]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc: add Altivec/VMX state to coredumps
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/module.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/uaccess.h>
39 #include <asm/system.h>
40 #include <asm/io.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/prom.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/syscalls.h>
47 #ifdef CONFIG_PPC64
48 #include <asm/firmware.h>
49 #endif
50
51 extern unsigned long _get_SP(void);
52
53 #ifndef CONFIG_SMP
54 struct task_struct *last_task_used_math = NULL;
55 struct task_struct *last_task_used_altivec = NULL;
56 struct task_struct *last_task_used_spe = NULL;
57 #endif
58
59 /*
60 * Make sure the floating-point register state in the
61 * the thread_struct is up to date for task tsk.
62 */
63 void flush_fp_to_thread(struct task_struct *tsk)
64 {
65 if (tsk->thread.regs) {
66 /*
67 * We need to disable preemption here because if we didn't,
68 * another process could get scheduled after the regs->msr
69 * test but before we have finished saving the FP registers
70 * to the thread_struct. That process could take over the
71 * FPU, and then when we get scheduled again we would store
72 * bogus values for the remaining FP registers.
73 */
74 preempt_disable();
75 if (tsk->thread.regs->msr & MSR_FP) {
76 #ifdef CONFIG_SMP
77 /*
78 * This should only ever be called for current or
79 * for a stopped child process. Since we save away
80 * the FP register state on context switch on SMP,
81 * there is something wrong if a stopped child appears
82 * to still have its FP state in the CPU registers.
83 */
84 BUG_ON(tsk != current);
85 #endif
86 giveup_fpu(tsk);
87 }
88 preempt_enable();
89 }
90 }
91
92 void enable_kernel_fp(void)
93 {
94 WARN_ON(preemptible());
95
96 #ifdef CONFIG_SMP
97 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
98 giveup_fpu(current);
99 else
100 giveup_fpu(NULL); /* just enables FP for kernel */
101 #else
102 giveup_fpu(last_task_used_math);
103 #endif /* CONFIG_SMP */
104 }
105 EXPORT_SYMBOL(enable_kernel_fp);
106
107 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
108 {
109 if (!tsk->thread.regs)
110 return 0;
111 flush_fp_to_thread(current);
112
113 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
114
115 return 1;
116 }
117
118 #ifdef CONFIG_ALTIVEC
119 void enable_kernel_altivec(void)
120 {
121 WARN_ON(preemptible());
122
123 #ifdef CONFIG_SMP
124 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
125 giveup_altivec(current);
126 else
127 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
128 #else
129 giveup_altivec(last_task_used_altivec);
130 #endif /* CONFIG_SMP */
131 }
132 EXPORT_SYMBOL(enable_kernel_altivec);
133
134 /*
135 * Make sure the VMX/Altivec register state in the
136 * the thread_struct is up to date for task tsk.
137 */
138 void flush_altivec_to_thread(struct task_struct *tsk)
139 {
140 if (tsk->thread.regs) {
141 preempt_disable();
142 if (tsk->thread.regs->msr & MSR_VEC) {
143 #ifdef CONFIG_SMP
144 BUG_ON(tsk != current);
145 #endif
146 giveup_altivec(tsk);
147 }
148 preempt_enable();
149 }
150 }
151
152 int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
153 {
154 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
155 * separately, see below */
156 const int nregs = ELF_NVRREG - 2;
157 elf_vrreg_t *reg;
158 u32 *dest;
159
160 if (tsk == current)
161 flush_altivec_to_thread(tsk);
162
163 reg = (elf_vrreg_t *)vrregs;
164
165 /* copy the 32 vr registers */
166 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
167 reg += nregs;
168
169 /* copy the vscr */
170 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
171 reg++;
172
173 /* vrsave is stored in the high 32bit slot of the final 128bits */
174 memset(reg, 0, sizeof(*reg));
175 dest = (u32 *)reg;
176 *dest = tsk->thread.vrsave;
177
178 return 1;
179 }
180 #endif /* CONFIG_ALTIVEC */
181
182 #ifdef CONFIG_SPE
183
184 void enable_kernel_spe(void)
185 {
186 WARN_ON(preemptible());
187
188 #ifdef CONFIG_SMP
189 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
190 giveup_spe(current);
191 else
192 giveup_spe(NULL); /* just enable SPE for kernel - force */
193 #else
194 giveup_spe(last_task_used_spe);
195 #endif /* __SMP __ */
196 }
197 EXPORT_SYMBOL(enable_kernel_spe);
198
199 void flush_spe_to_thread(struct task_struct *tsk)
200 {
201 if (tsk->thread.regs) {
202 preempt_disable();
203 if (tsk->thread.regs->msr & MSR_SPE) {
204 #ifdef CONFIG_SMP
205 BUG_ON(tsk != current);
206 #endif
207 giveup_spe(tsk);
208 }
209 preempt_enable();
210 }
211 }
212
213 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
214 {
215 flush_spe_to_thread(current);
216 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
217 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
218 return 1;
219 }
220 #endif /* CONFIG_SPE */
221
222 #ifndef CONFIG_SMP
223 /*
224 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
225 * and the current task has some state, discard it.
