]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/process.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82 /*
83 * If we are saving the current thread's registers, and the
84 * thread is in a transactional state, set the TIF_RESTORE_TM
85 * bit so that we know to restore the registers before
86 * returning to userspace.
87 */
88 if (tsk == current && tsk->thread.regs &&
89 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 !test_thread_flag(TIF_RESTORE_TM)) {
91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 set_thread_flag(TIF_RESTORE_TM);
93 }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98 return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110 strict_msr_control = true;
111 pr_info("Enabling strict facility control\n");
112
113 return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
121
122 newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 newmsr |= MSR_VSX;
127 #endif
128
129 if (oldmsr != newmsr)
130 mtmsr_isync(newmsr);
131
132 return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 newmsr &= ~MSR_VSX;
145 #endif
146
147 if (oldmsr != newmsr)
148 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155 unsigned long msr;
156
157 save_fpu(tsk);
158 msr = tsk->thread.regs->msr;
159 msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 if (cpu_has_feature(CPU_FTR_VSX))
162 msr &= ~MSR_VSX;
163 #endif
164 tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 check_if_tm_restore_required(tsk);
170
171 msr_check_and_set(MSR_FP);
172 __giveup_fpu(tsk);
173 msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178 * Make sure the floating-point register state in the
179 * the thread_struct is up to date for task tsk.
180 */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 if (tsk->thread.regs) {
184 /*
185 * We need to disable preemption here because if we didn't,
186 * another process could get scheduled after the regs->msr
187 * test but before we have finished saving the FP registers
188 * to the thread_struct. That process could take over the
189 * FPU, and then when we get scheduled again we would store
190 * bogus values for the remaining FP registers.
191 */
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_FP) {
194 /*
195 * This should only ever be called for current or
196 * for a stopped child process. Since we save away
197 * the FP register state on context switch,
198 * there is something wrong if a stopped child appears
199 * to still have its FP state in the CPU registers.
200 */
201 BUG_ON(tsk != current);
202 giveup_fpu(tsk);
203 }
204 preempt_enable();
205 }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211 unsigned long cpumsr;
212
213 WARN_ON(preemptible());
214
215 cpumsr = msr_check_and_set(MSR_FP);
216
217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 check_if_tm_restore_required(current);
219 /*
220 * If a thread has already been reclaimed then the
221 * checkpointed registers are on the CPU but have definitely
222 * been saved by the reclaim code. Don't need to and *cannot*
223 * giveup as this would save to the 'live' structure not the
224 * checkpointed structure.
225 */
226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 return;
228 __giveup_fpu(current);
229 }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk) {
234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 load_fp_state(&current->thread.fp_state);
236 current->thread.load_fp++;
237 return 1;
238 }
239 return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250 unsigned long msr;
251
252 save_altivec(tsk);
253 msr = tsk->thread.regs->msr;
254 msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256 if (cpu_has_feature(CPU_FTR_VSX))
257 msr &= ~MSR_VSX;
258 #endif
259 tsk->thread.regs->msr = msr;
260 }
261
262 void giveup_altivec(struct task_struct *tsk)
263 {
264 check_if_tm_restore_required(tsk);
265
266 msr_check_and_set(MSR_VEC);
267 __giveup_altivec(tsk);
268 msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271
272 void enable_kernel_altivec(void)
273 {
274 unsigned long cpumsr;
275
276 WARN_ON(preemptible());
277
278 cpumsr = msr_check_and_set(MSR_VEC);
279
280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 check_if_tm_restore_required(current);
282 /*
283 * If a thread has already been reclaimed then the
284 * checkpointed registers are on the CPU but have definitely
285 * been saved by the reclaim code. Don't need to and *cannot*
286 * giveup as this would save to the 'live' structure not the
287 * checkpointed structure.
288 */
289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 return;
291 __giveup_altivec(current);
292 }
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295
296 /*
297 * Make sure the VMX/Altivec register state in the
298 * the thread_struct is up to date for task tsk.
299 */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302 if (tsk->thread.regs) {
303 preempt_disable();
304 if (tsk->thread.regs->msr & MSR_VEC) {
305 BUG_ON(tsk != current);
306 giveup_altivec(tsk);
307 }
308 preempt_enable();
309 }
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312
313 static int restore_altivec(struct task_struct *tsk)
314 {
315 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 load_vr_state(&tsk->thread.vr_state);
318 tsk->thread.used_vr = 1;
319 tsk->thread.load_vec++;
320
321 return 1;
322 }
323 return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333 if (tsk->thread.regs->msr & MSR_FP)
334 __giveup_fpu(tsk);
335 if (tsk->thread.regs->msr & MSR_VEC)
336 __giveup_altivec(tsk);
337 tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342 check_if_tm_restore_required(tsk);
343
344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345 __giveup_vsx(tsk);
346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348
349 static void save_vsx(struct task_struct *tsk)
350 {
351 if (tsk->thread.regs->msr & MSR_FP)
352 save_fpu(tsk);
353 if (tsk->thread.regs->msr & MSR_VEC)
354 save_altivec(tsk);
355 }
356
357 void enable_kernel_vsx(void)
358 {
359 unsigned long cpumsr;
360
361 WARN_ON(preemptible());
362
363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364
365 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366 check_if_tm_restore_required(current);
367 /*
368 * If a thread has already been reclaimed then the
369 * checkpointed registers are on the CPU but have definitely
370 * been saved by the reclaim code. Don't need to and *cannot*
371 * giveup as this would save to the 'live' structure not the
372 * checkpointed structure.
