]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/kernel/process.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / kernel / process.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77
78 extern unsigned long _get_SP(void);
79
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
85 */
86 bool tm_suspend_disabled __ro_after_init = false;
87
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 /*
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
95 */
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 set_thread_flag(TIF_RESTORE_TM);
101 }
102 }
103
104 static bool tm_active_with_fp(struct task_struct *tsk)
105 {
106 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
107 (tsk->thread.ckpt_regs.msr & MSR_FP);
108 }
109
110 static bool tm_active_with_altivec(struct task_struct *tsk)
111 {
112 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_VEC);
114 }
115 #else
116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120
121 bool strict_msr_control;
122 EXPORT_SYMBOL(strict_msr_control);
123
124 static int __init enable_strict_msr_control(char *str)
125 {
126 strict_msr_control = true;
127 pr_info("Enabling strict facility control\n");
128
129 return 0;
130 }
131 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132
133 /* notrace because it's called by restore_math */
134 unsigned long notrace msr_check_and_set(unsigned long bits)
135 {
136 unsigned long oldmsr = mfmsr();
137 unsigned long newmsr;
138
139 newmsr = oldmsr | bits;
140
141 #ifdef CONFIG_VSX
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr |= MSR_VSX;
144 #endif
145
146 if (oldmsr != newmsr)
147 mtmsr_isync(newmsr);
148
149 return newmsr;
150 }
151 EXPORT_SYMBOL_GPL(msr_check_and_set);
152
153 /* notrace because it's called by restore_math */
154 void notrace __msr_check_and_clear(unsigned long bits)
155 {
156 unsigned long oldmsr = mfmsr();
157 unsigned long newmsr;
158
159 newmsr = oldmsr & ~bits;
160
161 #ifdef CONFIG_VSX
162 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163 newmsr &= ~MSR_VSX;
164 #endif
165
166 if (oldmsr != newmsr)
167 mtmsr_isync(newmsr);
168 }
169 EXPORT_SYMBOL(__msr_check_and_clear);
170
171 #ifdef CONFIG_PPC_FPU
172 static void __giveup_fpu(struct task_struct *tsk)
173 {
174 unsigned long msr;
175
176 save_fpu(tsk);
177 msr = tsk->thread.regs->msr;
178 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
179 #ifdef CONFIG_VSX
180 if (cpu_has_feature(CPU_FTR_VSX))
181 msr &= ~MSR_VSX;
182 #endif
183 tsk->thread.regs->msr = msr;
184 }
185
186 void giveup_fpu(struct task_struct *tsk)
187 {
188 check_if_tm_restore_required(tsk);
189
190 msr_check_and_set(MSR_FP);
191 __giveup_fpu(tsk);
192 msr_check_and_clear(MSR_FP);
193 }
194 EXPORT_SYMBOL(giveup_fpu);
195
196 /*
197 * Make sure the floating-point register state in the
198 * the thread_struct is up to date for task tsk.
199 */
200 void flush_fp_to_thread(struct task_struct *tsk)
201 {
202 if (tsk->thread.regs) {
203 /*
204 * We need to disable preemption here because if we didn't,
205 * another process could get scheduled after the regs->msr
206 * test but before we have finished saving the FP registers
207 * to the thread_struct. That process could take over the
208 * FPU, and then when we get scheduled again we would store
209 * bogus values for the remaining FP registers.
210 */
211 preempt_disable();
212 if (tsk->thread.regs->msr & MSR_FP) {
213 /*
214 * This should only ever be called for current or
215 * for a stopped child process. Since we save away
216 * the FP register state on context switch,
217 * there is something wrong if a stopped child appears
218 * to still have its FP state in the CPU registers.
219 */
220 BUG_ON(tsk != current);
221 giveup_fpu(tsk);
222 }
223 preempt_enable();
224 }
225 }
226 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
227
228 void enable_kernel_fp(void)
229 {
230 unsigned long cpumsr;
231
232 WARN_ON(preemptible());
233
234 cpumsr = msr_check_and_set(MSR_FP);
235
236 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237 check_if_tm_restore_required(current);
238 /*
239 * If a thread has already been reclaimed then the
240 * checkpointed registers are on the CPU but have definitely
241 * been saved by the reclaim code. Don't need to and *cannot*
242 * giveup as this would save to the 'live' structure not the
243 * checkpointed structure.
244 */
245 if (!MSR_TM_ACTIVE(cpumsr) &&
246 MSR_TM_ACTIVE(current->thread.regs->msr))
247 return;
248 __giveup_fpu(current);
249 }
250 }
251 EXPORT_SYMBOL(enable_kernel_fp);
252
253 static int restore_fp(struct task_struct *tsk)
254 {
255 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
256 load_fp_state(&current->thread.fp_state);
257 current->thread.load_fp++;
258 return 1;
259 }
260 return 0;
261 }
262 #else
263 static int restore_fp(struct task_struct *tsk) { return 0; }
264 #endif /* CONFIG_PPC_FPU */
265
266 #ifdef CONFIG_ALTIVEC
267 #define loadvec(thr) ((thr).load_vec)
268
269 static void __giveup_altivec(struct task_struct *tsk)
270 {
271 unsigned long msr;
272
273 save_altivec(tsk);
274 msr = tsk->thread.regs->msr;
275 msr &= ~MSR_VEC;
276 #ifdef CONFIG_VSX
277 if (cpu_has_feature(CPU_FTR_VSX))
278 msr &= ~MSR_VSX;
279 #endif
280 tsk->thread.regs->msr = msr;
281 }
282
283 void giveup_altivec(struct task_struct *tsk)
284 {
285 check_if_tm_restore_required(tsk);
286
287 msr_check_and_set(MSR_VEC);
288 __giveup_altivec(tsk);
289 msr_check_and_clear(MSR_VEC);
290 }
291 EXPORT_SYMBOL(giveup_altivec);
292
293 void enable_kernel_altivec(void)
294 {
295 unsigned long cpumsr;
296
297 WARN_ON(preemptible());
298
299 cpumsr = msr_check_and_set(MSR_VEC);
300
301 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302 check_if_tm_restore_required(current);
303 /*
304 * If a thread has already been reclaimed then the
305 * checkpointed registers are on the CPU but have definitely
306 * been saved by the reclaim code. Don't need to and *cannot*
307 * giveup as this would save to the 'live' structure not the
308 * checkpointed structure.
309 */
310 if (!MSR_TM_ACTIVE(cpumsr) &&
311 MSR_TM_ACTIVE(current->thread.regs->msr))
312 return;
313 __giveup_altivec(current);
314 }
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317
318 /*
319 * Make sure the VMX/Altivec register state in the
320 * the thread_struct is up to date for task tsk.
321 */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324 if (tsk->thread.regs) {
325 preempt_disable();
326 if (tsk->thread.regs->msr & MSR_VEC) {
327 BUG_ON(tsk != current);
328 giveup_altivec(tsk);
329 }
330 preempt_enable();
331 }
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334
335 static int restore_altivec(struct task_struct *tsk)
336 {
337 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 load_vr_state(&tsk->thread.vr_state);
340 tsk->thread.used_vr = 1;
341 tsk->thread.load_vec++;
342
343 return 1;
344 }
345 return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355 unsigned long msr = tsk->thread.regs->msr;
356
357 /*
358 * We should never be ssetting MSR_VSX without also setting
359 * MSR_FP and MSR_VEC
360 */
361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362
363 /* __giveup_fpu will clear MSR_VSX */
364 if (msr & MSR_FP)
365 __giveup_fpu(tsk);
366 if (msr & MSR_VEC)
367 __giveup_altivec(tsk);
368 }
369
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372 check_if_tm_restore_required(tsk);
373
374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375 __giveup_vsx(tsk);
376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378
379 void enable_kernel_vsx(void)
380 {
381 unsigned long cpumsr;
382
383 WARN_ON(preemptible());
384
385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386
387 if (current->thread.regs &&
388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389 check_if_tm_restore_required(current);
390 /*
391 * If a thread has already been reclaimed then the
392 * checkpointed registers are on the CPU but have definitely
393 * been saved by the reclaim code. Don't need to and *cannot*
394 * giveup as this would save to the 'live' structure not the
395 * checkpointed structure.