226 */
227 void discard_lazy_cpu_state(void)
228 {
229 preempt_disable();
230 if (last_task_used_math == current)
231 last_task_used_math = NULL;
232 #ifdef CONFIG_ALTIVEC
233 if (last_task_used_altivec == current)
234 last_task_used_altivec = NULL;
235 #endif /* CONFIG_ALTIVEC */
236 #ifdef CONFIG_SPE
237 if (last_task_used_spe == current)
238 last_task_used_spe = NULL;
239 #endif
240 preempt_enable();
241 }
242 #endif /* CONFIG_SMP */
243
244 int set_dabr(unsigned long dabr)
245 {
246 #ifdef CONFIG_PPC_MERGE /* XXX for now */
247 if (ppc_md.set_dabr)
248 return ppc_md.set_dabr(dabr);
249 #endif
250
251 /* XXX should we have a CPU_FTR_HAS_DABR ? */
252 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
253 mtspr(SPRN_DABR, dabr);
254 #endif
255 return 0;
256 }
257
258 #ifdef CONFIG_PPC64
259 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
260 #endif
261
262 static DEFINE_PER_CPU(unsigned long, current_dabr);
263
264 struct task_struct *__switch_to(struct task_struct *prev,
265 struct task_struct *new)
266 {
267 struct thread_struct *new_thread, *old_thread;
268 unsigned long flags;
269 struct task_struct *last;
270
271 #ifdef CONFIG_SMP
272 /* avoid complexity of lazy save/restore of fpu
273 * by just saving it every time we switch out if
274 * this task used the fpu during the last quantum.
275 *
276 * If it tries to use the fpu again, it'll trap and
277 * reload its fp regs. So we don't have to do a restore
278 * every switch, just a save.
279 * -- Cort
280 */
281 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
282 giveup_fpu(prev);
283 #ifdef CONFIG_ALTIVEC
284 /*
285 * If the previous thread used altivec in the last quantum
286 * (thus changing altivec regs) then save them.
287 * We used to check the VRSAVE register but not all apps
288 * set it, so we don't rely on it now (and in fact we need
289 * to save & restore VSCR even if VRSAVE == 0). -- paulus
290 *
291 * On SMP we always save/restore altivec regs just to avoid the
292 * complexity of changing processors.
293 * -- Cort
294 */
295 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
296 giveup_altivec(prev);
297 #endif /* CONFIG_ALTIVEC */
298 #ifdef CONFIG_SPE
299 /*
300 * If the previous thread used spe in the last quantum
301 * (thus changing spe regs) then save them.
302 *
303 * On SMP we always save/restore spe regs just to avoid the
304 * complexity of changing processors.