373 */
374 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375 return;
376 if (current->thread.regs->msr & MSR_FP)
377 __giveup_fpu(current);
378 if (current->thread.regs->msr & MSR_VEC)
379 __giveup_altivec(current);
380 __giveup_vsx(current);
381 }
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387 if (tsk->thread.regs) {
388 preempt_disable();
389 if (tsk->thread.regs->msr & MSR_VSX) {
390 BUG_ON(tsk != current);
391 giveup_vsx(tsk);
392 }
393 preempt_enable();
394 }
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397
398 static int restore_vsx(struct task_struct *tsk)
399 {
400 if (cpu_has_feature(CPU_FTR_VSX)) {
401 tsk->thread.used_vsr = 1;
402 return 1;
403 }
404
405 return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415 check_if_tm_restore_required(tsk);
416
417 msr_check_and_set(MSR_SPE);
418 __giveup_spe(tsk);
419 msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422
423 void enable_kernel_spe(void)
424 {
425 WARN_ON(preemptible());
426
427 msr_check_and_set(MSR_SPE);
428
429 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430 check_if_tm_restore_required(current);
431 __giveup_spe(current);
432 }
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438 if (tsk->thread.regs) {
439 preempt_disable();
440 if (tsk->thread.regs->msr & MSR_SPE) {
441 BUG_ON(tsk != current);
442 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443 giveup_spe(tsk);
444 }
445 preempt_enable();
446 }
447 }
448 #endif /* CONFIG_SPE */
449
450 static unsigned long msr_all_available;
451
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455 msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458 if (cpu_has_feature(CPU_FTR_ALTIVEC))
459 msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462 if (cpu_has_feature(CPU_FTR_VSX))
463 msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466 if (cpu_has_feature(CPU_FTR_SPE))
467 msr_all_available |= MSR_SPE;
468 #endif
469
470 return 0;
471 }
472 early_initcall(init_msr_all_available);
473
474 void giveup_all(struct task_struct *tsk)
475 {
476 unsigned long usermsr;
477
478 if (!tsk->thread.regs)
479 return;
480
481 usermsr = tsk->thread.regs->msr;
482
483 if ((usermsr & msr_all_available) == 0)
484 return;
485
486 msr_check_and_set(msr_all_available);
487 check_if_tm_restore_required(tsk);
488
489 #ifdef CONFIG_PPC_FPU
490 if (usermsr & MSR_FP)
491 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494 if (usermsr & MSR_VEC)
495 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498 if (usermsr & MSR_VSX)
499 __giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502 if (usermsr & MSR_SPE)
503 __giveup_spe(tsk);
504 #endif
505
506 msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509
510 void restore_math(struct pt_regs *regs)
511 {
512 unsigned long msr;
513
514 if (!msr_tm_active(regs->msr) &&
515 !current->thread.load_fp && !loadvec(current->thread))
516 return;
517
518 msr = regs->msr;
519 msr_check_and_set(msr_all_available);
520
521 /*
522 * Only reload if the bit is not set in the user MSR, the bit BEING set
523 * indicates that the registers are hot
524 */
525 if ((!(msr & MSR_FP)) && restore_fp(current))
526 msr |= MSR_FP | current->thread.fpexc_mode;
527
528 if ((!(msr & MSR_VEC)) && restore_altivec(current))
529 msr |= MSR_VEC;
530
531 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
532 restore_vsx(current)) {
533 msr |= MSR_VSX;
534 }
535
536 msr_check_and_clear(msr_all_available);
537
538 regs->msr = msr;
539 }
540
541 void save_all(struct task_struct *tsk)
542 {
543 unsigned long usermsr;
544
545 if (!tsk->thread.regs)
546 return;
547
548 usermsr = tsk->thread.regs->msr;
549
550 if ((usermsr & msr_all_available) == 0)
551 return;
552
553 msr_check_and_set(msr_all_available);
554
555 /*
556 * Saving the way the register space is in hardware, save_vsx boils
557 * down to a save_fpu() and save_altivec()
558 */
559 if (usermsr & MSR_VSX) {
560 save_vsx(tsk);
561 } else {
562 if (usermsr & MSR_FP)
563 save_fpu(tsk);
564
565 if (usermsr & MSR_VEC)
566 save_altivec(tsk);
567 }
568
569 if (usermsr & MSR_SPE)
570 __giveup_spe(tsk);
571
572 msr_check_and_clear(msr_all_available);
573 }
574
575 void flush_all_to_thread(struct task_struct *tsk)
576 {
577 if (tsk->thread.regs) {
578 preempt_disable();
579 BUG_ON(tsk != current);
580 save_all(tsk);
581
582 #ifdef CONFIG_SPE
583 if (tsk->thread.regs->msr & MSR_SPE)
584 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
585 #endif
586
587 preempt_enable();
588 }
589 }
590 EXPORT_SYMBOL(flush_all_to_thread);
591
592 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
593 void do_send_trap(struct pt_regs *regs, unsigned long address,
594 unsigned long error_code, int signal_code, int breakpt)
595 {
596 siginfo_t info;
597
598 current->thread.trap_nr = signal_code;
599 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
600 11, SIGSEGV) == NOTIFY_STOP)
601 return;
602
603 /* Deliver the signal to userspace */
604 info.si_signo = SIGTRAP;
605 info.si_errno = breakpt; /* breakpoint or watchpoint id */
606 info.si_code = signal_code;
607 info.si_addr = (void __user *)address;
608 force_sig_info(SIGTRAP, &info, current);
609 }
610 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
611 void do_break (struct pt_regs *regs, unsigned long address,
612 unsigned long error_code)
613 {
614 siginfo_t info;
615
616 current->thread.trap_nr = TRAP_HWBKPT;
617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 11, SIGSEGV) == NOTIFY_STOP)
619 return;
620
621 if (debugger_break_match(regs))
622 return;
623
624 /* Clear the breakpoint */
625 hw_breakpoint_disable();
626
627 /* Deliver the signal to userspace */
628 info.si_signo = SIGTRAP;
629 info.si_errno = 0;
630 info.si_code = TRAP_HWBKPT;
631 info.si_addr = (void __user *)address;
632 force_sig_info(SIGTRAP, &info, current);
633 }
634 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
635
636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637
638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
639 /*
640 * Set the debug registers back to their default "safe" values.
641 */
642 static void set_debug_reg_defaults(struct thread_struct *thread)
643 {
644 thread->debug.iac1 = thread->debug.iac2 = 0;
645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
646 thread->debug.iac3 = thread->debug.iac4 = 0;
647 #endif
648 thread->debug.dac1 = thread->debug.dac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650 thread->debug.dvc1 = thread->debug.dvc2 = 0;
651 #endif
652 thread->debug.dbcr0 = 0;
653 #ifdef CONFIG_BOOKE
654 /*
655 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656 */
657 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658 DBCR1_IAC3US | DBCR1_IAC4US;
659 /*
660 * Force Data Address Compare User/Supervisor bits to be User-only
661 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662 */
663 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664 #else
665 thread->debug.dbcr1 = 0;
666 #endif
667 }
668
669 static void prime_debug_regs(struct debug_reg *debug)
670 {
671 /*
672 * We could have inherited MSR_DE from userspace, since
673 * it doesn't get cleared on exception entry. Make sure
674 * MSR_DE is clear before we enable any debug events.
675 */
676 mtmsr(mfmsr() & ~MSR_DE);
677
678 mtspr(SPRN_IAC1, debug->iac1);
679 mtspr(SPRN_IAC2, debug->iac2);
680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
681 mtspr(SPRN_IAC3, debug->iac3);
682 mtspr(SPRN_IAC4, debug->iac4);
683 #endif
684 mtspr(SPRN_DAC1, debug->dac1);
685 mtspr(SPRN_DAC2, debug->dac2);
686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687 mtspr(SPRN_DVC1, debug->dvc1);
688 mtspr(SPRN_DVC2, debug->dvc2);
689 #endif
690 mtspr(SPRN_DBCR0, debug->dbcr0);
691 mtspr(SPRN_DBCR1, debug->dbcr1);
692 #ifdef CONFIG_BOOKE
693 mtspr(SPRN_DBCR2, debug->dbcr2);
694 #endif
695 }
696 /*
697 * Unless neither the old or new thread are making use of the
698 * debug registers, set the debug registers from the values
699 * stored in the new thread.
