpoint */
624 hw_breakpoint_disable();
625
626 /* Deliver the signal to userspace */
627 info.si_signo = SIGTRAP;
628 info.si_errno = 0;
629 info.si_code = TRAP_HWBKPT;
630 info.si_addr = (void __user *)address;
631 force_sig_info(SIGTRAP, &info, current);
632 }
633 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
634
635 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
636
637 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
638 /*
639 * Set the debug registers back to their default "safe" values.
640 */
641 static void set_debug_reg_defaults(struct thread_struct *thread)
642 {
643 thread->debug.iac1 = thread->debug.iac2 = 0;
644 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
645 thread->debug.iac3 = thread->debug.iac4 = 0;
646 #endif
647 thread->debug.dac1 = thread->debug.dac2 = 0;
648 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
649 thread->debug.dvc1 = thread->debug.dvc2 = 0;
650 #endif
651 thread->debug.dbcr0 = 0;
652 #ifdef CONFIG_BOOKE
653 /*
654 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
655 */
656 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
657 DBCR1_IAC3US | DBCR1_IAC4US;
658 /*
659 * Force Data Address Compare User/Supervisor bits to be User-only
660 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
661 */
662 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
663 #else
664 thread->debug.dbcr1 = 0;
665 #endif
666 }
667
668 static void prime_debug_regs(struct debug_reg *debug)
669 {
670 /*
671 * We could have inherited MSR_DE from userspace, since
672 * it doesn't get cleared on exception entry. Make sure
673 * MSR_DE is clear before we enable any debug events.
674 */
675 mtmsr(mfmsr() & ~MSR_DE);
676
677 mtspr(SPRN_IAC1, debug->iac1);
678 mtspr(SPRN_IAC2, debug->iac2);
679 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
680 mtspr(SPRN_IAC3, debug->iac3);
681 mtspr(SPRN_IAC4, debug->iac4);
682 #endif
683 mtspr(SPRN_DAC1, debug->dac1);
684 mtspr(SPRN_DAC2, debug->dac2);
685 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
686 mtspr(SPRN_DVC1, debug->dvc1);
687 mtspr(SPRN_DVC2, debug->dvc2);
688 #endif
689 mtspr(SPRN_DBCR0, debug->dbcr0);
690 mtspr(SPRN_DBCR1, debug->dbcr1);
691 #ifdef CONFIG_BOOKE
692 mtspr(SPRN_DBCR2, debug->dbcr2);
693 #endif
694 }
695 /*
696 * Unless neither the old or new thread are making use of the
697 * debug registers, set the debug registers from the values
698 * stored in the new thread.
699 */
700 void switch_booke_debug_regs(struct debug_reg *new_debug)
701 {
702 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
703 || (new_debug->dbcr0 & DBCR0_IDM))
704 prime_debug_regs(new_debug);
705 }
706 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
707 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
708 #ifndef CONFIG_HAVE_HW_BREAKPOINT
709 static void set_debug_reg_defaults(struct thread_struct *thread)
710 {
711 thread->hw_brk.address = 0;
712 thread->hw_brk.type = 0;
713 set_breakpoint(&thread->hw_brk);
714 }
715 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
716 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
717
718 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
719 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
720 {
721 mtspr(SPRN_DAC1, dabr);
722 #ifdef CONFIG_PPC_47x
723 isync();
724 #endif
725 return 0;
726 }
727 #elif defined(CONFIG_PPC_BOOK3S)
728 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729 {
730 mtspr(SPRN_DABR, dabr);
731 if (cpu_has_feature(CPU_FTR_DABRX))
732 mtspr(SPRN_DABRX, dabrx);
733 return 0;
734 }
735 #elif defined(CONFIG_PPC_8xx)
736 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
737 {
738 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
739 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
740 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
741
742 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
743 lctrl1 |= 0xa0000;
744 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
745 lctrl1 |= 0xf0000;
746 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
747 lctrl2 = 0;
748
749 mtspr(SPRN_LCTRL2, 0);
750 mtspr(SPRN_CMPE, addr);
751 mtspr(SPRN_CMPF, addr + 4);
752 mtspr(SPRN_LCTRL1, lctrl1);
753 mtspr(SPRN_LCTRL2, lctrl2);
754
755 return 0;
756 }
757 #else
758 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
759 {
760 return -EINVAL;
761 }
762 #endif
763
764 static inline int set_dabr(struct arch_hw_breakpoint *brk)
765 {
766 unsigned long dabr, dabrx;
767
768 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
769 dabrx = ((brk->type >> 3) & 0x7);
770
771 if (ppc_md.set_dabr)
772 return ppc_md.set_dabr(dabr, dabrx);
773
774 return __set_dabr(dabr, dabrx);
775 }
776
777 static inline int set_dawr(struct arch_hw_breakpoint *brk)
778 {
779 unsigned long dawr, dawrx, mrd;
780
781 dawr = brk->address;
782
783 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
784 << (63 - 58); //* read/write bits */
785 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
786 << (63 - 59); //* translate */
787 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
788 >> 3; //* PRIM bits */
789 /* dawr length is stored in field MDR bits 48:53. Matches range in
790 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
791 0b111111=64DW.
792 brk->len is in bytes.