396 */
397 if (!MSR_TM_ACTIVE(cpumsr) &&
398 MSR_TM_ACTIVE(current->thread.regs->msr))
399 return;
400 __giveup_vsx(current);
401 }
402 }
403 EXPORT_SYMBOL(enable_kernel_vsx);
404
405 void flush_vsx_to_thread(struct task_struct *tsk)
406 {
407 if (tsk->thread.regs) {
408 preempt_disable();
409 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410 BUG_ON(tsk != current);
411 giveup_vsx(tsk);
412 }
413 preempt_enable();
414 }
415 }
416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417
418 static int restore_vsx(struct task_struct *tsk)
419 {
420 if (cpu_has_feature(CPU_FTR_VSX)) {
421 tsk->thread.used_vsr = 1;
422 return 1;
423 }
424
425 return 0;
426 }
427 #else
428 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 #endif /* CONFIG_VSX */
430
431 #ifdef CONFIG_SPE
432 void giveup_spe(struct task_struct *tsk)
433 {
434 check_if_tm_restore_required(tsk);
435
436 msr_check_and_set(MSR_SPE);
437 __giveup_spe(tsk);
438 msr_check_and_clear(MSR_SPE);
439 }
440 EXPORT_SYMBOL(giveup_spe);
441
442 void enable_kernel_spe(void)
443 {
444 WARN_ON(preemptible());
445
446 msr_check_and_set(MSR_SPE);
447
448 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449 check_if_tm_restore_required(current);
450 __giveup_spe(current);
451 }
452 }
453 EXPORT_SYMBOL(enable_kernel_spe);
454
455 void flush_spe_to_thread(struct task_struct *tsk)
456 {
457 if (tsk->thread.regs) {
458 preempt_disable();
459 if (tsk->thread.regs->msr & MSR_SPE) {
460 BUG_ON(tsk != current);
461 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462 giveup_spe(tsk);
463 }
464 preempt_enable();
465 }
466 }
467 #endif /* CONFIG_SPE */
468
469 static unsigned long msr_all_available;
470
471 static int __init init_msr_all_available(void)
472 {
473 #ifdef CONFIG_PPC_FPU
474 msr_all_available |= MSR_FP;
475 #endif
476 #ifdef CONFIG_ALTIVEC
477 if (cpu_has_feature(CPU_FTR_ALTIVEC))
478 msr_all_available |= MSR_VEC;
479 #endif
480 #ifdef CONFIG_VSX
481 if (cpu_has_feature(CPU_FTR_VSX))
482 msr_all_available |= MSR_VSX;
483 #endif
484 #ifdef CONFIG_SPE
485 if (cpu_has_feature(CPU_FTR_SPE))
486 msr_all_available |= MSR_SPE;
487 #endif
488
489 return 0;
490 }
491 early_initcall(init_msr_all_available);
492
493 void giveup_all(struct task_struct *tsk)
494 {
495 unsigned long usermsr;
496
497 if (!tsk->thread.regs)
498 return;
499
500 usermsr = tsk->thread.regs->msr;
501
502 if ((usermsr & msr_all_available) == 0)
503 return;
504
505 msr_check_and_set(msr_all_available);
506 check_if_tm_restore_required(tsk);
507
508 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509
510 #ifdef CONFIG_PPC_FPU
511 if (usermsr & MSR_FP)
512 __giveup_fpu(tsk);
513 #endif
514 #ifdef CONFIG_ALTIVEC
515 if (usermsr & MSR_VEC)
516 __giveup_altivec(tsk);
517 #endif
518 #ifdef CONFIG_SPE
519 if (usermsr & MSR_SPE)
520 __giveup_spe(tsk);
521 #endif
522
523 msr_check_and_clear(msr_all_available);
524 }
525 EXPORT_SYMBOL(giveup_all);
526
527 /*
528 * The exception exit path calls restore_math() with interrupts hard disabled
529 * but the soft irq state not "reconciled". ftrace code that calls
530 * local_irq_save/restore causes warnings.
531 *
532 * Rather than complicate the exit path, just don't trace restore_math. This
533 * could be done by having ftrace entry code check for this un-reconciled
534 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535 * temporarily fix it up for the duration of the ftrace call.
536 */
537 void notrace restore_math(struct pt_regs *regs)
538 {
539 unsigned long msr;
540
541 if (!MSR_TM_ACTIVE(regs->msr) &&
542 !current->thread.load_fp && !loadvec(current->thread))
543 return;
544
545 msr = regs->msr;
546 msr_check_and_set(msr_all_available);
547
548 /*
549 * Only reload if the bit is not set in the user MSR, the bit BEING set
550 * indicates that the registers are hot
551 */
552 if ((!(msr & MSR_FP)) && restore_fp(current))
553 msr |= MSR_FP | current->thread.fpexc_mode;
554
555 if ((!(msr & MSR_VEC)) && restore_altivec(current))
556 msr |= MSR_VEC;
557
558 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559 restore_vsx(current)) {
560 msr |= MSR_VSX;
561 }
562
563 msr_check_and_clear(msr_all_available);
564
565 regs->msr = msr;
566 }
567
568 static void save_all(struct task_struct *tsk)
569 {
570 unsigned long usermsr;
571
572 if (!tsk->thread.regs)
573 return;
574
575 usermsr = tsk->thread.regs->msr;
576
577 if ((usermsr & msr_all_available) == 0)
578 return;
579
580 msr_check_and_set(msr_all_available);
581
582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584 if (usermsr & MSR_FP)
585 save_fpu(tsk);
586
587 if (usermsr & MSR_VEC)
588 save_altivec(tsk);
589
590 if (usermsr & MSR_SPE)
591 __giveup_spe(tsk);
592
593 msr_check_and_clear(msr_all_available);
594 thread_pkey_regs_save(&tsk->thread);
595 }
596
597 void flush_all_to_thread(struct task_struct *tsk)
598 {
599 if (tsk->thread.regs) {
600 preempt_disable();
601 BUG_ON(tsk != current);
602 #ifdef CONFIG_SPE
603 if (tsk->thread.regs->msr & MSR_SPE)
604 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605 #endif
606 save_all(tsk);
607
608 preempt_enable();
609 }
610 }
611 EXPORT_SYMBOL(flush_all_to_thread);
612
613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
614 void do_send_trap(struct pt_regs *regs, unsigned long address,
615 unsigned long error_code, int breakpt)
616 {
617 current->thread.trap_nr = TRAP_HWBKPT;
618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 11, SIGSEGV) == NOTIFY_STOP)
620 return;
621
622 /* Deliver the signal to userspace */
623 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624 (void __user *)address);
625 }
626 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
627 void do_break (struct pt_regs *regs, unsigned long address,
628 unsigned long error_code)
629 {
630 current->thread.trap_nr = TRAP_HWBKPT;
631 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632 11, SIGSEGV) == NOTIFY_STOP)
633 return;
634
635 if (debugger_break_match(regs))
636 return;
637
638 /* Clear the breakpoint */
639 hw_breakpoint_disable();
640
641 /* Deliver the signal to userspace */
642 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
643 }
644 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
645
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650 * Set the debug registers back to their default "safe" values.
651 */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654 thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656 thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658 thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660 thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662 thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664 /*
665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 */
667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 DBCR1_IAC3US | DBCR1_IAC4US;
669 /*
670 * Force Data Address Compare User/Supervisor bits to be User-only
671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 */
673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675 thread->debug.dbcr1 = 0;
676 #endif
677 }
678
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681 /*
682 * We could have inherited MSR_DE from userspace, since
683 * it doesn't get cleared on exception entry. Make sure
684 * MSR_DE is clear before we enable any debug events.