700 */
701 void switch_booke_debug_regs(struct debug_reg *new_debug)
702 {
703 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704 || (new_debug->dbcr0 & DBCR0_IDM))
705 prime_debug_regs(new_debug);
706 }
707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
709 #ifndef CONFIG_HAVE_HW_BREAKPOINT
710 static void set_debug_reg_defaults(struct thread_struct *thread)
711 {
712 thread->hw_brk.address = 0;
713 thread->hw_brk.type = 0;
714 set_breakpoint(&thread->hw_brk);
715 }
716 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
718
719 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
721 {
722 mtspr(SPRN_DAC1, dabr);
723 #ifdef CONFIG_PPC_47x
724 isync();
725 #endif
726 return 0;
727 }
728 #elif defined(CONFIG_PPC_BOOK3S)
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731 mtspr(SPRN_DABR, dabr);
732 if (cpu_has_feature(CPU_FTR_DABRX))
733 mtspr(SPRN_DABRX, dabrx);
734 return 0;
735 }
736 #elif defined(CONFIG_PPC_8xx)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
740 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
741 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
742
743 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
744 lctrl1 |= 0xa0000;
745 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
746 lctrl1 |= 0xf0000;
747 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
748 lctrl2 = 0;
749
750 mtspr(SPRN_LCTRL2, 0);
751 mtspr(SPRN_CMPE, addr);
752 mtspr(SPRN_CMPF, addr + 4);
753 mtspr(SPRN_LCTRL1, lctrl1);
754 mtspr(SPRN_LCTRL2, lctrl2);
755
756 return 0;
757 }
758 #else
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761 return -EINVAL;
762 }
763 #endif
764
765 static inline int set_dabr(struct arch_hw_breakpoint *brk)
766 {
767 unsigned long dabr, dabrx;
768
769 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
770 dabrx = ((brk->type >> 3) & 0x7);
771
772 if (ppc_md.set_dabr)
773 return ppc_md.set_dabr(dabr, dabrx);
774
775 return __set_dabr(dabr, dabrx);
776 }
777
778 static inline int set_dawr(struct arch_hw_breakpoint *brk)
779 {
780 unsigned long dawr, dawrx, mrd;
781
782 dawr = brk->address;
783
784 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
785 << (63 - 58); //* read/write bits */
786 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
787 << (63 - 59); //* translate */
788 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
789 >> 3; //* PRIM bits */
790 /* dawr length is stored in field MDR bits 48:53. Matches range in
791 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
792 0b111111=64DW.
793 brk->len is in bytes.
794 This aligns up to double word size, shifts and does the bias.
795 */
796 mrd = ((brk->len + 7) >> 3) - 1;
797 dawrx |= (mrd & 0x3f) << (63 - 53);
798
799 if (ppc_md.set_dawr)
800 return ppc_md.set_dawr(dawr, dawrx);
801 mtspr(SPRN_DAWR, dawr);
802 mtspr(SPRN_DAWRX, dawrx);
803 return 0;
804 }
805
806 void __set_breakpoint(struct arch_hw_breakpoint *brk)
807 {
808 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809
810 if (cpu_has_feature(CPU_FTR_DAWR))
811 set_dawr(brk);
812 else
813 set_dabr(brk);
814 }
815
816 void set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818 preempt_disable();
819 __set_breakpoint(brk);
820 preempt_enable();
821 }
822
823 #ifdef CONFIG_PPC64
824 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
825 #endif
826
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828 struct arch_hw_breakpoint *b)
829 {
830 if (a->address != b->address)
831 return false;
832 if (a->type != b->type)
833 return false;
834 if (a->len != b->len)
835 return false;
836 return true;
837 }
838
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845
846 static void tm_reclaim_thread(struct thread_struct *thr,
847 struct thread_info *ti, uint8_t cause)
848 {
849 /*
850 * Use the current MSR TM suspended bit to track if we have
851 * checkpointed state outstanding.
852 * On signal delivery, we'd normally reclaim the checkpointed
853 * state to obtain stack pointer (see:get_tm_stackpointer()).
854 * This will then directly return to userspace without going
855 * through __switch_to(). However, if the stack frame is bad,
856 * we need to exit this thread which calls __switch_to() which
857 * will again attempt to reclaim the already saved tm state.
858 * Hence we need to check that we've not already reclaimed
859 * this state.
860 * We do this using the current MSR, rather tracking it in
861 * some specific thread_struct bit, as it has the additional
862 * benefit of checking for a potential TM bad thing exception.
863 */
864 if (!MSR_TM_SUSPENDED(mfmsr()))
865 return;
866
867 giveup_all(container_of(thr, struct task_struct, thread));
868
869 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
870 }
871
872 void tm_reclaim_current(uint8_t cause)
873 {
874 tm_enable();
875 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
876 }
877
878 static inline void tm_reclaim_task(struct task_struct *tsk)
879 {
880 /* We have to work out if we're switching from/to a task that's in the
881 * middle of a transaction.
882 *
883 * In switching we need to maintain a 2nd register state as
884 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
885 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
886 * ckvr_state
887 *
888 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
889 */
890 struct thread_struct *thr = &tsk->thread;
891
892 if (!thr->regs)
893 return;
894
895 if (!MSR_TM_ACTIVE(thr->regs->msr))
896 goto out_and_saveregs;
897
898 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
899 "ccr=%lx, msr=%lx, trap=%lx)\n",
900 tsk->pid, thr->regs->nip,
901 thr->regs->ccr, thr->regs->msr,
902 thr->regs->trap);
903
904 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
905
906 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
907 tsk->pid);
908
909 out_and_saveregs:
910 /* Always save the regs here, even if a transaction's not active.
911 * This context-switches a thread's TM info SPRs. We do it here to
912 * be consistent with the restore path (in recheckpoint) which
913 * cannot happen later in _switch().
914 */
915 tm_save_sprs(thr);
916 }
917
918 extern void __tm_recheckpoint(struct thread_struct *thread,
919 unsigned long orig_msr);
920
921 void tm_recheckpoint(struct thread_struct *thread,
922 unsigned long orig_msr)
923 {
924 unsigned long flags;
925
926 if (!(thread->regs->msr & MSR_TM))
927 return;
928
929 /* We really can't be interrupted here as the TEXASR registers can't
930 * change and later in the trecheckpoint code, we have a userspace R1.
931 * So let's hard disable over this region.
932 */
933 local_irq_save(flags);
934 hard_irq_disable();
935
936 /* The TM SPRs are restored here, so that TEXASR.FS can be set
937 * before the trecheckpoint and no explosion occurs.