305 */
306 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
307 giveup_spe(prev);
308 #endif /* CONFIG_SPE */
309
310 #else /* CONFIG_SMP */
311 #ifdef CONFIG_ALTIVEC
312 /* Avoid the trap. On smp this this never happens since
313 * we don't set last_task_used_altivec -- Cort
314 */
315 if (new->thread.regs && last_task_used_altivec == new)
316 new->thread.regs->msr |= MSR_VEC;
317 #endif /* CONFIG_ALTIVEC */
318 #ifdef CONFIG_SPE
319 /* Avoid the trap. On smp this this never happens since
320 * we don't set last_task_used_spe
321 */
322 if (new->thread.regs && last_task_used_spe == new)
323 new->thread.regs->msr |= MSR_SPE;
324 #endif /* CONFIG_SPE */
325
326 #endif /* CONFIG_SMP */
327
328 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
329 set_dabr(new->thread.dabr);
330 __get_cpu_var(current_dabr) = new->thread.dabr;
331 }
332
333 new_thread = &new->thread;
334 old_thread = &current->thread;
335
336 #ifdef CONFIG_PPC64
337 /*
338 * Collect processor utilization data per process
339 */
340 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
341 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
342 long unsigned start_tb, current_tb;
343 start_tb = old_thread->start_tb;
344 cu->current_tb = current_tb = mfspr(SPRN_PURR);
345 old_thread->accum_tb += (current_tb - start_tb);
346 new_thread->start_tb = current_tb;
347 }
348 #endif
349
350 local_irq_save(flags);
351
352 account_system_vtime(current);
353 account_process_vtime(current);
354 calculate_steal_time();
355
356 last = _switch(old_thread, new_thread);
357
358 local_irq_restore(flags);
359
360 return last;
361 }
362
363 static int instructions_to_print = 16;
364
365 static void show_instructions(struct pt_regs *regs)
366 {
367 int i;
368 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
369 sizeof(int));
370
371 printk("Instruction dump:");
372
373 for (i = 0; i < instructions_to_print; i++) {
374 int instr;
375
376 if (!(i % 8))
377 printk("\n");
378
379 #if !defined(CONFIG_BOOKE)
380 /* If executing with the IMMU off, adjust pc rather
381 * than print XXXXXXXX.
382 */
383 if (!(regs->msr & MSR_IR))
384 pc = (unsigned long)phys_to_virt(pc);
385 #endif
386
387 /* We use __get_user here *only* to avoid an OOPS on a
388 * bad address because the pc *should* only be a
389 * kernel address.
390 */
391 if (!__kernel_text_address(pc) ||
392 __get_user(instr, (unsigned int __user *)pc)) {
393 printk("XXXXXXXX ");
394 } else {
395 if (regs->nip == pc)
396 printk("<%08x> ", instr);
397 else
398 printk("%08x ", instr);
399 }
400
401 pc += sizeof(int);
402 }
403
404 printk("\n");
405 }
406
407 static struct regbit {
408 unsigned long bit;
409 const char *name;
410 } msr_bits[] = {
411 {MSR_EE, "EE"},
412 {MSR_PR, "PR"},
413 {MSR_FP, "FP"},
414 {MSR_ME, "ME"},
415 {MSR_IR, "IR"},
416 {MSR_DR, "DR"},
417 {0, NULL}
418 };
419
420 static void printbits(unsigned long val, struct regbit *bits)
421 {
422 const char *sep = "";
423
424 printk("<");
425 for (; bits->bit; ++bits)
426 if (val & bits->bit) {
427 printk("%s%s", sep, bits->name);
428 sep = ",";
429 }
430 printk(">");
431 }
432
433 #ifdef CONFIG_PPC64
434 #define REG "%016lx"
435 #define REGS_PER_LINE 4
436 #define LAST_VOLATILE 13
437 #else
438 #define REG "%08lx"
439 #define REGS_PER_LINE 8
440 #define LAST_VOLATILE 12
441 #endif
442
443 void show_regs(struct pt_regs * regs)
444 {
445 int i, trap;
446
447 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
448 regs->nip, regs->link, regs->ctr);
449 printk("REGS: %p TRAP: %04lx %s (%s)\n",
450 regs, regs->trap, print_tainted(), init_utsname()->release);
451 printk("MSR: "REG" ", regs->msr);
452 printbits(regs->msr, msr_bits);
453 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
454 trap = TRAP(regs);
455 if (trap == 0x300 || trap == 0x600)
456 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
457 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
458 #else
459 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
460 #endif
461 printk("TASK = %p[%d] '%s' THREAD: %p",
462 current, current->pid, current->comm, task_thread_info(current));
463
464 #ifdef CONFIG_SMP
465 printk(" CPU: %d", smp_processor_id());
466 #endif /* CONFIG_SMP */
467
468 for (i = 0; i < 32; i++) {
469 if ((i % REGS_PER_LINE) == 0)
470 printk("\n" KERN_INFO "GPR%02d: ", i);
471 printk(REG " ", regs->gpr[i]);
472 if (i == LAST_VOLATILE && !FULL_REGS(regs))
473 break;
474 }
475 printk("\n");
476 #ifdef CONFIG_KALLSYMS
477 /*
478 * Lookup NIP late so we have the best change of getting the
479 * above info out without failing
480 */
481 printk("NIP ["REG"] ", regs->nip);
482 print_symbol("%s\n", regs->nip);
483 printk("LR ["REG"] ", regs->link);
484 print_symbol("%s\n", regs->link);
485 #endif
486 show_stack(current, (unsigned long *) regs->gpr[1]);
487 if (!user_mode(regs))
488 show_instructions(regs);
489 }
490
491 void exit_thread(void)
492 {
493 discard_lazy_cpu_state();
494 }
495
496 void flush_thread(void)
497 {
498 #ifdef CONFIG_PPC64
499 struct thread_info *t = current_thread_info();
500
501 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
502 clear_ti_thread_flag(t, TIF_ABI_PENDING);
503 if (test_ti_thread_flag(t, TIF_32BIT))
504 clear_ti_thread_flag(t, TIF_32BIT);
505 else
506 set_ti_thread_flag(t, TIF_32BIT);
507 }
508 #endif
509
510 discard_lazy_cpu_state();
511
512 if (current->thread.dabr) {
513 current->thread.dabr = 0;
514 set_dabr(0);
515 }
516 }
517
518 void
519 release_thread(struct task_struct *t)
520 {
521 }
522
523 /*
524 * This gets called before we allocate a new thread and copy
525 * the current task into it.