685 */
686 mtmsr(mfmsr() & ~MSR_DE);
687
688 mtspr(SPRN_IAC1, debug->iac1);
689 mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 mtspr(SPRN_IAC3, debug->iac3);
692 mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694 mtspr(SPRN_DAC1, debug->dac1);
695 mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 mtspr(SPRN_DVC1, debug->dvc1);
698 mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700 mtspr(SPRN_DBCR0, debug->dbcr0);
701 mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703 mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707 * Unless neither the old or new thread are making use of the
708 * debug registers, set the debug registers from the values
709 * stored in the new thread.
710 */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 || (new_debug->dbcr0 & DBCR0_IDM))
715 prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722 preempt_disable();
723 __set_breakpoint(brk);
724 preempt_enable();
725 }
726
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729 thread->hw_brk.address = 0;
730 thread->hw_brk.type = 0;
731 if (ppc_breakpoint_available())
732 set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
736
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742 isync();
743 #endif
744 return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 mtspr(SPRN_DABR, dabr);
750 if (cpu_has_feature(CPU_FTR_DABRX))
751 mtspr(SPRN_DABRX, dabrx);
752 return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760
761 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762 lctrl1 |= 0xa0000;
763 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764 lctrl1 |= 0xf0000;
765 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766 lctrl2 = 0;
767
768 mtspr(SPRN_LCTRL2, 0);
769 mtspr(SPRN_CMPE, addr);
770 mtspr(SPRN_CMPF, addr + 4);
771 mtspr(SPRN_LCTRL1, lctrl1);
772 mtspr(SPRN_LCTRL2, lctrl2);
773
774 return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779 return -EINVAL;
780 }
781 #endif
782
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785 unsigned long dabr, dabrx;
786
787 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788 dabrx = ((brk->type >> 3) & 0x7);
789
790 if (ppc_md.set_dabr)
791 return ppc_md.set_dabr(dabr, dabrx);
792
793 return __set_dabr(dabr, dabrx);
794 }
795
796 int set_dawr(struct arch_hw_breakpoint *brk)
797 {
798 unsigned long dawr, dawrx, mrd;
799
800 dawr = brk->address;
801
802 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
803 << (63 - 58); //* read/write bits */
804 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
805 << (63 - 59); //* translate */
806 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
807 >> 3; //* PRIM bits */
808 /* dawr length is stored in field MDR bits 48:53. Matches range in
809 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
810 0b111111=64DW.
811 brk->len is in bytes.
812 This aligns up to double word size, shifts and does the bias.
813 */
814 mrd = ((brk->len + 7) >> 3) - 1;
815 dawrx |= (mrd & 0x3f) << (63 - 53);
816
817 if (ppc_md.set_dawr)
818 return ppc_md.set_dawr(dawr, dawrx);
819 mtspr(SPRN_DAWR, dawr);
820 mtspr(SPRN_DAWRX, dawrx);
821 return 0;
822 }
823
824 void __set_breakpoint(struct arch_hw_breakpoint *brk)
825 {
826 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
827
828 if (dawr_enabled())
829 // Power8 or later
830 set_dawr(brk);
831 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
832 // Power7 or earlier
833 set_dabr(brk);
834 else
835 // Shouldn't happen due to higher level checks
836 WARN_ON_ONCE(1);
837 }
838
839 /* Check if we have DAWR or DABR hardware */
840 bool ppc_breakpoint_available(void)
841 {
842 if (dawr_enabled())
843 return true; /* POWER8 DAWR or POWER9 forced DAWR */
844 if (cpu_has_feature(CPU_FTR_ARCH_207S))
845 return false; /* POWER9 with DAWR disabled */
846 /* DABR: Everything but POWER8 and POWER9 */
847 return true;
848 }
849 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
850
851 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
852 struct arch_hw_breakpoint *b)
853 {
854 if (a->address != b->address)
855 return false;
856 if (a->type != b->type)
857 return false;
858 if (a->len != b->len)
859 return false;
860 return true;
861 }
862
863 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
864
865 static inline bool tm_enabled(struct task_struct *tsk)
866 {
867 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
868 }
869
870 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
871 {
872 /*
873 * Use the current MSR TM suspended bit to track if we have
874 * checkpointed state outstanding.
875 * On signal delivery, we'd normally reclaim the checkpointed
876 * state to obtain stack pointer (see:get_tm_stackpointer()).
877 * This will then directly return to userspace without going
878 * through __switch_to(). However, if the stack frame is bad,
879 * we need to exit this thread which calls __switch_to() which
880 * will again attempt to reclaim the already saved tm state.
881 * Hence we need to check that we've not already reclaimed
882 * this state.
883 * We do this using the current MSR, rather tracking it in
884 * some specific thread_struct bit, as it has the additional
885 * benefit of checking for a potential TM bad thing exception.
886 */
887 if (!MSR_TM_SUSPENDED(mfmsr()))
888 return;
889
890 giveup_all(container_of(thr, struct task_struct, thread));
891
892 tm_reclaim(thr, cause);
893
894 /*
895 * If we are in a transaction and FP is off then we can't have
896 * used FP inside that transaction. Hence the checkpointed
897 * state is the same as the live state. We need to copy the
898 * live state to the checkpointed state so that when the
899 * transaction is restored, the checkpointed state is correct
900 * and the aborted transaction sees the correct state. We use
901 * ckpt_regs.msr here as that's what tm_reclaim will use to
902 * determine if it's going to write the checkpointed state or
903 * not. So either this will write the checkpointed registers,
904 * or reclaim will. Similarly for VMX.
905 */
906 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
907 memcpy(&thr->ckfp_state, &thr->fp_state,
908 sizeof(struct thread_fp_state));
909 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
910 memcpy(&thr->ckvr_state, &thr->vr_state,
911 sizeof(struct thread_vr_state));
912 }
913
914 void tm_reclaim_current(uint8_t cause)
915 {
916 tm_enable();
917 tm_reclaim_thread(&current->thread, cause);
918 }
919
920 static inline void tm_reclaim_task(struct task_struct *tsk)
921 {
922 /* We have to work out if we're switching from/to a task that's in the
923 * middle of a transaction.
924 *
925 * In switching we need to maintain a 2nd register state as
926 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
927 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
928 * ckvr_state
929 *
930 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
931 */
932 struct thread_struct *thr = &tsk->thread;
933
934 if (!thr->regs)
935 return;
936
937 if (!MSR_TM_ACTIVE(thr->regs->msr))
938 goto out_and_saveregs;
939
940 WARN_ON(tm_suspend_disabled);
941
942 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
943 "ccr=%lx, msr=%lx, trap=%lx)\n",
944 tsk->pid, thr->regs->nip,
945 thr->regs->ccr, thr->regs->msr,
946 thr->regs->trap);
947
948 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
949
950 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
951 tsk->pid);
952
953 out_and_saveregs:
954 /* Always save the regs here, even if a transaction's not active.
955 * This context-switches a thread's TM info SPRs. We do it here to
956 * be consistent with the restore path (in recheckpoint) which
957 * cannot happen later in _switch().
958 */
959 tm_save_sprs(thr);
960 }
961
962 extern void __tm_recheckpoint(struct thread_struct *thread);
963
964 void tm_recheckpoint(struct thread_struct *thread)
965 {
966 unsigned long flags;
967
968 if (!(thread->regs->msr & MSR_TM))
969 return;
970
971 /* We really can't be interrupted here as the TEXASR registers can't
972 * change and later in the trecheckpoint code, we have a userspace R1.
973 * So let's hard disable over this region.
974 */
975 local_irq_save(flags);
976 hard_irq_disable();
977
978 /* The TM SPRs are restored here, so that TEXASR.FS can be set
979 * before the trecheckpoint and no explosion occurs.