938 */
939 tm_restore_sprs(thread);
940
941 __tm_recheckpoint(thread, orig_msr);
942
943 local_irq_restore(flags);
944 }
945
946 static inline void tm_recheckpoint_new_task(struct task_struct *new)
947 {
948 unsigned long msr;
949
950 if (!cpu_has_feature(CPU_FTR_TM))
951 return;
952
953 /* Recheckpoint the registers of the thread we're about to switch to.
954 *
955 * If the task was using FP, we non-lazily reload both the original and
956 * the speculative FP register states. This is because the kernel
957 * doesn't see if/when a TM rollback occurs, so if we take an FP
958 * unavailable later, we are unable to determine which set of FP regs
959 * need to be restored.
960 */
961 if (!tm_enabled(new))
962 return;
963
964 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
965 tm_restore_sprs(&new->thread);
966 return;
967 }
968 msr = new->thread.ckpt_regs.msr;
969 /* Recheckpoint to restore original checkpointed register state. */
970 TM_DEBUG("*** tm_recheckpoint of pid %d "
971 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
972 new->pid, new->thread.regs->msr, msr);
973
974 tm_recheckpoint(&new->thread, msr);
975
976 /*
977 * The checkpointed state has been restored but the live state has
978 * not, ensure all the math functionality is turned off to trigger
979 * restore_math() to reload.
980 */
981 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
982
983 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
984 "(kernel msr 0x%lx)\n",
985 new->pid, mfmsr());
986 }
987
988 static inline void __switch_to_tm(struct task_struct *prev,
989 struct task_struct *new)
990 {
991 if (cpu_has_feature(CPU_FTR_TM)) {
992 if (tm_enabled(prev) || tm_enabled(new))
993 tm_enable();
994
995 if (tm_enabled(prev)) {
996 prev->thread.load_tm++;
997 tm_reclaim_task(prev);
998 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
999 prev->thread.regs->msr &= ~MSR_TM;
1000 }
1001
1002 tm_recheckpoint_new_task(new);
1003 }
1004 }
1005
1006 /*
1007 * This is called if we are on the way out to userspace and the
1008 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1009 * FP and/or vector state and does so if necessary.
1010 * If userspace is inside a transaction (whether active or
1011 * suspended) and FP/VMX/VSX instructions have ever been enabled
1012 * inside that transaction, then we have to keep them enabled
1013 * and keep the FP/VMX/VSX state loaded while ever the transaction
1014 * continues. The reason is that if we didn't, and subsequently
1015 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1016 * we don't know whether it's the same transaction, and thus we
1017 * don't know which of the checkpointed state and the transactional
1018 * state to use.
1019 */
1020 void restore_tm_state(struct pt_regs *regs)
1021 {
1022 unsigned long msr_diff;
1023
1024 /*
1025 * This is the only moment we should clear TIF_RESTORE_TM as
1026 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1027 * again, anything else could lead to an incorrect ckpt_msr being
1028 * saved and therefore incorrect signal contexts.
1029 */
1030 clear_thread_flag(TIF_RESTORE_TM);
1031 if (!MSR_TM_ACTIVE(regs->msr))
1032 return;
1033
1034 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1035 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1036
1037 /* Ensure that restore_math() will restore */
1038 if (msr_diff & MSR_FP)
1039 current->thread.load_fp = 1;
1040 #ifdef CONFIG_ALTIVEC
1041 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1042 current->thread.load_vec = 1;
1043 #endif
1044 restore_math(regs);
1045
1046 regs->msr |= msr_diff;
1047 }
1048
1049 #else
1050 #define tm_recheckpoint_new_task(new)
1051 #define __switch_to_tm(prev, new)
1052 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1053
1054 static inline void save_sprs(struct thread_struct *t)
1055 {
1056 #ifdef CONFIG_ALTIVEC
1057 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1058 t->vrsave = mfspr(SPRN_VRSAVE);
1059 #endif
1060 #ifdef CONFIG_PPC_BOOK3S_64
1061 if (cpu_has_feature(CPU_FTR_DSCR))
1062 t->dscr = mfspr(SPRN_DSCR);
1063
1064 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1065 t->bescr = mfspr(SPRN_BESCR);
1066 t->ebbhr = mfspr(SPRN_EBBHR);
1067 t->ebbrr = mfspr(SPRN_EBBRR);
1068
1069 t->fscr = mfspr(SPRN_FSCR);
1070
1071 /*
1072 * Note that the TAR is not available for use in the kernel.
1073 * (To provide this, the TAR should be backed up/restored on
1074 * exception entry/exit instead, and be in pt_regs. FIXME,
1075 * this should be in pt_regs anyway (for debug).)
1076 */
1077 t->tar = mfspr(SPRN_TAR);
1078 }
1079 #endif
1080 }
1081
1082 static inline void restore_sprs(struct thread_struct *old_thread,
1083 struct thread_struct *new_thread)
1084 {
1085 #ifdef CONFIG_ALTIVEC
1086 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1087 old_thread->vrsave != new_thread->vrsave)
1088 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1089 #endif
1090 #ifdef CONFIG_PPC_BOOK3S_64
1091 if (cpu_has_feature(CPU_FTR_DSCR)) {
1092 u64 dscr = get_paca()->dscr_default;
1093 if (new_thread->dscr_inherit)
1094 dscr = new_thread->dscr;
1095
1096 if (old_thread->dscr != dscr)
1097 mtspr(SPRN_DSCR, dscr);
1098 }
1099
1100 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1101 if (old_thread->bescr != new_thread->bescr)
1102 mtspr(SPRN_BESCR, new_thread->bescr);
1103 if (old_thread->ebbhr != new_thread->ebbhr)
1104 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1105 if (old_thread->ebbrr != new_thread->ebbrr)
1106 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1107
1108 if (old_thread->fscr != new_thread->fscr)
1109 mtspr(SPRN_FSCR, new_thread->fscr);
1110
1111 if (old_thread->tar != new_thread->tar)
1112 mtspr(SPRN_TAR, new_thread->tar);
1113 }
1114 #endif
1115 }
1116
1117 struct task_struct *__switch_to(struct task_struct *prev,
1118 struct task_struct *new)
1119 {
1120 struct thread_struct *new_thread, *old_thread;
1121 struct task_struct *last;
1122 #ifdef CONFIG_PPC_BOOK3S_64
1123 struct ppc64_tlb_batch *batch;
1124 #endif
1125
1126 new_thread = &new->thread;
1127 old_thread = &current->thread;
1128
1129 WARN_ON(!irqs_disabled());
1130
1131 #ifdef CONFIG_PPC64
1132 /*
1133 * Collect processor utilization data per process
1134 */
1135 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1136 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1137 long unsigned start_tb, current_tb;
1138 start_tb = old_thread->start_tb;
1139 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1140 old_thread->accum_tb += (current_tb - start_tb);
1141 new_thread->start_tb = current_tb;
1142 }
1143 #endif /* CONFIG_PPC64 */
1144
1145 #ifdef CONFIG_PPC_STD_MMU_64
1146 batch = this_cpu_ptr(&ppc64_tlb_batch);
1147 if (batch->active) {
1148 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1149 if (batch->index)
1150 __flush_tlb_pending(batch);
1151 batch->active = 0;
1152 }
1153 #endif /* CONFIG_PPC_STD_MMU_64 */
1154
1155 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1156 switch_booke_debug_regs(&new->thread.debug);
1157 #else
1158 /*
1159 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1160 * schedule DABR
1161 */
1162 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1163 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1164 __set_breakpoint(&new->thread.hw_brk);
1165 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1166 #endif
1167
1168 /*
1169 * We need to save SPRs before treclaim/trecheckpoint as these will
1170 * change a number of them.