793 This aligns up to double word size, shifts and does the bias.
794 */
795 mrd = ((brk->len + 7) >> 3) - 1;
796 dawrx |= (mrd & 0x3f) << (63 - 53);
797
798 if (ppc_md.set_dawr)
799 return ppc_md.set_dawr(dawr, dawrx);
800 mtspr(SPRN_DAWR, dawr);
801 mtspr(SPRN_DAWRX, dawrx);
802 return 0;
803 }
804
805 void __set_breakpoint(struct arch_hw_breakpoint *brk)
806 {
807 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
808
809 if (cpu_has_feature(CPU_FTR_DAWR))
810 set_dawr(brk);
811 else
812 set_dabr(brk);
813 }
814
815 void set_breakpoint(struct arch_hw_breakpoint *brk)
816 {
817 preempt_disable();
818 __set_breakpoint(brk);
819 preempt_enable();
820 }
821
822 #ifdef CONFIG_PPC64
823 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
824 #endif
825
826 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
827 struct arch_hw_breakpoint *b)
828 {
829 if (a->address != b->address)
830 return false;
831 if (a->type != b->type)
832 return false;
833 if (a->len != b->len)
834 return false;
835 return true;
836 }
837
838 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
839
840 static inline bool tm_enabled(struct task_struct *tsk)
841 {
842 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
843 }
844
845 static void tm_reclaim_thread(struct thread_struct *thr,
846 struct thread_info *ti, uint8_t cause)
847 {
848 /*
849 * Use the current MSR TM suspended bit to track if we have
850 * checkpointed state outstanding.
851 * On signal delivery, we'd normally reclaim the checkpointed
852 * state to obtain stack pointer (see:get_tm_stackpointer()).
853 * This will then directly return to userspace without going
854 * through __switch_to(). However, if the stack frame is bad,
855 * we need to exit this thread which calls __switch_to() which
856 * will again attempt to reclaim the already saved tm state.
857 * Hence we need to check that we've not already reclaimed
858 * this state.
859 * We do this using the current MSR, rather tracking it in
860 * some specific thread_struct bit, as it has the additional
861 * benefit of checking for a potential TM bad thing exception.
862 */
863 if (!MSR_TM_SUSPENDED(mfmsr()))
864 return;
865
866 giveup_all(container_of(thr, struct task_struct, thread));
867
868 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
869 }
870
871 void tm_reclaim_current(uint8_t cause)
872 {
873 tm_enable();
874 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
875 }
876
877 static inline void tm_reclaim_task(struct task_struct *tsk)
878 {
879 /* We have to work out if we're switching from/to a task that's in the
880 * middle of a transaction.
881 *
882 * In switching we need to maintain a 2nd register state as
883 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
884 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
885 * ckvr_state
886 *
887 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
888 */
889 struct thread_struct *thr = &tsk->thread;
890
891 if (!thr->regs)
892 return;
893
894 if (!MSR_TM_ACTIVE(thr->regs->msr))
895 goto out_and_saveregs;
896
897 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
898 "ccr=%lx, msr=%lx, trap=%lx)\n",
899 tsk->pid, thr->regs->nip,
900 thr->regs->ccr, thr->regs->msr,
901 thr->regs->trap);
902
903 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
904
905 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
906 tsk->pid);
907
908 out_and_saveregs:
909 /* Always save the regs here, even if a transaction's not active.
910 * This context-switches a thread's TM info SPRs. We do it here to
911 * be consistent with the restore path (in recheckpoint) which
912 * cannot happen later in _switch().
913 */
914 tm_save_sprs(thr);
915 }
916
917 extern void __tm_recheckpoint(struct thread_struct *thread,
918 unsigned long orig_msr);
919
920 void tm_recheckpoint(struct thread_struct *thread,
921 unsigned long orig_msr)
922 {
923 unsigned long flags;
924
925 if (!(thread->regs->msr & MSR_TM))
926 return;
927
928 /* We really can't be interrupted here as the TEXASR registers can't
929 * change and later in the trecheckpoint code, we have a userspace R1.
930 * So let's hard disable over this region.
931 */
932 local_irq_save(flags);
933 hard_irq_disable();
934
935 /* The TM SPRs are restored here, so that TEXASR.FS can be set
936 * before the trecheckpoint and no explosion occurs.
937 */
938 tm_restore_sprs(thread);
939
940 __tm_recheckpoint(thread, orig_msr);
941
942 local_irq_restore(flags);
943 }
944
945 static inline void tm_recheckpoint_new_task(struct task_struct *new)
946 {
947 unsigned long msr;
948
949 if (!cpu_has_feature(CPU_FTR_TM))
950 return;
951
952 /* Recheckpoint the registers of the thread we're about to switch to.
953 *
954 * If the task was using FP, we non-lazily reload both the original and
955 * the speculative FP register states. This is because the kernel
956 * doesn't see if/when a TM rollback occurs, so if we take an FP
957 * unavailable later, we are unable to determine which set of FP regs
958 * need to be restored.
959 */
960 if (!tm_enabled(new))
961 return;
962
963 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
964 tm_restore_sprs(&new->thread);
965 return;
966 }
967 msr = new->thread.ckpt_regs.msr;
968 /* Recheckpoint to restore original checkpointed register state. */
969 TM_DEBUG("*** tm_recheckpoint of pid %d "
970 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
971 new->pid, new->thread.regs->msr, msr);
972
973 tm_recheckpoint(&new->thread, msr);
974
975 /*
976 * The checkpointed state has been restored but the live state has
977 * not, ensure all the math functionality is turned off to trigger
978 * restore_math() to reload.