980 */
981 tm_restore_sprs(thread);
982
983 __tm_recheckpoint(thread);
984
985 local_irq_restore(flags);
986 }
987
988 static inline void tm_recheckpoint_new_task(struct task_struct *new)
989 {
990 if (!cpu_has_feature(CPU_FTR_TM))
991 return;
992
993 /* Recheckpoint the registers of the thread we're about to switch to.
994 *
995 * If the task was using FP, we non-lazily reload both the original and
996 * the speculative FP register states. This is because the kernel
997 * doesn't see if/when a TM rollback occurs, so if we take an FP
998 * unavailable later, we are unable to determine which set of FP regs
999 * need to be restored.
1000 */
1001 if (!tm_enabled(new))
1002 return;
1003
1004 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1005 tm_restore_sprs(&new->thread);
1006 return;
1007 }
1008 /* Recheckpoint to restore original checkpointed register state. */
1009 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1010 new->pid, new->thread.regs->msr);
1011
1012 tm_recheckpoint(&new->thread);
1013
1014 /*
1015 * The checkpointed state has been restored but the live state has
1016 * not, ensure all the math functionality is turned off to trigger
1017 * restore_math() to reload.
1018 */
1019 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1020
1021 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1022 "(kernel msr 0x%lx)\n",
1023 new->pid, mfmsr());
1024 }
1025
1026 static inline void __switch_to_tm(struct task_struct *prev,
1027 struct task_struct *new)
1028 {
1029 if (cpu_has_feature(CPU_FTR_TM)) {
1030 if (tm_enabled(prev) || tm_enabled(new))
1031 tm_enable();
1032
1033 if (tm_enabled(prev)) {
1034 prev->thread.load_tm++;
1035 tm_reclaim_task(prev);
1036 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1037 prev->thread.regs->msr &= ~MSR_TM;
1038 }
1039
1040 tm_recheckpoint_new_task(new);
1041 }
1042 }
1043
1044 /*
1045 * This is called if we are on the way out to userspace and the
1046 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1047 * FP and/or vector state and does so if necessary.
1048 * If userspace is inside a transaction (whether active or
1049 * suspended) and FP/VMX/VSX instructions have ever been enabled
1050 * inside that transaction, then we have to keep them enabled
1051 * and keep the FP/VMX/VSX state loaded while ever the transaction
1052 * continues. The reason is that if we didn't, and subsequently
1053 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1054 * we don't know whether it's the same transaction, and thus we
1055 * don't know which of the checkpointed state and the transactional
1056 * state to use.
1057 */
1058 void restore_tm_state(struct pt_regs *regs)
1059 {
1060 unsigned long msr_diff;
1061
1062 /*
1063 * This is the only moment we should clear TIF_RESTORE_TM as
1064 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1065 * again, anything else could lead to an incorrect ckpt_msr being
1066 * saved and therefore incorrect signal contexts.
1067 */
1068 clear_thread_flag(TIF_RESTORE_TM);
1069 if (!MSR_TM_ACTIVE(regs->msr))
1070 return;
1071
1072 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1073 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1074
1075 /* Ensure that restore_math() will restore */
1076 if (msr_diff & MSR_FP)
1077 current->thread.load_fp = 1;
1078 #ifdef CONFIG_ALTIVEC
1079 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1080 current->thread.load_vec = 1;
1081 #endif
1082 restore_math(regs);
1083
1084 regs->msr |= msr_diff;
1085 }
1086
1087 #else
1088 #define tm_recheckpoint_new_task(new)
1089 #define __switch_to_tm(prev, new)
1090 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1091
1092 static inline void save_sprs(struct thread_struct *t)
1093 {
1094 #ifdef CONFIG_ALTIVEC
1095 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1096 t->vrsave = mfspr(SPRN_VRSAVE);
1097 #endif
1098 #ifdef CONFIG_PPC_BOOK3S_64
1099 if (cpu_has_feature(CPU_FTR_DSCR))
1100 t->dscr = mfspr(SPRN_DSCR);
1101
1102 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1103 t->bescr = mfspr(SPRN_BESCR);
1104 t->ebbhr = mfspr(SPRN_EBBHR);
1105 t->ebbrr = mfspr(SPRN_EBBRR);
1106
1107 t->fscr = mfspr(SPRN_FSCR);
1108
1109 /*
1110 * Note that the TAR is not available for use in the kernel.
1111 * (To provide this, the TAR should be backed up/restored on
1112 * exception entry/exit instead, and be in pt_regs. FIXME,
1113 * this should be in pt_regs anyway (for debug).)
1114 */
1115 t->tar = mfspr(SPRN_TAR);
1116 }
1117 #endif
1118
1119 thread_pkey_regs_save(t);
1120 }
1121
1122 static inline void restore_sprs(struct thread_struct *old_thread,
1123 struct thread_struct *new_thread)
1124 {
1125 #ifdef CONFIG_ALTIVEC
1126 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1127 old_thread->vrsave != new_thread->vrsave)
1128 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1129 #endif
1130 #ifdef CONFIG_PPC_BOOK3S_64
1131 if (cpu_has_feature(CPU_FTR_DSCR)) {
1132 u64 dscr = get_paca()->dscr_default;
1133 if (new_thread->dscr_inherit)
1134 dscr = new_thread->dscr;
1135
1136 if (old_thread->dscr != dscr)
1137 mtspr(SPRN_DSCR, dscr);
1138 }
1139
1140 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1141 if (old_thread->bescr != new_thread->bescr)
1142 mtspr(SPRN_BESCR, new_thread->bescr);
1143 if (old_thread->ebbhr != new_thread->ebbhr)
1144 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1145 if (old_thread->ebbrr != new_thread->ebbrr)
1146 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1147
1148 if (old_thread->fscr != new_thread->fscr)
1149 mtspr(SPRN_FSCR, new_thread->fscr);
1150
1151 if (old_thread->tar != new_thread->tar)
1152 mtspr(SPRN_TAR, new_thread->tar);
1153 }
1154
1155 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1156 old_thread->tidr != new_thread->tidr)
1157 mtspr(SPRN_TIDR, new_thread->tidr);
1158 #endif
1159
1160 thread_pkey_regs_restore(new_thread, old_thread);
1161 }
1162
1163 struct task_struct *__switch_to(struct task_struct *prev,
1164 struct task_struct *new)
1165 {
1166 struct thread_struct *new_thread, *old_thread;
1167 struct task_struct *last;
1168 #ifdef CONFIG_PPC_BOOK3S_64
1169 struct ppc64_tlb_batch *batch;
1170 #endif
1171
1172 new_thread = &new->thread;
1173 old_thread = &current->thread;
1174
1175 WARN_ON(!irqs_disabled());
1176
1177 #ifdef CONFIG_PPC_BOOK3S_64
1178 batch = this_cpu_ptr(&ppc64_tlb_batch);
1179 if (batch->active) {
1180 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1181 if (batch->index)
1182 __flush_tlb_pending(batch);
1183 batch->active = 0;
1184 }
1185 #endif /* CONFIG_PPC_BOOK3S_64 */
1186
1187 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1188 switch_booke_debug_regs(&new->thread.debug);
1189 #else
1190 /*
1191 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1192 * schedule DABR
1193 */
1194 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1195 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1196 __set_breakpoint(&new->thread.hw_brk);
1197 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1198 #endif
1199
1200 /*
1201 * We need to save SPRs before treclaim/trecheckpoint as these will
1202 * change a number of them.
1203 */
1204 save_sprs(&prev->thread);
1205
1206 /* Save FPU, Altivec, VSX and SPE state */
1207 giveup_all(prev);
1208
1209 __switch_to_tm(prev, new);
1210
1211 if (!radix_enabled()) {
1212 /*
1213 * We can't take a PMU exception inside _switch() since there
1214 * is a window where the kernel stack SLB and the kernel stack
1215 * are out of sync. Hard disable here.