1171 */
1172 save_sprs(&prev->thread);
1173
1174 /* Save FPU, Altivec, VSX and SPE state */
1175 giveup_all(prev);
1176
1177 __switch_to_tm(prev, new);
1178
1179 /*
1180 * We can't take a PMU exception inside _switch() since there is a
1181 * window where the kernel stack SLB and the kernel stack are out
1182 * of sync. Hard disable here.
1183 */
1184 hard_irq_disable();
1185
1186 /*
1187 * Call restore_sprs() before calling _switch(). If we move it after
1188 * _switch() then we miss out on calling it for new tasks. The reason
1189 * for this is we manually create a stack frame for new tasks that
1190 * directly returns through ret_from_fork() or
1191 * ret_from_kernel_thread(). See copy_thread() for details.
1192 */
1193 restore_sprs(old_thread, new_thread);
1194
1195 last = _switch(old_thread, new_thread);
1196
1197 #ifdef CONFIG_PPC_STD_MMU_64
1198 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1199 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1200 batch = this_cpu_ptr(&ppc64_tlb_batch);
1201 batch->active = 1;
1202 }
1203
1204 if (current_thread_info()->task->thread.regs)
1205 restore_math(current_thread_info()->task->thread.regs);
1206 #endif /* CONFIG_PPC_STD_MMU_64 */
1207
1208 return last;
1209 }
1210
1211 static int instructions_to_print = 16;
1212
1213 static void show_instructions(struct pt_regs *regs)
1214 {
1215 int i;
1216 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1217 sizeof(int));
1218
1219 printk("Instruction dump:");
1220
1221 for (i = 0; i < instructions_to_print; i++) {
1222 int instr;
1223
1224 if (!(i % 8))
1225 pr_cont("\n");
1226
1227 #if !defined(CONFIG_BOOKE)
1228 /* If executing with the IMMU off, adjust pc rather
1229 * than print XXXXXXXX.
1230 */
1231 if (!(regs->msr & MSR_IR))
1232 pc = (unsigned long)phys_to_virt(pc);
1233 #endif
1234
1235 if (!__kernel_text_address(pc) ||
1236 probe_kernel_address((unsigned int __user *)pc, instr)) {
1237 pr_cont("XXXXXXXX ");
1238 } else {
1239 if (regs->nip == pc)
1240 pr_cont("<%08x> ", instr);
1241 else
1242 pr_cont("%08x ", instr);
1243 }
1244
1245 pc += sizeof(int);
1246 }
1247
1248 pr_cont("\n");
1249 }
1250
1251 struct regbit {
1252 unsigned long bit;
1253 const char *name;
1254 };
1255
1256 static struct regbit msr_bits[] = {
1257 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1258 {MSR_SF, "SF"},
1259 {MSR_HV, "HV"},
1260 #endif
1261 {MSR_VEC, "VEC"},
1262 {MSR_VSX, "VSX"},
1263 #ifdef CONFIG_BOOKE
1264 {MSR_CE, "CE"},
1265 #endif
1266 {MSR_EE, "EE"},
1267 {MSR_PR, "PR"},
1268 {MSR_FP, "FP"},
1269 {MSR_ME, "ME"},
1270 #ifdef CONFIG_BOOKE
1271 {MSR_DE, "DE"},
1272 #else
1273 {MSR_SE, "SE"},
1274 {MSR_BE, "BE"},
1275 #endif
1276 {MSR_IR, "IR"},
1277 {MSR_DR, "DR"},
1278 {MSR_PMM, "PMM"},
1279 #ifndef CONFIG_BOOKE
1280 {MSR_RI, "RI"},
1281 {MSR_LE, "LE"},
1282 #endif
1283 {0, NULL}
1284 };
1285
1286 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1287 {
1288 const char *s = "";
1289
1290 for (; bits->bit; ++bits)
1291 if (val & bits->bit) {
1292 pr_cont("%s%s", s, bits->name);
1293 s = sep;
1294 }
1295 }
1296
1297 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1298 static struct regbit msr_tm_bits[] = {
1299 {MSR_TS_T, "T"},
1300 {MSR_TS_S, "S"},
1301 {MSR_TM, "E"},
1302 {0, NULL}
1303 };
1304
1305 static void print_tm_bits(unsigned long val)
1306 {
1307 /*
1308 * This only prints something if at least one of the TM bit is set.
1309 * Inside the TM[], the output means:
1310 * E: Enabled (bit 32)
1311 * S: Suspended (bit 33)
1312 * T: Transactional (bit 34)
1313 */
1314 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1315 pr_cont(",TM[");
1316 print_bits(val, msr_tm_bits, "");
1317 pr_cont("]");
1318 }
1319 }
1320 #else
1321 static void print_tm_bits(unsigned long val) {}
1322 #endif
1323
1324 static void print_msr_bits(unsigned long val)
1325 {
1326 pr_cont("<");
1327 print_bits(val, msr_bits, ",");
1328 print_tm_bits(val);
1329 pr_cont(">");
1330 }
1331
1332 #ifdef CONFIG_PPC64
1333 #define REG "%016lx"
1334 #define REGS_PER_LINE 4
1335 #define LAST_VOLATILE 13
1336 #else
1337 #define REG "%08lx"
1338 #define REGS_PER_LINE 8
1339 #define LAST_VOLATILE 12
1340 #endif
1341
1342 void show_regs(struct pt_regs * regs)
1343 {
1344 int i, trap;
1345
1346 show_regs_print_info(KERN_DEFAULT);
1347
1348 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1349 regs->nip, regs->link, regs->ctr);
1350 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1351 regs, regs->trap, print_tainted(), init_utsname()->release);
1352 printk("MSR: "REG" ", regs->msr);
1353 print_msr_bits(regs->msr);
1354 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1355 trap = TRAP(regs);
1356 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1357 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1358 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1359 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1360 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1361 #else
1362 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1363 #endif
1364 #ifdef CONFIG_PPC64
1365 pr_cont("SOFTE: %ld ", regs->softe);
1366 #endif
1367 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1368 if (MSR_TM_ACTIVE(regs->msr))
1369 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1370 #endif
1371
1372 for (i = 0; i < 32; i++) {
1373 if ((i % REGS_PER_LINE) == 0)
1374 pr_cont("\nGPR%02d: ", i);
1375 pr_cont(REG " ", regs->gpr[i]);
1376 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1377 break;
1378 }
1379 pr_cont("\n");
1380 #ifdef CONFIG_KALLSYMS
1381 /*
1382 * Lookup NIP late so we have the best change of getting the
1383 * above info out without failing
1384 */
1385 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1386 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1387 #endif
1388 show_stack(current, (unsigned long *) regs->gpr[1]);
1389 if (!user_mode(regs))
1390 show_instructions(regs);
1391 }
1392
1393 void flush_thread(void)
1394 {
1395 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1396 flush_ptrace_hw_breakpoint(current);
1397 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1398 set_debug_reg_defaults(&current->thread);
1399 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1400 }
1401
1402 void
1403 release_thread(struct task_struct *t)
1404 {
1405 }
1406
1407 /*
1408 * this gets called so that we can store coprocessor state into memory and
1409 * copy the current task into the new thread.