526 */
527 void prepare_to_copy(struct task_struct *tsk)
528 {
529 flush_fp_to_thread(current);
530 flush_altivec_to_thread(current);
531 flush_spe_to_thread(current);
532 }
533
534 /*
535 * Copy a thread..
536 */
537 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
538 unsigned long unused, struct task_struct *p,
539 struct pt_regs *regs)
540 {
541 struct pt_regs *childregs, *kregs;
542 extern void ret_from_fork(void);
543 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
544
545 CHECK_FULL_REGS(regs);
546 /* Copy registers */
547 sp -= sizeof(struct pt_regs);
548 childregs = (struct pt_regs *) sp;
549 *childregs = *regs;
550 if ((childregs->msr & MSR_PR) == 0) {
551 /* for kernel thread, set `current' and stackptr in new task */
552 childregs->gpr[1] = sp + sizeof(struct pt_regs);
553 #ifdef CONFIG_PPC32
554 childregs->gpr[2] = (unsigned long) p;
555 #else
556 clear_tsk_thread_flag(p, TIF_32BIT);
557 #endif
558 p->thread.regs = NULL; /* no user register state */
559 } else {
560 childregs->gpr[1] = usp;
561 p->thread.regs = childregs;
562 if (clone_flags & CLONE_SETTLS) {
563 #ifdef CONFIG_PPC64
564 if (!test_thread_flag(TIF_32BIT))
565 childregs->gpr[13] = childregs->gpr[6];
566 else
567 #endif
568 childregs->gpr[2] = childregs->gpr[6];
569 }
570 }
571 childregs->gpr[3] = 0; /* Result from fork() */
572 sp -= STACK_FRAME_OVERHEAD;
573
574 /*
575 * The way this works is that at some point in the future
576 * some task will call _switch to switch to the new task.
577 * That will pop off the stack frame created below and start
578 * the new task running at ret_from_fork. The new task will
579 * do some house keeping and then return from the fork or clone
580 * system call, using the stack frame created above.
581 */
582 sp -= sizeof(struct pt_regs);
583 kregs = (struct pt_regs *) sp;
584 sp -= STACK_FRAME_OVERHEAD;
585 p->thread.ksp = sp;
586
587 #ifdef CONFIG_PPC64
588 if (cpu_has_feature(CPU_FTR_SLB)) {
589 unsigned long sp_vsid;
590 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
591
592 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
593 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
594 << SLB_VSID_SHIFT_1T;
595 else
596 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
597 << SLB_VSID_SHIFT;
598 sp_vsid |= SLB_VSID_KERNEL | llp;
599 p->thread.ksp_vsid = sp_vsid;
600 }
601
602 /*
603 * The PPC64 ABI makes use of a TOC to contain function
604 * pointers. The function (ret_from_except) is actually a pointer
605 * to the TOC entry. The first entry is a pointer to the actual
606 * function.