1216 */
1217 hard_irq_disable();
1218 }
1219
1220 /*
1221 * Call restore_sprs() before calling _switch(). If we move it after
1222 * _switch() then we miss out on calling it for new tasks. The reason
1223 * for this is we manually create a stack frame for new tasks that
1224 * directly returns through ret_from_fork() or
1225 * ret_from_kernel_thread(). See copy_thread() for details.
1226 */
1227 restore_sprs(old_thread, new_thread);
1228
1229 last = _switch(old_thread, new_thread);
1230
1231 #ifdef CONFIG_PPC_BOOK3S_64
1232 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1233 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1234 batch = this_cpu_ptr(&ppc64_tlb_batch);
1235 batch->active = 1;
1236 }
1237
1238 if (current->thread.regs) {
1239 restore_math(current->thread.regs);
1240
1241 /*
1242 * The copy-paste buffer can only store into foreign real
1243 * addresses, so unprivileged processes can not see the
1244 * data or use it in any way unless they have foreign real
1245 * mappings. If the new process has the foreign real address
1246 * mappings, we must issue a cp_abort to clear any state and
1247 * prevent snooping, corruption or a covert channel.
1248 */
1249 if (current->thread.used_vas)
1250 asm volatile(PPC_CP_ABORT);
1251 }
1252 #endif /* CONFIG_PPC_BOOK3S_64 */
1253
1254 return last;
1255 }
1256
1257 #define NR_INSN_TO_PRINT 16
1258
1259 static void show_instructions(struct pt_regs *regs)
1260 {
1261 int i;
1262 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1263
1264 printk("Instruction dump:");
1265
1266 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1267 int instr;
1268
1269 if (!(i % 8))
1270 pr_cont("\n");
1271
1272 #if !defined(CONFIG_BOOKE)
1273 /* If executing with the IMMU off, adjust pc rather
1274 * than print XXXXXXXX.
1275 */
1276 if (!(regs->msr & MSR_IR))
1277 pc = (unsigned long)phys_to_virt(pc);
1278 #endif
1279
1280 if (!__kernel_text_address(pc) ||
1281 probe_kernel_address((const void *)pc, instr)) {
1282 pr_cont("XXXXXXXX ");
1283 } else {
1284 if (regs->nip == pc)
1285 pr_cont("<%08x> ", instr);
1286 else
1287 pr_cont("%08x ", instr);
1288 }
1289
1290 pc += sizeof(int);
1291 }
1292
1293 pr_cont("\n");
1294 }
1295
1296 void show_user_instructions(struct pt_regs *regs)
1297 {
1298 unsigned long pc;
1299 int n = NR_INSN_TO_PRINT;
1300 struct seq_buf s;
1301 char buf[96]; /* enough for 8 times 9 + 2 chars */
1302
1303 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1304
1305 /*
1306 * Make sure the NIP points at userspace, not kernel text/data or
1307 * elsewhere.
1308 */
1309 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1310 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1311 current->comm, current->pid);
1312 return;
1313 }
1314
1315 seq_buf_init(&s, buf, sizeof(buf));
1316
1317 while (n) {
1318 int i;
1319
1320 seq_buf_clear(&s);
1321
1322 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1323 int instr;
1324
1325 if (probe_kernel_address((const void *)pc, instr)) {
1326 seq_buf_printf(&s, "XXXXXXXX ");
1327 continue;
1328 }
1329 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1330 }
1331
1332 if (!seq_buf_has_overflowed(&s))
1333 pr_info("%s[%d]: code: %s\n", current->comm,
1334 current->pid, s.buffer);
1335 }
1336 }
1337
1338 struct regbit {
1339 unsigned long bit;
1340 const char *name;
1341 };
1342
1343 static struct regbit msr_bits[] = {
1344 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1345 {MSR_SF, "SF"},
1346 {MSR_HV, "HV"},
1347 #endif
1348 {MSR_VEC, "VEC"},
1349 {MSR_VSX, "VSX"},
1350 #ifdef CONFIG_BOOKE
1351 {MSR_CE, "CE"},
1352 #endif
1353 {MSR_EE, "EE"},
1354 {MSR_PR, "PR"},
1355 {MSR_FP, "FP"},
1356 {MSR_ME, "ME"},
1357 #ifdef CONFIG_BOOKE
1358 {MSR_DE, "DE"},
1359 #else
1360 {MSR_SE, "SE"},
1361 {MSR_BE, "BE"},
1362 #endif
1363 {MSR_IR, "IR"},
1364 {MSR_DR, "DR"},
1365 {MSR_PMM, "PMM"},
1366 #ifndef CONFIG_BOOKE
1367 {MSR_RI, "RI"},
1368 {MSR_LE, "LE"},
1369 #endif
1370 {0, NULL}
1371 };
1372
1373 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1374 {
1375 const char *s = "";
1376
1377 for (; bits->bit; ++bits)
1378 if (val & bits->bit) {
1379 pr_cont("%s%s", s, bits->name);
1380 s = sep;
1381 }
1382 }
1383
1384 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1385 static struct regbit msr_tm_bits[] = {
1386 {MSR_TS_T, "T"},
1387 {MSR_TS_S, "S"},
1388 {MSR_TM, "E"},
1389 {0, NULL}
1390 };
1391
1392 static void print_tm_bits(unsigned long val)
1393 {
1394 /*
1395 * This only prints something if at least one of the TM bit is set.
1396 * Inside the TM[], the output means:
1397 * E: Enabled (bit 32)
1398 * S: Suspended (bit 33)
1399 * T: Transactional (bit 34)
1400 */
1401 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1402 pr_cont(",TM[");
1403 print_bits(val, msr_tm_bits, "");
1404 pr_cont("]");
1405 }
1406 }
1407 #else
1408 static void print_tm_bits(unsigned long val) {}
1409 #endif
1410
1411 static void print_msr_bits(unsigned long val)
1412 {
1413 pr_cont("<");
1414 print_bits(val, msr_bits, ",");
1415 print_tm_bits(val);
1416 pr_cont(">");
1417 }
1418
1419 #ifdef CONFIG_PPC64
1420 #define REG "%016lx"
1421 #define REGS_PER_LINE 4
1422 #define LAST_VOLATILE 13
1423 #else
1424 #define REG "%08lx"
1425 #define REGS_PER_LINE 8
1426 #define LAST_VOLATILE 12
1427 #endif
1428
1429 void show_regs(struct pt_regs * regs)
1430 {
1431 int i, trap;
1432
1433 show_regs_print_info(KERN_DEFAULT);
1434
1435 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1436 regs->nip, regs->link, regs->ctr);
1437 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1438 regs, regs->trap, print_tainted(), init_utsname()->release);
1439 printk("MSR: "REG" ", regs->msr);
1440 print_msr_bits(regs->msr);
1441 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1442 trap = TRAP(regs);
1443 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1444 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1445 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1446 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1447 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1448 #else
1449 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1450 #endif
1451 #ifdef CONFIG_PPC64
1452 pr_cont("IRQMASK: %lx ", regs->softe);
1453 #endif
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 if (MSR_TM_ACTIVE(regs->msr))
1456 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1457 #endif
1458
1459 for (i = 0; i < 32; i++) {
1460 if ((i % REGS_PER_LINE) == 0)
1461 pr_cont("\nGPR%02d: ", i);
1462 pr_cont(REG " ", regs->gpr[i]);
1463 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1464 break;
1465 }
1466 pr_cont("\n");
1467 #ifdef CONFIG_KALLSYMS
1468 /*
1469 * Lookup NIP late so we have the best change of getting the
1470 * above info out without failing
1471 */
1472 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1473 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1474 #endif
1475 show_stack(current, (unsigned long *) regs->gpr[1]);
1476 if (!user_mode(regs))
1477 show_instructions(regs);
1478 }
1479
1480 void flush_thread(void)
1481 {
1482 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1483 flush_ptrace_hw_breakpoint(current);
1484 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1485 set_debug_reg_defaults(&current->thread);
1486 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1487 }
1488
1489 #ifdef CONFIG_PPC_BOOK3S_64
1490 void arch_setup_new_exec(void)
1491 {
1492 if (radix_enabled())
1493 return;
1494 hash__setup_new_exec();
1495 }
1496 #endif
1497
1498 int set_thread_uses_vas(void)
1499 {
1500 #ifdef CONFIG_PPC_BOOK3S_64
1501 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1502 return -EINVAL;
1503
1504 current->thread.used_vas = 1;
1505
1506 /*
1507 * Even a process that has no foreign real address mapping can use
1508 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1509 * to clear any pending COPY and prevent a covert channel.