1410 */
1411 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1412 {
1413 flush_all_to_thread(src);
1414 /*
1415 * Flush TM state out so we can copy it. __switch_to_tm() does this
1416 * flush but it removes the checkpointed state from the current CPU and
1417 * transitions the CPU out of TM mode. Hence we need to call
1418 * tm_recheckpoint_new_task() (on the same task) to restore the
1419 * checkpointed state back and the TM mode.
1420 *
1421 * Can't pass dst because it isn't ready. Doesn't matter, passing
1422 * dst is only important for __switch_to()
1423 */
1424 __switch_to_tm(src, src);
1425
1426 *dst = *src;
1427
1428 clear_task_ebb(dst);
1429
1430 return 0;
1431 }
1432
1433 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1434 {
1435 #ifdef CONFIG_PPC_STD_MMU_64
1436 unsigned long sp_vsid;
1437 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1438
1439 if (radix_enabled())
1440 return;
1441
1442 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1443 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1444 << SLB_VSID_SHIFT_1T;
1445 else
1446 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1447 << SLB_VSID_SHIFT;
1448 sp_vsid |= SLB_VSID_KERNEL | llp;
1449 p->thread.ksp_vsid = sp_vsid;
1450 #endif
1451 }
1452
1453 /*
1454 * Copy a thread..
1455 */
1456
1457 /*
1458 * Copy architecture-specific thread state
1459 */
1460 int copy_thread(unsigned long clone_flags, unsigned long usp,
1461 unsigned long kthread_arg, struct task_struct *p)
1462 {
1463 struct pt_regs *childregs, *kregs;
1464 extern void ret_from_fork(void);
1465 extern void ret_from_kernel_thread(void);
1466 void (*f)(void);
1467 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1468 struct thread_info *ti = task_thread_info(p);
1469
1470 klp_init_thread_info(ti);
1471
1472 /* Copy registers */
1473 sp -= sizeof(struct pt_regs);
1474 childregs = (struct pt_regs *) sp;
1475 if (unlikely(p->flags & PF_KTHREAD)) {
1476 /* kernel thread */
1477 memset(childregs, 0, sizeof(struct pt_regs));
1478 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1479 /* function */
1480 if (usp)
1481 childregs->gpr[14] = ppc_function_entry((void *)usp);
1482 #ifdef CONFIG_PPC64
1483 clear_tsk_thread_flag(p, TIF_32BIT);
1484 childregs->softe = 1;
1485 #endif
1486 childregs->gpr[15] = kthread_arg;
1487 p->thread.regs = NULL; /* no user register state */
1488 ti->flags |= _TIF_RESTOREALL;
1489 f = ret_from_kernel_thread;
1490 } else {
1491 /* user thread */
1492 struct pt_regs *regs = current_pt_regs();
1493 CHECK_FULL_REGS(regs);
1494 *childregs = *regs;
1495 if (usp)
1496 childregs->gpr[1] = usp;
1497 p->thread.regs = childregs;
1498 childregs->gpr[3] = 0; /* Result from fork() */
1499 if (clone_flags & CLONE_SETTLS) {
1500 #ifdef CONFIG_PPC64
1501 if (!is_32bit_task())
1502 childregs->gpr[13] = childregs->gpr[6];
1503 else
1504 #endif
1505 childregs->gpr[2] = childregs->gpr[6];
1506 }
1507
1508 f = ret_from_fork;
1509 }
1510 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1511 sp -= STACK_FRAME_OVERHEAD;
1512
1513 /*
1514 * The way this works is that at some point in the future
1515 * some task will call _switch to switch to the new task.
1516 * That will pop off the stack frame created below and start
1517 * the new task running at ret_from_fork. The new task will
1518 * do some house keeping and then return from the fork or clone
1519 * system call, using the stack frame created above.
1520 */
1521 ((unsigned long *)sp)[0] = 0;
1522 sp -= sizeof(struct pt_regs);
1523 kregs = (struct pt_regs *) sp;
1524 sp -= STACK_FRAME_OVERHEAD;
1525 p->thread.ksp = sp;
1526 #ifdef CONFIG_PPC32
1527 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1528 _ALIGN_UP(sizeof(struct thread_info), 16);
1529 #endif
1530 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1531 p->thread.ptrace_bps[0] = NULL;
1532 #endif
1533
1534 p->thread.fp_save_area = NULL;
1535 #ifdef CONFIG_ALTIVEC
1536 p->thread.vr_save_area = NULL;
1537 #endif
1538
1539 setup_ksp_vsid(p, sp);
1540
1541 #ifdef CONFIG_PPC64
1542 if (cpu_has_feature(CPU_FTR_DSCR)) {
1543 p->thread.dscr_inherit = current->thread.dscr_inherit;
1544 p->thread.dscr = mfspr(SPRN_DSCR);
1545 }
1546 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1547 p->thread.ppr = INIT_PPR;
1548 #endif
1549 kregs->nip = ppc_function_entry(f);
1550 return 0;
1551 }
1552
1553 /*
1554 * Set up a thread for executing a new program
1555 */
1556 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1557 {
1558 #ifdef CONFIG_PPC64
1559 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1560 #endif
1561
1562 /*
1563 * If we exec out of a kernel thread then thread.regs will not be
1564 * set. Do it now.
1565 */
1566 if (!current->thread.regs) {
1567 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1568 current->thread.regs = regs - 1;
1569 }
1570
1571 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1572 /*
1573 * Clear any transactional state, we're exec()ing. The cause is
1574 * not important as there will never be a recheckpoint so it's not
1575 * user visible.