979 */
980 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
981
982 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
983 "(kernel msr 0x%lx)\n",
984 new->pid, mfmsr());
985 }
986
987 static inline void __switch_to_tm(struct task_struct *prev,
988 struct task_struct *new)
989 {
990 if (cpu_has_feature(CPU_FTR_TM)) {
991 if (tm_enabled(prev) || tm_enabled(new))
992 tm_enable();
993
994 if (tm_enabled(prev)) {
995 prev->thread.load_tm++;
996 tm_reclaim_task(prev);
997 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
998 prev->thread.regs->msr &= ~MSR_TM;
999 }
1000
1001 tm_recheckpoint_new_task(new);
1002 }
1003 }
1004
1005 /*
1006 * This is called if we are on the way out to userspace and the
1007 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1008 * FP and/or vector state and does so if necessary.
1009 * If userspace is inside a transaction (whether active or
1010 * suspended) and FP/VMX/VSX instructions have ever been enabled
1011 * inside that transaction, then we have to keep them enabled
1012 * and keep the FP/VMX/VSX state loaded while ever the transaction
1013 * continues. The reason is that if we didn't, and subsequently
1014 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1015 * we don't know whether it's the same transaction, and thus we
1016 * don't know which of the checkpointed state and the transactional
1017 * state to use.
1018 */
1019 void restore_tm_state(struct pt_regs *regs)
1020 {
1021 unsigned long msr_diff;
1022
1023 /*
1024 * This is the only moment we should clear TIF_RESTORE_TM as
1025 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1026 * again, anything else could lead to an incorrect ckpt_msr being
1027 * saved and therefore incorrect signal contexts.
1028 */
1029 clear_thread_flag(TIF_RESTORE_TM);
1030 if (!MSR_TM_ACTIVE(regs->msr))
1031 return;
1032
1033 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1034 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1035
1036 /* Ensure that restore_math() will restore */
1037 if (msr_diff & MSR_FP)
1038 current->thread.load_fp = 1;
1039 #ifdef CONFIG_ALTIVEC
1040 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1041 current->thread.load_vec = 1;
1042 #endif
1043 restore_math(regs);
1044
1045 regs->msr |= msr_diff;
1046 }
1047
1048 #else
1049 #define tm_recheckpoint_new_task(new)
1050 #define __switch_to_tm(prev, new)
1051 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1052
1053 static inline void save_sprs(struct thread_struct *t)
1054 {
1055 #ifdef CONFIG_ALTIVEC
1056 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1057 t->vrsave = mfspr(SPRN_VRSAVE);
1058 #endif
1059 #ifdef CONFIG_PPC_BOOK3S_64
1060 if (cpu_has_feature(CPU_FTR_DSCR))
1061 t->dscr = mfspr(SPRN_DSCR);
1062
1063 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1064 t->bescr = mfspr(SPRN_BESCR);
1065 t->ebbhr = mfspr(SPRN_EBBHR);
1066 t->ebbrr = mfspr(SPRN_EBBRR);
1067
1068 t->fscr = mfspr(SPRN_FSCR);
1069
1070 /*
1071 * Note that the TAR is not available for use in the kernel.
1072 * (To provide this, the TAR should be backed up/restored on
1073 * exception entry/exit instead, and be in pt_regs. FIXME,
1074 * this should be in pt_regs anyway (for debug).)
1075 */
1076 t->tar = mfspr(SPRN_TAR);
1077 }
1078 #endif
1079 }
1080
1081 static inline void restore_sprs(struct thread_struct *old_thread,
1082 struct thread_struct *new_thread)
1083 {
1084 #ifdef CONFIG_ALTIVEC
1085 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1086 old_thread->vrsave != new_thread->vrsave)
1087 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1088 #endif
1089 #ifdef CONFIG_PPC_BOOK3S_64
1090 if (cpu_has_feature(CPU_FTR_DSCR)) {
1091 u64 dscr = get_paca()->dscr_default;
1092 if (new_thread->dscr_inherit)
1093 dscr = new_thread->dscr;
1094
1095 if (old_thread->dscr != dscr)
1096 mtspr(SPRN_DSCR, dscr);
1097 }
1098
1099 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1100 if (old_thread->bescr != new_thread->bescr)
1101 mtspr(SPRN_BESCR, new_thread->bescr);
1102 if (old_thread->ebbhr != new_thread->ebbhr)
1103 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1104 if (old_thread->ebbrr != new_thread->ebbrr)
1105 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1106
1107 if (old_thread->fscr != new_thread->fscr)
1108 mtspr(SPRN_FSCR, new_thread->fscr);
1109
1110 if (old_thread->tar != new_thread->tar)
1111 mtspr(SPRN_TAR, new_thread->tar);
1112 }
1113 #endif
1114 }
1115
1116 struct task_struct *__switch_to(struct task_struct *prev,
1117 struct task_struct *new)
1118 {
1119 struct thread_struct *new_thread, *old_thread;
1120 struct task_struct *last;
1121 #ifdef CONFIG_PPC_BOOK3S_64
1122 struct ppc64_tlb_batch *batch;
1123 #endif
1124
1125 new_thread = &new->thread;
1126 old_thread = &current->thread;
1127
1128 WARN_ON(!irqs_disabled());
1129
1130 #ifdef CONFIG_PPC64
1131 /*
1132 * Collect processor utilization data per process
1133 */
1134 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1135 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1136 long unsigned start_tb, current_tb;
1137 start_tb = old_thread->start_tb;
1138 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1139 old_thread->accum_tb += (current_tb - start_tb);
1140 new_thread->start_tb = current_tb;
1141 }
1142 #endif /* CONFIG_PPC64 */
1143
1144 #ifdef CONFIG_PPC_STD_MMU_64
1145 batch = this_cpu_ptr(&ppc64_tlb_batch);
1146 if (batch->active) {
1147 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1148 if (batch->index)
1149 __flush_tlb_pending(batch);
1150 batch->active = 0;
1151 }
1152 #endif /* CONFIG_PPC_STD_MMU_64 */
1153
1154 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1155 switch_booke_debug_regs(&new->thread.debug);
1156 #else
1157 /*
1158 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1159 * schedule DABR
1160 */
1161 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1162 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1163 __set_breakpoint(&new->thread.hw_brk);
1164 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1165 #endif
1166
1167 /*
1168 * We need to save SPRs before treclaim/trecheckpoint as these will
1169 * change a number of them.