1510 *
1511 * __switch_to() will issue CP_ABORT on future context switches.
1512 */
1513 asm volatile(PPC_CP_ABORT);
1514
1515 #endif /* CONFIG_PPC_BOOK3S_64 */
1516 return 0;
1517 }
1518
1519 #ifdef CONFIG_PPC64
1520 /**
1521 * Assign a TIDR (thread ID) for task @t and set it in the thread
1522 * structure. For now, we only support setting TIDR for 'current' task.
1523 *
1524 * Since the TID value is a truncated form of it PID, it is possible
1525 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1526 * that 2 threads share the same TID and are waiting, one of the following
1527 * cases will happen:
1528 *
1529 * 1. The correct thread is running, the wrong thread is not
1530 * In this situation, the correct thread is woken and proceeds to pass it's
1531 * condition check.
1532 *
1533 * 2. Neither threads are running
1534 * In this situation, neither thread will be woken. When scheduled, the waiting
1535 * threads will execute either a wait, which will return immediately, followed
1536 * by a condition check, which will pass for the correct thread and fail
1537 * for the wrong thread, or they will execute the condition check immediately.
1538 *
1539 * 3. The wrong thread is running, the correct thread is not
1540 * The wrong thread will be woken, but will fail it's condition check and
1541 * re-execute wait. The correct thread, when scheduled, will execute either
1542 * it's condition check (which will pass), or wait, which returns immediately
1543 * when called the first time after the thread is scheduled, followed by it's
1544 * condition check (which will pass).
1545 *
1546 * 4. Both threads are running
1547 * Both threads will be woken. The wrong thread will fail it's condition check
1548 * and execute another wait, while the correct thread will pass it's condition
1549 * check.
1550 *
1551 * @t: the task to set the thread ID for
1552 */
1553 int set_thread_tidr(struct task_struct *t)
1554 {
1555 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1556 return -EINVAL;
1557
1558 if (t != current)
1559 return -EINVAL;
1560
1561 if (t->thread.tidr)
1562 return 0;
1563
1564 t->thread.tidr = (u16)task_pid_nr(t);
1565 mtspr(SPRN_TIDR, t->thread.tidr);
1566
1567 return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(set_thread_tidr);
1570
1571 #endif /* CONFIG_PPC64 */
1572
1573 void
1574 release_thread(struct task_struct *t)
1575 {
1576 }
1577
1578 /*
1579 * this gets called so that we can store coprocessor state into memory and
1580 * copy the current task into the new thread.
1581 */
1582 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1583 {
1584 flush_all_to_thread(src);
1585 /*
1586 * Flush TM state out so we can copy it. __switch_to_tm() does this
1587 * flush but it removes the checkpointed state from the current CPU and
1588 * transitions the CPU out of TM mode. Hence we need to call
1589 * tm_recheckpoint_new_task() (on the same task) to restore the
1590 * checkpointed state back and the TM mode.
1591 *
1592 * Can't pass dst because it isn't ready. Doesn't matter, passing
1593 * dst is only important for __switch_to()
1594 */
1595 __switch_to_tm(src, src);
1596
1597 *dst = *src;
1598
1599 clear_task_ebb(dst);
1600
1601 return 0;
1602 }
1603
1604 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1605 {
1606 #ifdef CONFIG_PPC_BOOK3S_64
1607 unsigned long sp_vsid;
1608 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1609
1610 if (radix_enabled())
1611 return;
1612
1613 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1614 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1615 << SLB_VSID_SHIFT_1T;
1616 else
1617 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1618 << SLB_VSID_SHIFT;
1619 sp_vsid |= SLB_VSID_KERNEL | llp;
1620 p->thread.ksp_vsid = sp_vsid;
1621 #endif
1622 }
1623
1624 /*
1625 * Copy a thread..
1626 */
1627
1628 /*
1629 * Copy architecture-specific thread state
1630 */
1631 int copy_thread(unsigned long clone_flags, unsigned long usp,
1632 unsigned long kthread_arg, struct task_struct *p)
1633 {
1634 struct pt_regs *childregs, *kregs;
1635 extern void ret_from_fork(void);
1636 extern void ret_from_kernel_thread(void);
1637 void (*f)(void);
1638 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1639 struct thread_info *ti = task_thread_info(p);
1640
1641 klp_init_thread_info(p);
1642
1643 /* Copy registers */
1644 sp -= sizeof(struct pt_regs);
1645 childregs = (struct pt_regs *) sp;
1646 if (unlikely(p->flags & PF_KTHREAD)) {
1647 /* kernel thread */
1648 memset(childregs, 0, sizeof(struct pt_regs));
1649 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1650 /* function */
1651 if (usp)
1652 childregs->gpr[14] = ppc_function_entry((void *)usp);
1653 #ifdef CONFIG_PPC64
1654 clear_tsk_thread_flag(p, TIF_32BIT);
1655 childregs->softe = IRQS_ENABLED;
1656 #endif
1657 childregs->gpr[15] = kthread_arg;
1658 p->thread.regs = NULL; /* no user register state */
1659 ti->flags |= _TIF_RESTOREALL;
1660 f = ret_from_kernel_thread;
1661 } else {
1662 /* user thread */
1663 struct pt_regs *regs = current_pt_regs();
1664 CHECK_FULL_REGS(regs);
1665 *childregs = *regs;
1666 if (usp)
1667 childregs->gpr[1] = usp;
1668 p->thread.regs = childregs;
1669 childregs->gpr[3] = 0; /* Result from fork() */
1670 if (clone_flags & CLONE_SETTLS) {
1671 #ifdef CONFIG_PPC64
1672 if (!is_32bit_task())
1673 childregs->gpr[13] = childregs->gpr[6];
1674 else
1675 #endif
1676 childregs->gpr[2] = childregs->gpr[6];
1677 }
1678
1679 f = ret_from_fork;
1680 }
1681 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1682 sp -= STACK_FRAME_OVERHEAD;
1683
1684 /*
1685 * The way this works is that at some point in the future
1686 * some task will call _switch to switch to the new task.
1687 * That will pop off the stack frame created below and start
1688 * the new task running at ret_from_fork. The new task will
1689 * do some house keeping and then return from the fork or clone
1690 * system call, using the stack frame created above.