1576 */
1577 if (MSR_TM_SUSPENDED(mfmsr()))
1578 tm_reclaim_current(0);
1579 #endif
1580
1581 memset(regs->gpr, 0, sizeof(regs->gpr));
1582 regs->ctr = 0;
1583 regs->link = 0;
1584 regs->xer = 0;
1585 regs->ccr = 0;
1586 regs->gpr[1] = sp;
1587
1588 /*
1589 * We have just cleared all the nonvolatile GPRs, so make
1590 * FULL_REGS(regs) return true. This is necessary to allow
1591 * ptrace to examine the thread immediately after exec.
1592 */
1593 regs->trap &= ~1UL;
1594
1595 #ifdef CONFIG_PPC32
1596 regs->mq = 0;
1597 regs->nip = start;
1598 regs->msr = MSR_USER;
1599 #else
1600 if (!is_32bit_task()) {
1601 unsigned long entry;
1602
1603 if (is_elf2_task()) {
1604 /* Look ma, no function descriptors! */
1605 entry = start;
1606
1607 /*
1608 * Ulrich says:
1609 * The latest iteration of the ABI requires that when
1610 * calling a function (at its global entry point),
1611 * the caller must ensure r12 holds the entry point
1612 * address (so that the function can quickly
1613 * establish addressability).
1614 */
1615 regs->gpr[12] = start;
1616 /* Make sure that's restored on entry to userspace. */
1617 set_thread_flag(TIF_RESTOREALL);
1618 } else {
1619 unsigned long toc;
1620
1621 /* start is a relocated pointer to the function
1622 * descriptor for the elf _start routine. The first
1623 * entry in the function descriptor is the entry
1624 * address of _start and the second entry is the TOC
1625 * value we need to use.
1626 */
1627 __get_user(entry, (unsigned long __user *)start);
1628 __get_user(toc, (unsigned long __user *)start+1);
1629
1630 /* Check whether the e_entry function descriptor entries
1631 * need to be relocated before we can use them.
1632 */
1633 if (load_addr != 0) {
1634 entry += load_addr;
1635 toc += load_addr;
1636 }
1637 regs->gpr[2] = toc;
1638 }
1639 regs->nip = entry;
1640 regs->msr = MSR_USER64;
1641 } else {
1642 regs->nip = start;
1643 regs->gpr[2] = 0;
1644 regs->msr = MSR_USER32;
1645 }
1646 #endif
1647 #ifdef CONFIG_VSX
1648 current->thread.used_vsr = 0;
1649 #endif
1650 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1651 current->thread.fp_save_area = NULL;
1652 #ifdef CONFIG_ALTIVEC
1653 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1654 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1655 current->thread.vr_save_area = NULL;
1656 current->thread.vrsave = 0;
1657 current->thread.used_vr = 0;
1658 #endif /* CONFIG_ALTIVEC */
1659 #ifdef CONFIG_SPE
1660 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1661 current->thread.acc = 0;
1662 current->thread.spefscr = 0;
1663 current->thread.used_spe = 0;
1664 #endif /* CONFIG_SPE */
1665 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1666 current->thread.tm_tfhar = 0;
1667 current->thread.tm_texasr = 0;
1668 current->thread.tm_tfiar = 0;
1669 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1670 }
1671 EXPORT_SYMBOL(start_thread);
1672
1673 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1674 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1675
1676 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1677 {
1678 struct pt_regs *regs = tsk->thread.regs;
1679
1680 /* This is a bit hairy. If we are an SPE enabled processor
1681 * (have embedded fp) we store the IEEE exception enable flags in
1682 * fpexc_mode. fpexc_mode is also used for setting FP exception
1683 * mode (asyn, precise, disabled) for 'Classic' FP. */
1684 if (val & PR_FP_EXC_SW_ENABLE) {
1685 #ifdef CONFIG_SPE
1686 if (cpu_has_feature(CPU_FTR_SPE)) {
1687 /*
1688 * When the sticky exception bits are set
1689 * directly by userspace, it must call prctl
1690 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1691 * in the existing prctl settings) or
1692 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1693 * the bits being set). <fenv.h> functions
1694 * saving and restoring the whole
1695 * floating-point environment need to do so
1696 * anyway to restore the prctl settings from
1697 * the saved environment.
1698 */
1699 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1700 tsk->thread.fpexc_mode = val &
1701 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1702 return 0;
1703 } else {
1704 return -EINVAL;
1705 }
1706 #else
1707 return -EINVAL;
1708 #endif
1709 }
1710
1711 /* on a CONFIG_SPE this does not hurt us. The bits that
1712 * __pack_fe01 use do not overlap with bits used for
1713 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1714 * on CONFIG_SPE implementations are reserved so writing to
1715 * them does not change anything */
1716 if (val > PR_FP_EXC_PRECISE)
1717 return -EINVAL;
1718 tsk->thread.fpexc_mode = __pack_fe01(val);
1719 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1720 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1721 | tsk->thread.fpexc_mode;
1722 return 0;
1723 }
1724
1725 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1726 {
1727 unsigned int val;
1728
1729 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1730 #ifdef CONFIG_SPE
1731 if (cpu_has_feature(CPU_FTR_SPE)) {
1732 /*
1733 * When the sticky exception bits are set
1734 * directly by userspace, it must call prctl
1735 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1736 * in the existing prctl settings) or
1737 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1738 * the bits being set). <fenv.h> functions
1739 * saving and restoring the whole
1740 * floating-point environment need to do so
1741 * anyway to restore the prctl settings from
1742 * the saved environment.
1743 */
1744 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1745 val = tsk->thread.fpexc_mode;
1746 } else
1747 return -EINVAL;
1748 #else
1749 return -EINVAL;
1750 #endif
1751 else
1752 val = __unpack_fe01(tsk->thread.fpexc_mode);
1753 return put_user(val, (unsigned int __user *) adr);
1754 }
1755
1756 int set_endian(struct task_struct *tsk, unsigned int val)
1757 {
1758 struct pt_regs *regs = tsk->thread.regs;
1759
1760 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1761 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1762 return -EINVAL;
1763
1764 if (regs == NULL)
1765 return -EINVAL;
1766
1767 if (val == PR_ENDIAN_BIG)
1768 regs->msr &= ~MSR_LE;
1769 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1770 regs->msr |= MSR_LE;
1771 else
1772 return -EINVAL;
1773
1774 return 0;
1775 }
1776
1777 int get_endian(struct task_struct *tsk, unsigned long adr)
1778 {
1779 struct pt_regs *regs = tsk->thread.regs;
1780 unsigned int val;
1781
1782 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1783 !cpu_has_feature(CPU_FTR_REAL_LE))
1784 return -EINVAL;
1785
1786 if (regs == NULL)
1787 return -EINVAL;
1788
1789 if (regs->msr & MSR_LE) {
1790 if (cpu_has_feature(CPU_FTR_REAL_LE))
1791 val = PR_ENDIAN_LITTLE;
1792 else
1793 val = PR_ENDIAN_PPC_LITTLE;
1794 } else
1795 val = PR_ENDIAN_BIG;
1796
1797 return put_user(val, (unsigned int __user *)adr);
1798 }
1799
1800 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1801 {
1802 tsk->thread.align_ctl = val;
1803 return 0;
1804 }
1805
1806 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1807 {
1808 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1809 }
1810
1811 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1812 unsigned long nbytes)
1813 {
1814 unsigned long stack_page;
1815 unsigned long cpu = task_cpu(p);
1816
1817 /*
1818 * Avoid crashing if the stack has overflowed and corrupted
1819 * task_cpu(p), which is in the thread_info struct.