607 */
608 kregs->nip = *((unsigned long *)ret_from_fork);
609 #else
610 kregs->nip = (unsigned long)ret_from_fork;
611 #endif
612
613 return 0;
614 }
615
616 /*
617 * Set up a thread for executing a new program
618 */
619 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
620 {
621 #ifdef CONFIG_PPC64
622 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
623 #endif
624
625 set_fs(USER_DS);
626
627 /*
628 * If we exec out of a kernel thread then thread.regs will not be
629 * set. Do it now.
630 */
631 if (!current->thread.regs) {
632 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
633 current->thread.regs = regs - 1;
634 }
635
636 memset(regs->gpr, 0, sizeof(regs->gpr));
637 regs->ctr = 0;
638 regs->link = 0;
639 regs->xer = 0;
640 regs->ccr = 0;
641 regs->gpr[1] = sp;
642
643 /*
644 * We have just cleared all the nonvolatile GPRs, so make
645 * FULL_REGS(regs) return true. This is necessary to allow
646 * ptrace to examine the thread immediately after exec.
647 */
648 regs->trap &= ~1UL;
649
650 #ifdef CONFIG_PPC32
651 regs->mq = 0;
652 regs->nip = start;
653 regs->msr = MSR_USER;
654 #else
655 if (!test_thread_flag(TIF_32BIT)) {
656 unsigned long entry, toc;
657
658 /* start is a relocated pointer to the function descriptor for
659 * the elf _start routine. The first entry in the function
660 * descriptor is the entry address of _start and the second
661 * entry is the TOC value we need to use.
662 */
663 __get_user(entry, (unsigned long __user *)start);
664 __get_user(toc, (unsigned long __user *)start+1);
665
666 /* Check whether the e_entry function descriptor entries
667 * need to be relocated before we can use them.
668 */
669 if (load_addr != 0) {
670 entry += load_addr;
671 toc += load_addr;
672 }
673 regs->nip = entry;
674 regs->gpr[2] = toc;
675 regs->msr = MSR_USER64;
676 } else {
677 regs->nip = start;
678 regs->gpr[2] = 0;
679 regs->msr = MSR_USER32;
680 }
681 #endif
682
683 discard_lazy_cpu_state();
684 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
685 current->thread.fpscr.val = 0;
686 #ifdef CONFIG_ALTIVEC
687 memset(current->thread.vr, 0, sizeof(current->thread.vr));
688 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
689 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
690 current->thread.vrsave = 0;
691 current->thread.used_vr = 0;
692 #endif /* CONFIG_ALTIVEC */
693 #ifdef CONFIG_SPE
694 memset(current->thread.evr, 0, sizeof(current->thread.evr));
695 current->thread.acc = 0;
696 current->thread.spefscr = 0;
697 current->thread.used_spe = 0;
698 #endif /* CONFIG_SPE */
699 }
700
701 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
702 | PR_FP_EXC_RES | PR_FP_EXC_INV)
703
704 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
705 {
706 struct pt_regs *regs = tsk->thread.regs;
707
708 /* This is a bit hairy. If we are an SPE enabled processor
709 * (have embedded fp) we store the IEEE exception enable flags in
710 * fpexc_mode. fpexc_mode is also used for setting FP exception
711 * mode (asyn, precise, disabled) for 'Classic' FP. */
712 if (val & PR_FP_EXC_SW_ENABLE) {
713 #ifdef CONFIG_SPE
714 if (cpu_has_feature(CPU_FTR_SPE)) {
715 tsk->thread.fpexc_mode = val &
716 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
717 return 0;
718 } else {
719 return -EINVAL;
720 }
721 #else
722 return -EINVAL;
723 #endif
724 }
725
726 /* on a CONFIG_SPE this does not hurt us. The bits that
727 * __pack_fe01 use do not overlap with bits used for
728 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
729 * on CONFIG_SPE implementations are reserved so writing to
730 * them does not change anything */
731 if (val > PR_FP_EXC_PRECISE)
732 return -EINVAL;
733 tsk->thread.fpexc_mode = __pack_fe01(val);
734 if (regs != NULL && (regs->msr & MSR_FP) != 0)
735 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
736 | tsk->thread.fpexc_mode;