1691 */
1692 ((unsigned long *)sp)[0] = 0;
1693 sp -= sizeof(struct pt_regs);
1694 kregs = (struct pt_regs *) sp;
1695 sp -= STACK_FRAME_OVERHEAD;
1696 p->thread.ksp = sp;
1697 #ifdef CONFIG_PPC32
1698 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1699 #endif
1700 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1701 p->thread.ptrace_bps[0] = NULL;
1702 #endif
1703
1704 p->thread.fp_save_area = NULL;
1705 #ifdef CONFIG_ALTIVEC
1706 p->thread.vr_save_area = NULL;
1707 #endif
1708
1709 setup_ksp_vsid(p, sp);
1710
1711 #ifdef CONFIG_PPC64
1712 if (cpu_has_feature(CPU_FTR_DSCR)) {
1713 p->thread.dscr_inherit = current->thread.dscr_inherit;
1714 p->thread.dscr = mfspr(SPRN_DSCR);
1715 }
1716 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1717 childregs->ppr = DEFAULT_PPR;
1718
1719 p->thread.tidr = 0;
1720 #endif
1721 kregs->nip = ppc_function_entry(f);
1722 return 0;
1723 }
1724
1725 void preload_new_slb_context(unsigned long start, unsigned long sp);
1726
1727 /*
1728 * Set up a thread for executing a new program
1729 */
1730 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1731 {
1732 #ifdef CONFIG_PPC64
1733 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1734
1735 #ifdef CONFIG_PPC_BOOK3S_64
1736 if (!radix_enabled())
1737 preload_new_slb_context(start, sp);
1738 #endif
1739 #endif
1740
1741 /*
1742 * If we exec out of a kernel thread then thread.regs will not be
1743 * set. Do it now.
1744 */
1745 if (!current->thread.regs) {
1746 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1747 current->thread.regs = regs - 1;
1748 }
1749
1750 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1751 /*
1752 * Clear any transactional state, we're exec()ing. The cause is
1753 * not important as there will never be a recheckpoint so it's not
1754 * user visible.
1755 */
1756 if (MSR_TM_SUSPENDED(mfmsr()))
1757 tm_reclaim_current(0);
1758 #endif
1759
1760 memset(regs->gpr, 0, sizeof(regs->gpr));
1761 regs->ctr = 0;
1762 regs->link = 0;
1763 regs->xer = 0;
1764 regs->ccr = 0;
1765 regs->gpr[1] = sp;
1766
1767 /*
1768 * We have just cleared all the nonvolatile GPRs, so make
1769 * FULL_REGS(regs) return true. This is necessary to allow
1770 * ptrace to examine the thread immediately after exec.
1771 */
1772 regs->trap &= ~1UL;
1773
1774 #ifdef CONFIG_PPC32
1775 regs->mq = 0;
1776 regs->nip = start;
1777 regs->msr = MSR_USER;
1778 #else
1779 if (!is_32bit_task()) {
1780 unsigned long entry;
1781
1782 if (is_elf2_task()) {
1783 /* Look ma, no function descriptors! */
1784 entry = start;
1785
1786 /*
1787 * Ulrich says:
1788 * The latest iteration of the ABI requires that when
1789 * calling a function (at its global entry point),
1790 * the caller must ensure r12 holds the entry point
1791 * address (so that the function can quickly
1792 * establish addressability).
1793 */
1794 regs->gpr[12] = start;
1795 /* Make sure that's restored on entry to userspace. */
1796 set_thread_flag(TIF_RESTOREALL);
1797 } else {
1798 unsigned long toc;
1799
1800 /* start is a relocated pointer to the function
1801 * descriptor for the elf _start routine. The first
1802 * entry in the function descriptor is the entry
1803 * address of _start and the second entry is the TOC
1804 * value we need to use.
1805 */
1806 __get_user(entry, (unsigned long __user *)start);
1807 __get_user(toc, (unsigned long __user *)start+1);
1808
1809 /* Check whether the e_entry function descriptor entries
1810 * need to be relocated before we can use them.
1811 */
1812 if (load_addr != 0) {
1813 entry += load_addr;
1814 toc += load_addr;
1815 }
1816 regs->gpr[2] = toc;
1817 }
1818 regs->nip = entry;
1819 regs->msr = MSR_USER64;
1820 } else {
1821 regs->nip = start;
1822 regs->gpr[2] = 0;
1823 regs->msr = MSR_USER32;
1824 }
1825 #endif
1826 #ifdef CONFIG_VSX
1827 current->thread.used_vsr = 0;
1828 #endif
1829 current->thread.load_slb = 0;
1830 current->thread.load_fp = 0;
1831 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1832 current->thread.fp_save_area = NULL;
1833 #ifdef CONFIG_ALTIVEC
1834 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1835 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1836 current->thread.vr_save_area = NULL;
1837 current->thread.vrsave = 0;
1838 current->thread.used_vr = 0;
1839 current->thread.load_vec = 0;
1840 #endif /* CONFIG_ALTIVEC */
1841 #ifdef CONFIG_SPE
1842 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1843 current->thread.acc = 0;
1844 current->thread.spefscr = 0;
1845 current->thread.used_spe = 0;
1846 #endif /* CONFIG_SPE */
1847 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1848 current->thread.tm_tfhar = 0;
1849 current->thread.tm_texasr = 0;
1850 current->thread.tm_tfiar = 0;
1851 current->thread.load_tm = 0;
1852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1853
1854 thread_pkey_regs_init(&current->thread);
1855 }
1856 EXPORT_SYMBOL(start_thread);
1857
1858 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1859 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1860
1861 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1862 {
1863 struct pt_regs *regs = tsk->thread.regs;
1864
1865 /* This is a bit hairy. If we are an SPE enabled processor
1866 * (have embedded fp) we store the IEEE exception enable flags in
1867 * fpexc_mode. fpexc_mode is also used for setting FP exception
1868 * mode (asyn, precise, disabled) for 'Classic' FP. */
1869 if (val & PR_FP_EXC_SW_ENABLE) {
1870 #ifdef CONFIG_SPE
1871 if (cpu_has_feature(CPU_FTR_SPE)) {
1872 /*
1873 * When the sticky exception bits are set
1874 * directly by userspace, it must call prctl
1875 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1876 * in the existing prctl settings) or
1877 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1878 * the bits being set). <fenv.h> functions
1879 * saving and restoring the whole
1880 * floating-point environment need to do so
1881 * anyway to restore the prctl settings from
1882 * the saved environment.
1883 */
1884 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1885 tsk->thread.fpexc_mode = val &
1886 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1887 return 0;
1888 } else {
1889 return -EINVAL;
1890 }
1891 #else
1892 return -EINVAL;
1893 #endif
1894 }
1895
1896 /* on a CONFIG_SPE this does not hurt us. The bits that
1897 * __pack_fe01 use do not overlap with bits used for
1898 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1899 * on CONFIG_SPE implementations are reserved so writing to
1900 * them does not change anything */
1901 if (val > PR_FP_EXC_PRECISE)
1902 return -EINVAL;
1903 tsk->thread.fpexc_mode = __pack_fe01(val);
1904 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1905 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1906 | tsk->thread.fpexc_mode;
1907 return 0;
1908 }
1909
1910 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1911 {
1912 unsigned int val;
1913
1914 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1915 #ifdef CONFIG_SPE
1916 if (cpu_has_feature(CPU_FTR_SPE)) {
1917 /*
1918 * When the sticky exception bits are set
1919 * directly by userspace, it must call prctl
1920 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1921 * in the existing prctl settings) or
1922 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1923 * the bits being set). <fenv.h> functions
1924 * saving and restoring the whole
1925 * floating-point environment need to do so
1926 * anyway to restore the prctl settings from
1927 * the saved environment.