1820 */
1821 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1822 stack_page = (unsigned long) hardirq_ctx[cpu];
1823 if (sp >= stack_page + sizeof(struct thread_struct)
1824 && sp <= stack_page + THREAD_SIZE - nbytes)
1825 return 1;
1826
1827 stack_page = (unsigned long) softirq_ctx[cpu];
1828 if (sp >= stack_page + sizeof(struct thread_struct)
1829 && sp <= stack_page + THREAD_SIZE - nbytes)
1830 return 1;
1831 }
1832 return 0;
1833 }
1834
1835 int validate_sp(unsigned long sp, struct task_struct *p,
1836 unsigned long nbytes)
1837 {
1838 unsigned long stack_page = (unsigned long)task_stack_page(p);
1839
1840 if (sp >= stack_page + sizeof(struct thread_struct)
1841 && sp <= stack_page + THREAD_SIZE - nbytes)
1842 return 1;
1843
1844 return valid_irq_stack(sp, p, nbytes);
1845 }
1846
1847 EXPORT_SYMBOL(validate_sp);
1848
1849 unsigned long get_wchan(struct task_struct *p)
1850 {
1851 unsigned long ip, sp;
1852 int count = 0;
1853
1854 if (!p || p == current || p->state == TASK_RUNNING)
1855 return 0;
1856
1857 sp = p->thread.ksp;
1858 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1859 return 0;
1860
1861 do {
1862 sp = *(unsigned long *)sp;
1863 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1864 return 0;
1865 if (count > 0) {
1866 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1867 if (!in_sched_functions(ip))
1868 return ip;
1869 }
1870 } while (count++ < 16);
1871 return 0;
1872 }
1873
1874 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1875
1876 void show_stack(struct task_struct *tsk, unsigned long *stack)
1877 {
1878 unsigned long sp, ip, lr, newsp;
1879 int count = 0;
1880 int firstframe = 1;
1881 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1882 int curr_frame = current->curr_ret_stack;
1883 extern void return_to_handler(void);
1884 unsigned long rth = (unsigned long)return_to_handler;
1885 #endif
1886
1887 sp = (unsigned long) stack;
1888 if (tsk == NULL)
1889 tsk = current;
1890 if (sp == 0) {
1891 if (tsk == current)
1892 sp = current_stack_pointer();
1893 else
1894 sp = tsk->thread.ksp;
1895 }
1896
1897 lr = 0;
1898 printk("Call Trace:\n");
1899 do {
1900 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1901 return;
1902
1903 stack = (unsigned long *) sp;
1904 newsp = stack[0];
1905 ip = stack[STACK_FRAME_LR_SAVE];
1906 if (!firstframe || ip != lr) {
1907 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1908 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1909 if ((ip == rth) && curr_frame >= 0) {
1910 pr_cont(" (%pS)",
1911 (void *)current->ret_stack[curr_frame].ret);
1912 curr_frame--;
1913 }
1914 #endif
1915 if (firstframe)
1916 pr_cont(" (unreliable)");
1917 pr_cont("\n");
1918 }
1919 firstframe = 0;
1920
1921 /*
1922 * See if this is an exception frame.
1923 * We look for the "regshere" marker in the current frame.
1924 */
1925 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1926 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1927 struct pt_regs *regs = (struct pt_regs *)
1928 (sp + STACK_FRAME_OVERHEAD);
1929 lr = regs->link;
1930 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1931 regs->trap, (void *)regs->nip, (void *)lr);
1932 firstframe = 1;
1933 }
1934
1935 sp = newsp;
1936 } while (count++ < kstack_depth_to_print);
1937 }
1938
1939 #ifdef CONFIG_PPC64
1940 /* Called with hard IRQs off */
1941 void notrace __ppc64_runlatch_on(void)
1942 {
1943 struct thread_info *ti = current_thread_info();
1944 unsigned long ctrl;
1945
1946 ctrl = mfspr(SPRN_CTRLF);
1947 ctrl |= CTRL_RUNLATCH;
1948 mtspr(SPRN_CTRLT, ctrl);
1949
1950 ti->local_flags |= _TLF_RUNLATCH;
1951 }
1952
1953 /* Called with hard IRQs off */
1954 void notrace __ppc64_runlatch_off(void)
1955 {
1956 struct thread_info *ti = current_thread_info();
1957 unsigned long ctrl;
1958
1959 ti->local_flags &= ~_TLF_RUNLATCH;
1960
1961 ctrl = mfspr(SPRN_CTRLF);
1962 ctrl &= ~CTRL_RUNLATCH;
1963 mtspr(SPRN_CTRLT, ctrl);
1964 }
1965 #endif /* CONFIG_PPC64 */
1966
1967 unsigned long arch_align_stack(unsigned long sp)
1968 {
1969 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1970 sp -= get_random_int() & ~PAGE_MASK;
1971 return sp & ~0xf;
1972 }
1973
1974 static inline unsigned long brk_rnd(void)
1975 {
1976 unsigned long rnd = 0;
1977
1978 /* 8MB for 32bit, 1GB for 64bit */
1979 if (is_32bit_task())
1980 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1981 else
1982 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1983
1984 return rnd << PAGE_SHIFT;
1985 }
1986
1987 unsigned long arch_randomize_brk(struct mm_struct *mm)
1988 {
1989 unsigned long base = mm->brk;
1990 unsigned long ret;
1991
1992 #ifdef CONFIG_PPC_STD_MMU_64
1993 /*
1994 * If we are using 1TB segments and we are allowed to randomise
1995 * the heap, we can put it above 1TB so it is backed by a 1TB
1996 * segment. Otherwise the heap will be in the bottom 1TB
1997 * which always uses 256MB segments and this may result in a
1998 * performance penalty. We don't need to worry about radix. For
1999 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2000 */
2001 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2002 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2003 #endif
2004
2005 ret = PAGE_ALIGN(base + brk_rnd());
2006
2007 if (ret < mm->brk)
2008 return mm->brk;
2009
2010 return ret;
2011 }
2012