737 return 0;
738 }
739
740 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
741 {
742 unsigned int val;
743
744 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
745 #ifdef CONFIG_SPE
746 if (cpu_has_feature(CPU_FTR_SPE))
747 val = tsk->thread.fpexc_mode;
748 else
749 return -EINVAL;
750 #else
751 return -EINVAL;
752 #endif
753 else
754 val = __unpack_fe01(tsk->thread.fpexc_mode);
755 return put_user(val, (unsigned int __user *) adr);
756 }
757
758 int set_endian(struct task_struct *tsk, unsigned int val)
759 {
760 struct pt_regs *regs = tsk->thread.regs;
761
762 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
763 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
764 return -EINVAL;
765
766 if (regs == NULL)
767 return -EINVAL;
768
769 if (val == PR_ENDIAN_BIG)
770 regs->msr &= ~MSR_LE;
771 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
772 regs->msr |= MSR_LE;
773 else
774 return -EINVAL;
775
776 return 0;
777 }
778
779 int get_endian(struct task_struct *tsk, unsigned long adr)
780 {
781 struct pt_regs *regs = tsk->thread.regs;
782 unsigned int val;
783
784 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
785 !cpu_has_feature(CPU_FTR_REAL_LE))
786 return -EINVAL;
787
788 if (regs == NULL)
789 return -EINVAL;
790
791 if (regs->msr & MSR_LE) {
792 if (cpu_has_feature(CPU_FTR_REAL_LE))
793 val = PR_ENDIAN_LITTLE;
794 else
795 val = PR_ENDIAN_PPC_LITTLE;
796 } else
797 val = PR_ENDIAN_BIG;
798
799 return put_user(val, (unsigned int __user *)adr);
800 }
801
802 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
803 {
804 tsk->thread.align_ctl = val;
805 return 0;
806 }
807
808 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
809 {
810 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
811 }
812
813 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
814
815 int sys_clone(unsigned long clone_flags, unsigned long usp,
816 int __user *parent_tidp, void __user *child_threadptr,
817 int __user *child_tidp, int p6,
818 struct pt_regs *regs)
819 {
820 CHECK_FULL_REGS(regs);
821 if (usp == 0)
822 usp = regs->gpr[1]; /* stack pointer for child */
823 #ifdef CONFIG_PPC64
824 if (test_thread_flag(TIF_32BIT)) {
825 parent_tidp = TRUNC_PTR(parent_tidp);
826 child_tidp = TRUNC_PTR(child_tidp);
827 }
828 #endif
829 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
830 }
831
832 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
833 unsigned long p4, unsigned long p5, unsigned long p6,
834 struct pt_regs *regs)
835 {
836 CHECK_FULL_REGS(regs);
837 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
838 }
839
840 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
841 unsigned long p4, unsigned long p5, unsigned long p6,
842 struct pt_regs *regs)
843 {
844 CHECK_FULL_REGS(regs);
845 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
846 regs, 0, NULL, NULL);
847 }
848
849 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
850 unsigned long a3, unsigned long a4, unsigned long a5,
851 struct pt_regs *regs)
852 {
853 int error;
854 char *filename;
855
856 filename = getname((char __user *) a0);
857 error = PTR_ERR(filename);
858 if (IS_ERR(filename))
859 goto out;
860 flush_fp_to_thread(current);
861 flush_altivec_to_thread(current);
862 flush_spe_to_thread(current);
863 error = do_execve(filename, (char __user * __user *) a1,
864 (char __user * __user *) a2, regs);
865 if (error == 0) {
866 task_lock(current);
867 current->ptrace &= ~PT_DTRACE;
868 task_unlock(current);
869 }
870 putname(filename);
871 out:
872 return error;
873 }
874
875 #ifdef CONFIG_IRQSTACKS
876 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
877 unsigned long nbytes)
878 {
879 unsigned long stack_page;
880 unsigned long cpu = task_cpu(p);
881
882 /*
883 * Avoid crashing if the stack has overflowed and corrupted
884 * task_cpu(p), which is in the thread_info struct.