1170 */
1171 save_sprs(&prev->thread);
1172
1173 /* Save FPU, Altivec, VSX and SPE state */
1174 giveup_all(prev);
1175
1176 __switch_to_tm(prev, new);
1177
1178 /*
1179 * We can't take a PMU exception inside _switch() since there is a
1180 * window where the kernel stack SLB and the kernel stack are out
1181 * of sync. Hard disable here.
1182 */
1183 hard_irq_disable();
1184
1185 /*
1186 * Call restore_sprs() before calling _switch(). If we move it after
1187 * _switch() then we miss out on calling it for new tasks. The reason
1188 * for this is we manually create a stack frame for new tasks that
1189 * directly returns through ret_from_fork() or
1190 * ret_from_kernel_thread(). See copy_thread() for details.
1191 */
1192 restore_sprs(old_thread, new_thread);
1193
1194 last = _switch(old_thread, new_thread);
1195
1196 #ifdef CONFIG_PPC_STD_MMU_64
1197 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1198 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1199 batch = this_cpu_ptr(&ppc64_tlb_batch);
1200 batch->active = 1;
1201 }
1202
1203 if (current_thread_info()->task->thread.regs)
1204 restore_math(current_thread_info()->task->thread.regs);
1205 #endif /* CONFIG_PPC_STD_MMU_64 */
1206
1207 return last;
1208 }
1209
1210 static int instructions_to_print = 16;
1211
1212 static void show_instructions(struct pt_regs *regs)
1213 {
1214 int i;
1215 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1216 sizeof(int));
1217
1218 printk("Instruction dump:");
1219
1220 for (i = 0; i < instructions_to_print; i++) {
1221 int instr;
1222
1223 if (!(i % 8))
1224 pr_cont("\n");
1225
1226 #if !defined(CONFIG_BOOKE)
1227 /* If executing with the IMMU off, adjust pc rather
1228 * than print XXXXXXXX.
1229 */
1230 if (!(regs->msr & MSR_IR))
1231 pc = (unsigned long)phys_to_virt(pc);
1232 #endif
1233
1234 if (!__kernel_text_address(pc) ||
1235 probe_kernel_address((unsigned int __user *)pc, instr)) {
1236 pr_cont("XXXXXXXX ");
1237 } else {
1238 if (regs->nip == pc)
1239 pr_cont("<%08x> ", instr);
1240 else
1241 pr_cont("%08x ", instr);
1242 }
1243
1244 pc += sizeof(int);
1245 }
1246
1247 pr_cont("\n");
1248 }
1249
1250 struct regbit {
1251 unsigned long bit;
1252 const char *name;
1253 };
1254
1255 static struct regbit msr_bits[] = {
1256 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1257 {MSR_SF, "SF"},
1258 {MSR_HV, "HV"},
1259 #endif
1260 {MSR_VEC, "VEC"},
1261 {MSR_VSX, "VSX"},
1262 #ifdef CONFIG_BOOKE
1263 {MSR_CE, "CE"},
1264 #endif
1265 {MSR_EE, "EE"},
1266 {MSR_PR, "PR"},
1267 {MSR_FP, "FP"},
1268 {MSR_ME, "ME"},
1269 #ifdef CONFIG_BOOKE
1270 {MSR_DE, "DE"},
1271 #else
1272 {MSR_SE, "SE"},
1273 {MSR_BE, "BE"},
1274 #endif
1275 {MSR_IR, "IR"},
1276 {MSR_DR, "DR"},
1277 {MSR_PMM, "PMM"},
1278 #ifndef CONFIG_BOOKE
1279 {MSR_RI, "RI"},
1280 {MSR_LE, "LE"},
1281 #endif
1282 {0, NULL}
1283 };
1284
1285 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1286 {
1287 const char *s = "";
1288
1289 for (; bits->bit; ++bits)
1290 if (val & bits->bit) {
1291 pr_cont("%s%s", s, bits->name);
1292 s = sep;
1293 }
1294 }
1295
1296 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1297 static struct regbit msr_tm_bits[] = {
1298 {MSR_TS_T, "T"},
1299 {MSR_TS_S, "S"},
1300 {MSR_TM, "E"},
1301 {0, NULL}
1302 };
1303
1304 static void print_tm_bits(unsigned long val)
1305 {
1306 /*
1307 * This only prints something if at least one of the TM bit is set.