1928 */
1929 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1930 val = tsk->thread.fpexc_mode;
1931 } else
1932 return -EINVAL;
1933 #else
1934 return -EINVAL;
1935 #endif
1936 else
1937 val = __unpack_fe01(tsk->thread.fpexc_mode);
1938 return put_user(val, (unsigned int __user *) adr);
1939 }
1940
1941 int set_endian(struct task_struct *tsk, unsigned int val)
1942 {
1943 struct pt_regs *regs = tsk->thread.regs;
1944
1945 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1946 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1947 return -EINVAL;
1948
1949 if (regs == NULL)
1950 return -EINVAL;
1951
1952 if (val == PR_ENDIAN_BIG)
1953 regs->msr &= ~MSR_LE;
1954 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1955 regs->msr |= MSR_LE;
1956 else
1957 return -EINVAL;
1958
1959 return 0;
1960 }
1961
1962 int get_endian(struct task_struct *tsk, unsigned long adr)
1963 {
1964 struct pt_regs *regs = tsk->thread.regs;
1965 unsigned int val;
1966
1967 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1968 !cpu_has_feature(CPU_FTR_REAL_LE))
1969 return -EINVAL;
1970
1971 if (regs == NULL)
1972 return -EINVAL;
1973
1974 if (regs->msr & MSR_LE) {
1975 if (cpu_has_feature(CPU_FTR_REAL_LE))
1976 val = PR_ENDIAN_LITTLE;
1977 else
1978 val = PR_ENDIAN_PPC_LITTLE;
1979 } else
1980 val = PR_ENDIAN_BIG;
1981
1982 return put_user(val, (unsigned int __user *)adr);
1983 }
1984
1985 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1986 {
1987 tsk->thread.align_ctl = val;
1988 return 0;
1989 }
1990
1991 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1992 {
1993 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1994 }
1995
1996 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1997 unsigned long nbytes)
1998 {
1999 unsigned long stack_page;
2000 unsigned long cpu = task_cpu(p);
2001
2002 stack_page = (unsigned long)hardirq_ctx[cpu];
2003 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2004 return 1;
2005
2006 stack_page = (unsigned long)softirq_ctx[cpu];
2007 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2008 return 1;
2009
2010 return 0;
2011 }
2012
2013 int validate_sp(unsigned long sp, struct task_struct *p,
2014 unsigned long nbytes)
2015 {
2016 unsigned long stack_page = (unsigned long)task_stack_page(p);
2017
2018 if (sp < THREAD_SIZE)
2019 return 0;
2020
2021 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2022 return 1;
2023
2024 return valid_irq_stack(sp, p, nbytes);
2025 }
2026
2027 EXPORT_SYMBOL(validate_sp);
2028
2029 static unsigned long __get_wchan(struct task_struct *p)
2030 {
2031 unsigned long ip, sp;
2032 int count = 0;
2033
2034 if (!p || p == current || p->state == TASK_RUNNING)
2035 return 0;
2036
2037 sp = p->thread.ksp;
2038 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2039 return 0;
2040
2041 do {
2042 sp = *(unsigned long *)sp;
2043 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2044 p->state == TASK_RUNNING)
2045 return 0;
2046 if (count > 0) {
2047 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2048 if (!in_sched_functions(ip))
2049 return ip;
2050 }
2051 } while (count++ < 16);
2052 return 0;
2053 }
2054
2055 unsigned long get_wchan(struct task_struct *p)
2056 {
2057 unsigned long ret;
2058
2059 if (!try_get_task_stack(p))
2060 return 0;
2061
2062 ret = __get_wchan(p);
2063
2064 put_task_stack(p);
2065
2066 return ret;
2067 }
2068
2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2070
2071 void show_stack(struct task_struct *tsk, unsigned long *stack)
2072 {
2073 unsigned long sp, ip, lr, newsp;
2074 int count = 0;
2075 int firstframe = 1;
2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2077 struct ftrace_ret_stack *ret_stack;
2078 extern void return_to_handler(void);
2079 unsigned long rth = (unsigned long)return_to_handler;
2080 int curr_frame = 0;
2081 #endif
2082
2083 if (tsk == NULL)
2084 tsk = current;
2085
2086 if (!try_get_task_stack(tsk))
2087 return;
2088
2089 sp = (unsigned long) stack;
2090 if (sp == 0) {
2091 if (tsk == current)
2092 sp = current_stack_pointer();
2093 else
2094 sp = tsk->thread.ksp;
2095 }
2096
2097 lr = 0;
2098 printk("Call Trace:\n");
2099 do {
2100 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2101 break;
2102
2103 stack = (unsigned long *) sp;
2104 newsp = stack[0];
2105 ip = stack[STACK_FRAME_LR_SAVE];
2106 if (!firstframe || ip != lr) {
2107 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2108 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2109 if ((ip == rth) && curr_frame >= 0) {
2110 ret_stack = ftrace_graph_get_ret_stack(current,
2111 curr_frame++);
2112 if (ret_stack)
2113 pr_cont(" (%pS)",
2114 (void *)ret_stack->ret);
2115 else
2116 curr_frame = -1;
2117 }
2118 #endif
2119 if (firstframe)
2120 pr_cont(" (unreliable)");
2121 pr_cont("\n");
2122 }
2123 firstframe = 0;
2124
2125 /*
2126 * See if this is an exception frame.
2127 * We look for the "regshere" marker in the current frame.
2128 */
2129 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2130 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2131 struct pt_regs *regs = (struct pt_regs *)
2132 (sp + STACK_FRAME_OVERHEAD);
2133 lr = regs->link;
2134 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2135 regs->trap, (void *)regs->nip, (void *)lr);
2136 firstframe = 1;
2137 }
2138
2139 sp = newsp;
2140 } while (count++ < kstack_depth_to_print);
2141
2142 put_task_stack(tsk);
2143 }
2144
2145 #ifdef CONFIG_PPC64
2146 /* Called with hard IRQs off */
2147 void notrace __ppc64_runlatch_on(void)
2148 {
2149 struct thread_info *ti = current_thread_info();
2150
2151 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2152 /*
2153 * Least significant bit (RUN) is the only writable bit of
2154 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2155 * earliest ISA where this is the case, but it's convenient.
2156 */
2157 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2158 } else {
2159 unsigned long ctrl;
2160
2161 /*
2162 * Some architectures (e.g., Cell) have writable fields other
2163 * than RUN, so do the read-modify-write.
2164 */
2165 ctrl = mfspr(SPRN_CTRLF);
2166 ctrl |= CTRL_RUNLATCH;
2167 mtspr(SPRN_CTRLT, ctrl);
2168 }
2169
2170 ti->local_flags |= _TLF_RUNLATCH;
2171 }
2172
2173 /* Called with hard IRQs off */
2174 void notrace __ppc64_runlatch_off(void)
2175 {
2176 struct thread_info *ti = current_thread_info();
2177
2178 ti->local_flags &= ~_TLF_RUNLATCH;
2179
2180 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2181 mtspr(SPRN_CTRLT, 0);
2182 } else {
2183 unsigned long ctrl;
2184
2185 ctrl = mfspr(SPRN_CTRLF);
2186 ctrl &= ~CTRL_RUNLATCH;
2187 mtspr(SPRN_CTRLT, ctrl);
2188 }
2189 }
2190 #endif /* CONFIG_PPC64 */
2191
2192 unsigned long arch_align_stack(unsigned long sp)
2193 {
2194 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2195 sp -= get_random_int() & ~PAGE_MASK;
2196 return sp & ~0xf;
2197 }
2198
2199 static inline unsigned long brk_rnd(void)
2200 {
2201 unsigned long rnd = 0;
2202
2203 /* 8MB for 32bit, 1GB for 64bit */
2204 if (is_32bit_task())
2205 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2206 else
2207 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2208
2209 return rnd << PAGE_SHIFT;
2210 }
2211
2212 unsigned long arch_randomize_brk(struct mm_struct *mm)
2213 {
2214 unsigned long base = mm->brk;
2215 unsigned long ret;
2216
2217 #ifdef CONFIG_PPC_BOOK3S_64
2218 /*
2219 * If we are using 1TB segments and we are allowed to randomise
2220 * the heap, we can put it above 1TB so it is backed by a 1TB
2221 * segment. Otherwise the heap will be in the bottom 1TB
2222 * which always uses 256MB segments and this may result in a
2223 * performance penalty. We don't need to worry about radix. For
2224 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2225 */
2226 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2227 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2228 #endif
2229
2230 ret = PAGE_ALIGN(base + brk_rnd());
2231
2232 if (ret < mm->brk)
2233 return mm->brk;
2234
2235 return ret;
2236 }
2237