885 */
886 if (cpu < NR_CPUS && cpu_possible(cpu)) {
887 stack_page = (unsigned long) hardirq_ctx[cpu];
888 if (sp >= stack_page + sizeof(struct thread_struct)
889 && sp <= stack_page + THREAD_SIZE - nbytes)
890 return 1;
891
892 stack_page = (unsigned long) softirq_ctx[cpu];
893 if (sp >= stack_page + sizeof(struct thread_struct)
894 && sp <= stack_page + THREAD_SIZE - nbytes)
895 return 1;
896 }
897 return 0;
898 }
899
900 #else
901 #define valid_irq_stack(sp, p, nb) 0
902 #endif /* CONFIG_IRQSTACKS */
903
904 int validate_sp(unsigned long sp, struct task_struct *p,
905 unsigned long nbytes)
906 {
907 unsigned long stack_page = (unsigned long)task_stack_page(p);
908
909 if (sp >= stack_page + sizeof(struct thread_struct)
910 && sp <= stack_page + THREAD_SIZE - nbytes)
911 return 1;
912
913 return valid_irq_stack(sp, p, nbytes);
914 }
915
916 #ifdef CONFIG_PPC64
917 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
918 #define FRAME_LR_SAVE 2
919 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
920 #define REGS_MARKER 0x7265677368657265ul
921 #define FRAME_MARKER 12
922 #else
923 #define MIN_STACK_FRAME 16
924 #define FRAME_LR_SAVE 1
925 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
926 #define REGS_MARKER 0x72656773ul
927 #define FRAME_MARKER 2
928 #endif
929
930 EXPORT_SYMBOL(validate_sp);
931
932 unsigned long get_wchan(struct task_struct *p)
933 {
934 unsigned long ip, sp;
935 int count = 0;
936
937 if (!p || p == current || p->state == TASK_RUNNING)
938 return 0;
939
940 sp = p->thread.ksp;
941 if (!validate_sp(sp, p, MIN_STACK_FRAME))
942 return 0;
943
944 do {
945 sp = *(unsigned long *)sp;
946 if (!validate_sp(sp, p, MIN_STACK_FRAME))
947 return 0;
948 if (count > 0) {
949 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
950 if (!in_sched_functions(ip))
951 return ip;
952 }
953 } while (count++ < 16);
954 return 0;
955 }
956
957 static int kstack_depth_to_print = 64;
958
959 void show_stack(struct task_struct *tsk, unsigned long *stack)
960 {
961 unsigned long sp, ip, lr, newsp;
962 int count = 0;
963 int firstframe = 1;
964
965 sp = (unsigned long) stack;
966 if (tsk == NULL)
967 tsk = current;
968 if (sp == 0) {
969 if (tsk == current)
970 asm("mr %0,1" : "=r" (sp));
971 else
972 sp = tsk->thread.ksp;
973 }
974
975 lr = 0;
976 printk("Call Trace:\n");
977 do {
978 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
979 return;
980
981 stack = (unsigned long *) sp;
982 newsp = stack[0];
983 ip = stack[FRAME_LR_SAVE];
984 if (!firstframe || ip != lr) {
985 printk("["REG"] ["REG"] ", sp, ip);
986 print_symbol("%s", ip);
987 if (firstframe)
988 printk(" (unreliable)");
989 printk("\n");
990 }
991 firstframe = 0;
992
993 /*
994 * See if this is an exception frame.
995 * We look for the "regshere" marker in the current frame.
996 */
997 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
998 && stack[FRAME_MARKER] == REGS_MARKER) {
999 struct pt_regs *regs = (struct pt_regs *)
1000 (sp + STACK_FRAME_OVERHEAD);
1001 printk("--- Exception: %lx", regs->trap);
1002 print_symbol(" at %s\n", regs->nip);
1003 lr = regs->link;
1004 print_symbol(" LR = %s\n", lr);
1005 firstframe = 1;
1006 }
1007
1008 sp = newsp;
1009 } while (count++ < kstack_depth_to_print);
1010 }
1011
1012 void dump_stack(void)
1013 {
1014 show_stack(current, NULL);
1015 }
1016 EXPORT_SYMBOL(dump_stack);
1017
1018 #ifdef CONFIG_PPC64
1019 void ppc64_runlatch_on(void)
1020 {
1021 unsigned long ctrl;
1022
1023 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1024 HMT_medium();
1025
1026 ctrl = mfspr(SPRN_CTRLF);
1027 ctrl |= CTRL_RUNLATCH;
1028 mtspr(SPRN_CTRLT, ctrl);
1029
1030 set_thread_flag(TIF_RUNLATCH);
1031 }
1032 }
1033
1034 void ppc64_runlatch_off(void)
1035 {
1036 unsigned long ctrl;
1037
1038 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1039 HMT_medium();
1040
1041 clear_thread_flag(TIF_RUNLATCH);
1042
1043 ctrl = mfspr(SPRN_CTRLF);
1044 ctrl &= ~CTRL_RUNLATCH;
1045 mtspr(SPRN_CTRLT, ctrl);
1046 }
1047 }
1048 #endif