1308 * Inside the TM[], the output means:
1309 * E: Enabled (bit 32)
1310 * S: Suspended (bit 33)
1311 * T: Transactional (bit 34)
1312 */
1313 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1314 pr_cont(",TM[");
1315 print_bits(val, msr_tm_bits, "");
1316 pr_cont("]");
1317 }
1318 }
1319 #else
1320 static void print_tm_bits(unsigned long val) {}
1321 #endif
1322
1323 static void print_msr_bits(unsigned long val)
1324 {
1325 pr_cont("<");
1326 print_bits(val, msr_bits, ",");
1327 print_tm_bits(val);
1328 pr_cont(">");
1329 }
1330
1331 #ifdef CONFIG_PPC64
1332 #define REG "%016lx"
1333 #define REGS_PER_LINE 4
1334 #define LAST_VOLATILE 13
1335 #else
1336 #define REG "%08lx"
1337 #define REGS_PER_LINE 8
1338 #define LAST_VOLATILE 12
1339 #endif
1340
1341 void show_regs(struct pt_regs * regs)
1342 {
1343 int i, trap;
1344
1345 show_regs_print_info(KERN_DEFAULT);
1346
1347 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1348 regs->nip, regs->link, regs->ctr);
1349 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1350 regs, regs->trap, print_tainted(), init_utsname()->release);
1351 printk("MSR: "REG" ", regs->msr);
1352 print_msr_bits(regs->msr);
1353 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1354 trap = TRAP(regs);
1355 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1356 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1357 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1358 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1359 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1360 #else
1361 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1362 #endif
1363 #ifdef CONFIG_PPC64
1364 pr_cont("SOFTE: %ld ", regs->softe);
1365 #endif
1366 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1367 if (MSR_TM_ACTIVE(regs->msr))
1368 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1369 #endif
1370
1371 for (i = 0; i < 32; i++) {
1372 if ((i % REGS_PER_LINE) == 0)
1373 pr_cont("\nGPR%02d: ", i);
1374 pr_cont(REG " ", regs->gpr[i]);
1375 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1376 break;
1377 }
1378 pr_cont("\n");
1379 #ifdef CONFIG_KALLSYMS
1380 /*
1381 * Lookup NIP late so we have the best change of getting the
1382 * above info out without failing
1383 */
1384 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1385 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1386 #endif
1387 show_stack(current, (unsigned long *) regs->gpr[1]);
1388 if (!user_mode(regs))
1389 show_instructions(regs);
1390 }
1391
1392 void flush_thread(void)
1393 {
1394 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1395 flush_ptrace_hw_breakpoint(current);
1396 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1397 set_debug_reg_defaults(&current->thread);
1398 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1399 }
1400
1401 void
1402 release_thread(struct task_struct *t)
1403 {
1404 }
1405
1406 /*
1407 * this gets called so that we can store coprocessor state into memory and
1408 * copy the current task into the new thread.
1409 */
1410 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1411 {
1412 flush_all_to_thread(src);
1413 /*
1414 * Flush TM state out so we can copy it. __switch_to_tm() does this
1415 * flush but it removes the checkpointed state from the current CPU and
1416 * transitions the CPU out of TM mode. Hence we need to call
1417 * tm_recheckpoint_new_task() (on the same task) to restore the
1418 * checkpointed state back and the TM mode.
1419 *
1420 * Can't pass dst because it isn't ready. Doesn't matter, passing
1421 * dst is only important for __switch_to()
1422 */
1423 __switch_to_tm(src, src);
1424
1425 *dst = *src;
1426
1427 clear_task_ebb(dst);
1428
1429 return 0;
1430 }
1431
1432 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1433 {
1434 #ifdef CONFIG_PPC_STD_MMU_64
1435 unsigned long sp_vsid;
1436 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1437
1438 if (radix_enabled())
1439 return;
1440
1441 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1442 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1443 << SLB_VSID_SHIFT_1T;
1444 else
1445 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1446 << SLB_VSID_SHIFT;
1447 sp_vsid |= SLB_VSID_KERNEL | llp;
1448 p->thread.ksp_vsid = sp_vsid;
1449 #endif
1450 }
1451
1452 /*
1453 * Copy a thread..
1454 */
1455
1456 /*
1457 * Copy architecture-specific thread state
1458 */
1459 int copy_thread(unsigned long clone_flags, unsigned long usp,
1460 unsigned long kthread_arg, struct task_struct *p)
1461 {
1462 struct pt_regs *childregs, *kregs;
1463 extern void ret_from_fork(void);
1464 extern void ret_from_kernel_thread(void);
1465 void (*f)(void);
1466 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1467 struct thread_info *ti = task_thread_info(p);
1468
1469 klp_init_thread_info(ti);
1470
1471 /* Copy registers */
1472 sp -= sizeof(struct pt_regs);
1473 childregs = (struct pt_regs *) sp;
1474 if (unlikely(p->flags & PF_KTHREAD)) {
1475 /* kernel thread */
1476 memset(childregs, 0, sizeof(struct pt_regs));
1477 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1478 /* function */
1479 if (usp)
1480 childregs->gpr[14] = ppc_function_entry((void *)usp);
1481 #ifdef CONFIG_PPC64
1482 clear_tsk_thread_flag(p, TIF_32BIT);
1483 childregs->softe = 1;
1484 #endif
1485 childregs->gpr[15] = kthread_arg;
1486 p->thread.regs = NULL; /* no user register state */
1487 ti->flags |= _TIF_RESTOREALL;
1488 f = ret_from_kernel_thread;
1489 } else {
1490 /* user thread */
1491 struct pt_regs *regs = current_pt_regs();
1492 CHECK_FULL_REGS(regs);
1493 *childregs = *regs;
1494 if (usp)
1495 childregs->gpr[1] = usp;
1496 p->thread.regs = childregs;
1497 childregs->gpr[3] = 0; /* Result from fork() */
1498 if (clone_flags & CLONE_SETTLS) {
1499 #ifdef CONFIG_PPC64
1500 if (!is_32bit_task())
1501 childregs->gpr[13] = childregs->gpr[6];
1502 else
1503 #endif
1504 childregs->gpr[2] = childregs->gpr[6];
1505 }
1506
1507 f = ret_from_fork;
1508 }
1509 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1510 sp -= STACK_FRAME_OVERHEAD;
1511
1512 /*
1513 * The way this works is that at some point in the future
1514 * some task will call _switch to switch to the new task.
1515 * That will pop off the stack frame created below and start
1516 * the new task running at ret_from_fork. The new task will
1517 * do some house keeping and then return from the fork or clone
1518 * system call, using the stack frame created above.
1519 */
1520 ((unsigned long *)sp)[0] = 0;
1521 sp -= sizeof(struct pt_regs);
1522 kregs = (struct pt_regs *) sp;
1523 sp -= STACK_FRAME_OVERHEAD;
1524 p->thread.ksp = sp;
1525 #ifdef CONFIG_PPC32
1526 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1527 _ALIGN_UP(sizeof(struct thread_info), 16);
1528 #endif
1529 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1530 p->thread.ptrace_bps[0] = NULL;
1531 #endif
1532
1533 p->thread.fp_save_area = NULL;
1534 #ifdef CONFIG_ALTIVEC
1535 p->thread.vr_save_area = NULL;
1536 #endif
1537
1538 setup_ksp_vsid(p, sp);
1539
1540 #ifdef CONFIG_PPC64
1541 if (cpu_has_feature(CPU_FTR_DSCR)) {
1542 p->thread.dscr_inherit = current->thread.dscr_inherit;
1543 p->thread.dscr = mfspr(SPRN_DSCR);
1544 }
1545 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1546 p->thread.ppr = INIT_PPR;
1547 #endif
1548 kregs->nip = ppc_function_entry(f);
1549 return 0;
1550 }
1551
1552 /*
1553 * Set up a thread for executing a new program
1554 */
1555 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1556 {
1557 #ifdef CONFIG_PPC64
1558 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1559 #endif
1560
1561 /*
1562 * If we exec out of a kernel thread then thread.regs will not be
1563 * set. Do it now.
1564 */
1565 if (!current->thread.regs) {
1566 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1567 current->thread.regs = regs - 1;
1568 }
1569
1570 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1571 /*
1572 * Clear any transactional state, we're exec()ing. The cause is
1573 * not important as there will never be a recheckpoint so it's not
1574 * user visible.
1575 */
1576 if (MSR_TM_SUSPENDED(mfmsr()))
1577 tm_reclaim_current(0);
1578 #endif
1579
1580 memset(regs->gpr, 0, sizeof(regs->gpr));
1581 regs->ctr = 0;
1582 regs->link = 0;
1583 regs->xer = 0;
1584 regs->ccr = 0;
1585 regs->gpr[1] = sp;
1586
1587 /*
1588 * We have just cleared all the nonvolatile GPRs, so make
1589 * FULL_REGS(regs) return true. This is necessary to allow
1590 * ptrace to examine the thread immediately after exec.
1591 */
1592 regs->trap &= ~1UL;
1593
1594 #ifdef CONFIG_PPC32
1595 regs->mq = 0;
1596 regs->nip = start;
1597 regs->msr = MSR_USER;
1598 #else
1599 if (!is_32bit_task()) {
1600 unsigned long entry;
1601
1602 if (is_elf2_task()) {
1603 /* Look ma, no function descriptors! */
1604 entry = start;
1605
1606 /*
1607 * Ulrich says:
1608 * The latest iteration of the ABI requires that when
1609 * calling a function (at its global entry point),
1610 * the caller must ensure r12 holds the entry point
1611 * address (so that the function can quickly
1612 * establish addressability).
1613 */
1614 regs->gpr[12] = start;
1615 /* Make sure that's restored on entry to userspace. */
1616 set_thread_flag(TIF_RESTOREALL);
1617 } else {
1618 unsigned long toc;
1619
1620 /* start is a relocated pointer to the function
1621 * descriptor for the elf _start routine. The first
1622 * entry in the function descriptor is the entry
1623 * address of _start and the second entry is the TOC
1624 * value we need to use.
1625 */
1626 __get_user(entry, (unsigned long __user *)start);
1627 __get_user(toc, (unsigned long __user *)start+1);
1628
1629 /* Check whether the e_entry function descriptor entries
1630 * need to be relocated before we can use them.
1631 */
1632 if (load_addr != 0) {
1633 entry += load_addr;
1634 toc += load_addr;
1635 }
1636 regs->gpr[2] = toc;
1637 }
1638 regs->nip = entry;
1639 regs->msr = MSR_USER64;
1640 } else {
1641 regs->nip = start;
1642 regs->gpr[2] = 0;
1643 regs->msr = MSR_USER32;
1644 }
1645 #endif
1646 #ifdef CONFIG_VSX
1647 current->thread.used_vsr = 0;
1648 #endif
1649 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1650 current->thread.fp_save_area = NULL;
1651 #ifdef CONFIG_ALTIVEC
1652 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1653 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1654 current->thread.vr_save_area = NULL;
1655 current->thread.vrsave = 0;
1656 current->thread.used_vr = 0;
1657 #endif /* CONFIG_ALTIVEC */
1658 #ifdef CONFIG_SPE
1659 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1660 current->thread.acc = 0;
1661 current->thread.spefscr = 0;
1662 current->thread.used_spe = 0;
1663 #endif /* CONFIG_SPE */
1664 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1665 current->thread.tm_tfhar = 0;
1666 current->thread.tm_texasr = 0;
1667 current->thread.tm_tfiar = 0;
1668 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1669 }
1670 EXPORT_SYMBOL(start_thread);
1671
1672 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1673 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1674
1675 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1676 {
1677 struct pt_regs *regs = tsk->thread.regs;
1678
1679 /* This is a bit hairy. If we are an SPE enabled processor
1680 * (have embedded fp) we store the IEEE exception enable flags in
1681 * fpexc_mode. fpexc_mode is also used for setting FP exception
1682 * mode (asyn, precise, disabled) for 'Classic' FP. */
1683 if (val & PR_FP_EXC_SW_ENABLE) {
1684 #ifdef CONFIG_SPE
1685 if (cpu_has_feature(CPU_FTR_SPE)) {
1686 /*
1687 * When the sticky exception bits are set
1688 * directly by userspace, it must call prctl
1689 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1690 * in the existing prctl settings) or
1691 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1692 * the bits being set). <fenv.h> functions
1693 * saving and restoring the whole
1694 * floating-point environment need to do so
1695 * anyway to restore the prctl settings from
1696 * the saved environment.
1697 */
1698 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1699 tsk->thread.fpexc_mode = val &
1700 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1701 return 0;
1702 } else {
1703 return -EINVAL;
1704 }
1705 #else
1706 return -EINVAL;
1707 #endif
1708 }
1709
1710 /* on a CONFIG_SPE this does not hurt us. The bits that
1711 * __pack_fe01 use do not overlap with bits used for
1712 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1713 * on CONFIG_SPE implementations are reserved so writing to
1714 * them does not change anything */
1715 if (val > PR_FP_EXC_PRECISE)
1716 return -EINVAL;
1717 tsk->thread.fpexc_mode = __pack_fe01(val);
1718 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1719 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1720 | tsk->thread.fpexc_mode;
1721 return 0;
1722 }
1723
1724 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1725 {
1726 unsigned int val;
1727
1728 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1729 #ifdef CONFIG_SPE
1730 if (cpu_has_feature(CPU_FTR_SPE)) {
1731 /*
1732 * When the sticky exception bits are set
1733 * directly by userspace, it must call prctl
1734 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1735 * in the existing prctl settings) or
1736 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1737 * the bits being set). <fenv.h> functions
1738 * saving and restoring the whole
1739 * floating-point environment need to do so
1740 * anyway to restore the prctl settings from
1741 * the saved environment.
1742 */
1743 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1744 val = tsk->thread.fpexc_mode;
1745 } else
1746 return -EINVAL;
1747 #else
1748 return -EINVAL;
1749 #endif
1750 else
1751 val = __unpack_fe01(tsk->thread.fpexc_mode);
1752 return put_user(val, (unsigned int __user *) adr);
1753 }
1754
1755 int set_endian(struct task_struct *tsk, unsigned int val)
1756 {
1757 struct pt_regs *regs = tsk->thread.regs;
1758
1759 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1760 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1761 return -EINVAL;
1762
1763 if (regs == NULL)
1764 return -EINVAL;
1765
1766 if (val == PR_ENDIAN_BIG)
1767 regs->msr &= ~MSR_LE;
1768 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1769 regs->msr |= MSR_LE;
1770 else
1771 return -EINVAL;
1772
1773 return 0;
1774 }
1775
1776 int get_endian(struct task_struct *tsk, unsigned long adr)
1777 {
1778 struct pt_regs *regs = tsk->thread.regs;
1779 unsigned int val;
1780
1781 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1782 !cpu_has_feature(CPU_FTR_REAL_LE))
1783 return -EINVAL;
1784
1785 if (regs == NULL)
1786 return -EINVAL;
1787
1788 if (regs->msr & MSR_LE) {
1789 if (cpu_has_feature(CPU_FTR_REAL_LE))
1790 val = PR_ENDIAN_LITTLE;
1791 else
1792 val = PR_ENDIAN_PPC_LITTLE;
1793 } else
1794 val = PR_ENDIAN_BIG;
1795
1796 return put_user(val, (unsigned int __user *)adr);
1797 }
1798
1799 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1800 {
1801 tsk->thread.align_ctl = val;
1802 return 0;
1803 }
1804
1805 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1806 {
1807 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1808 }
1809
1810 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1811 unsigned long nbytes)
1812 {
1813 unsigned long stack_page;
1814 unsigned long cpu = task_cpu(p);
1815
1816 /*
1817 * Avoid crashing if the stack has overflowed and corrupted
1818 * task_cpu(p), which is in the thread_info struct.
1819 */
1820 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1821 stack_page = (unsigned long) hardirq_ctx[cpu];
1822 if (sp >= stack_page + sizeof(struct thread_struct)
1823 && sp <= stack_page + THREAD_SIZE - nbytes)
1824 return 1;
1825
1826 stack_page = (unsigned long) softirq_ctx[cpu];
1827 if (sp >= stack_page + sizeof(struct thread_struct)
1828 && sp <= stack_page + THREAD_SIZE - nbytes)
1829 return 1;
1830 }
1831 return 0;
1832 }
1833
1834 int validate_sp(unsigned long sp, struct task_struct *p,
1835 unsigned long nbytes)
1836 {
1837 unsigned long stack_page = (unsigned long)task_stack_page(p);
1838
1839 if (sp >= stack_page + sizeof(struct thread_struct)
1840 && sp <= stack_page + THREAD_SIZE - nbytes)
1841 return 1;
1842
1843 return valid_irq_stack(sp, p, nbytes);
1844 }
1845
1846 EXPORT_SYMBOL(validate_sp);
1847
1848 unsigned long get_wchan(struct task_struct *p)
1849 {
1850 unsigned long ip, sp;
1851 int count = 0;
1852
1853 if (!p || p == current || p->state == TASK_RUNNING)
1854 return 0;
1855
1856 sp = p->thread.ksp;
1857 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1858 return 0;
1859
1860 do {
1861 sp = *(unsigned long *)sp;
1862 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1863 return 0;
1864 if (count > 0) {
1865 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1866 if (!in_sched_functions(ip))
1867 return ip;
1868 }
1869 } while (count++ < 16);
1870 return 0;
1871 }
1872
1873 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1874
1875 void show_stack(struct task_struct *tsk, unsigned long *stack)
1876 {
1877 unsigned long sp, ip, lr, newsp;
1878 int count = 0;
1879 int firstframe = 1;
1880 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1881 int curr_frame = current->curr_ret_stack;
1882 extern void return_to_handler(void);
1883 unsigned long rth = (unsigned long)return_to_handler;
1884 #endif
1885
1886 sp = (unsigned long) stack;
1887 if (tsk == NULL)
1888 tsk = current;
1889 if (sp == 0) {
1890 if (tsk == current)
1891 sp = current_stack_pointer();
1892 else
1893 sp = tsk->thread.ksp;
1894 }
1895
1896 lr = 0;
1897 printk("Call Trace:\n");
1898 do {
1899 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1900 return;
1901
1902 stack = (unsigned long *) sp;
1903 newsp = stack[0];
1904 ip = stack[STACK_FRAME_LR_SAVE];
1905 if (!firstframe || ip != lr) {
1906 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1907 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1908 if ((ip == rth) && curr_frame >= 0) {
1909 pr_cont(" (%pS)",
1910 (void *)current->ret_stack[curr_frame].ret);
1911 curr_frame--;
1912 }
1913 #endif
1914 if (firstframe)
1915 pr_cont(" (unreliable)");
1916 pr_cont("\n");
1917 }
1918 firstframe = 0;
1919
1920 /*
1921 * See if this is an exception frame.
1922 * We look for the "regshere" marker in the current frame.
1923 */
1924 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1925 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1926 struct pt_regs *regs = (struct pt_regs *)
1927 (sp + STACK_FRAME_OVERHEAD);
1928 lr = regs->link;
1929 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1930 regs->trap, (void *)regs->nip, (void *)lr);
1931 firstframe = 1;
1932 }
1933
1934 sp = newsp;
1935 } while (count++ < kstack_depth_to_print);
1936 }
1937
1938 #ifdef CONFIG_PPC64
1939 /* Called with hard IRQs off */
1940 void notrace __ppc64_runlatch_on(void)
1941 {
1942 struct thread_info *ti = current_thread_info();
1943 unsigned long ctrl;
1944
1945 ctrl = mfspr(SPRN_CTRLF);
1946 ctrl |= CTRL_RUNLATCH;
1947 mtspr(SPRN_CTRLT, ctrl);
1948
1949 ti->local_flags |= _TLF_RUNLATCH;
1950 }
1951
1952 /* Called with hard IRQs off */
1953 void notrace __ppc64_runlatch_off(void)
1954 {
1955 struct thread_info *ti = current_thread_info();
1956 unsigned long ctrl;
1957
1958 ti->local_flags &= ~_TLF_RUNLATCH;
1959
1960 ctrl = mfspr(SPRN_CTRLF);
1961 ctrl &= ~CTRL_RUNLATCH;
1962 mtspr(SPRN_CTRLT, ctrl);
1963 }
1964 #endif /* CONFIG_PPC64 */
1965
1966 unsigned long arch_align_stack(unsigned long sp)
1967 {
1968 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1969 sp -= get_random_int() & ~PAGE_MASK;
1970 return sp & ~0xf;
1971 }
1972
1973 static inline unsigned long brk_rnd(void)
1974 {
1975 unsigned long rnd = 0;
1976
1977 /* 8MB for 32bit, 1GB for 64bit */
1978 if (is_32bit_task())
1979 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1980 else
1981 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1982
1983 return rnd << PAGE_SHIFT;
1984 }
1985
1986 unsigned long arch_randomize_brk(struct mm_struct *mm)
1987 {
1988 unsigned long base = mm->brk;
1989 unsigned long ret;
1990
1991 #ifdef CONFIG_PPC_STD_MMU_64
1992 /*
1993 * If we are using 1TB segments and we are allowed to randomise
1994 * the heap, we can put it above 1TB so it is backed by a 1TB
1995 * segment. Otherwise the heap will be in the bottom 1TB
1996 * which always uses 256MB segments and this may result in a
1997 * performance penalty. We don't need to worry about radix. For
1998 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1999 */
2000 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2001 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2002 #endif
2003
2004 ret = PAGE_ALIGN(base + brk_rnd());
2005
2006 if (ret < mm->brk)
2007 return mm->brk;
2008
2009 return ret;
2010 }
2011