]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/process.c
Merge tag 'drm-vc4-fixes-2015-01-19' of http://github.com/anholt/linux into drm-fixes
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73 /*
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
78 */
79 if (tsk == current && tsk->thread.regs &&
80 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 !test_thread_flag(TIF_RESTORE_TM)) {
82 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 set_thread_flag(TIF_RESTORE_TM);
84 }
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92
93 static int __init enable_strict_msr_control(char *str)
94 {
95 strict_msr_control = true;
96 pr_info("Enabling strict facility control\n");
97
98 return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102 void msr_check_and_set(unsigned long bits)
103 {
104 unsigned long oldmsr = mfmsr();
105 unsigned long newmsr;
106
107 newmsr = oldmsr | bits;
108
109 #ifdef CONFIG_VSX
110 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 newmsr |= MSR_VSX;
112 #endif
113
114 if (oldmsr != newmsr)
115 mtmsr_isync(newmsr);
116 }
117
118 void __msr_check_and_clear(unsigned long bits)
119 {
120 unsigned long oldmsr = mfmsr();
121 unsigned long newmsr;
122
123 newmsr = oldmsr & ~bits;
124
125 #ifdef CONFIG_VSX
126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 newmsr &= ~MSR_VSX;
128 #endif
129
130 if (oldmsr != newmsr)
131 mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134
135 #ifdef CONFIG_PPC_FPU
136 void giveup_fpu(struct task_struct *tsk)
137 {
138 check_if_tm_restore_required(tsk);
139
140 msr_check_and_set(MSR_FP);
141 __giveup_fpu(tsk);
142 msr_check_and_clear(MSR_FP);
143 }
144 EXPORT_SYMBOL(giveup_fpu);
145
146 /*
147 * Make sure the floating-point register state in the
148 * the thread_struct is up to date for task tsk.
149 */
150 void flush_fp_to_thread(struct task_struct *tsk)
151 {
152 if (tsk->thread.regs) {
153 /*
154 * We need to disable preemption here because if we didn't,
155 * another process could get scheduled after the regs->msr
156 * test but before we have finished saving the FP registers
157 * to the thread_struct. That process could take over the
158 * FPU, and then when we get scheduled again we would store
159 * bogus values for the remaining FP registers.
160 */
161 preempt_disable();
162 if (tsk->thread.regs->msr & MSR_FP) {
163 /*
164 * This should only ever be called for current or
165 * for a stopped child process. Since we save away
166 * the FP register state on context switch,
167 * there is something wrong if a stopped child appears
168 * to still have its FP state in the CPU registers.
169 */
170 BUG_ON(tsk != current);
171 giveup_fpu(tsk);
172 }
173 preempt_enable();
174 }
175 }
176 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177
178 void enable_kernel_fp(void)
179 {
180 WARN_ON(preemptible());
181
182 msr_check_and_set(MSR_FP);
183
184 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
185 check_if_tm_restore_required(current);
186 __giveup_fpu(current);
187 }
188 }
189 EXPORT_SYMBOL(enable_kernel_fp);
190 #endif /* CONFIG_PPC_FPU */
191
192 #ifdef CONFIG_ALTIVEC
193 void giveup_altivec(struct task_struct *tsk)
194 {
195 check_if_tm_restore_required(tsk);
196
197 msr_check_and_set(MSR_VEC);
198 __giveup_altivec(tsk);
199 msr_check_and_clear(MSR_VEC);
200 }
201 EXPORT_SYMBOL(giveup_altivec);
202
203 void enable_kernel_altivec(void)
204 {
205 WARN_ON(preemptible());
206
207 msr_check_and_set(MSR_VEC);
208
209 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
210 check_if_tm_restore_required(current);
211 __giveup_altivec(current);
212 }
213 }
214 EXPORT_SYMBOL(enable_kernel_altivec);
215
216 /*
217 * Make sure the VMX/Altivec register state in the
218 * the thread_struct is up to date for task tsk.
219 */
220 void flush_altivec_to_thread(struct task_struct *tsk)
221 {
222 if (tsk->thread.regs) {
223 preempt_disable();
224 if (tsk->thread.regs->msr & MSR_VEC) {
225 BUG_ON(tsk != current);
226 giveup_altivec(tsk);
227 }
228 preempt_enable();
229 }
230 }
231 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
232 #endif /* CONFIG_ALTIVEC */
233
234 #ifdef CONFIG_VSX
235 void giveup_vsx(struct task_struct *tsk)
236 {
237 check_if_tm_restore_required(tsk);
238
239 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
240 if (tsk->thread.regs->msr & MSR_FP)
241 __giveup_fpu(tsk);
242 if (tsk->thread.regs->msr & MSR_VEC)
243 __giveup_altivec(tsk);
244 __giveup_vsx(tsk);
245 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
246 }
247 EXPORT_SYMBOL(giveup_vsx);
248
249 void enable_kernel_vsx(void)
250 {
251 WARN_ON(preemptible());
252
253 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
254
255 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
256 check_if_tm_restore_required(current);
257 if (current->thread.regs->msr & MSR_FP)
258 __giveup_fpu(current);
259 if (current->thread.regs->msr & MSR_VEC)
260 __giveup_altivec(current);
261 __giveup_vsx(current);
262 }
263 }
264 EXPORT_SYMBOL(enable_kernel_vsx);
265
266 void flush_vsx_to_thread(struct task_struct *tsk)
267 {
268 if (tsk->thread.regs) {
269 preempt_disable();
270 if (tsk->thread.regs->msr & MSR_VSX) {
271 BUG_ON(tsk != current);
272 giveup_vsx(tsk);
273 }
274 preempt_enable();
275 }
276 }
277 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
278 #endif /* CONFIG_VSX */
279
280 #ifdef CONFIG_SPE
281 void giveup_spe(struct task_struct *tsk)
282 {
283 check_if_tm_restore_required(tsk);
284
285 msr_check_and_set(MSR_SPE);
286 __giveup_spe(tsk);
287 msr_check_and_clear(MSR_SPE);
288 }
289 EXPORT_SYMBOL(giveup_spe);
290
291 void enable_kernel_spe(void)
292 {
293 WARN_ON(preemptible());
294
295 msr_check_and_set(MSR_SPE);
296
297 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
298 check_if_tm_restore_required(current);
299 __giveup_spe(current);
300 }
301 }
302 EXPORT_SYMBOL(enable_kernel_spe);
303
304 void flush_spe_to_thread(struct task_struct *tsk)
305 {
306 if (tsk->thread.regs) {
307 preempt_disable();
308 if (tsk->thread.regs->msr & MSR_SPE) {
309 BUG_ON(tsk != current);
310 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
311 giveup_spe(tsk);
312 }
313 preempt_enable();
314 }
315 }
316 #endif /* CONFIG_SPE */
317
318 static unsigned long msr_all_available;
319
320 static int __init init_msr_all_available(void)
321 {
322 #ifdef CONFIG_PPC_FPU
323 msr_all_available |= MSR_FP;
324 #endif
325 #ifdef CONFIG_ALTIVEC
326 if (cpu_has_feature(CPU_FTR_ALTIVEC))
327 msr_all_available |= MSR_VEC;
328 #endif
329 #ifdef CONFIG_VSX
330 if (cpu_has_feature(CPU_FTR_VSX))
331 msr_all_available |= MSR_VSX;
332 #endif
333 #ifdef CONFIG_SPE
334 if (cpu_has_feature(CPU_FTR_SPE))
335 msr_all_available |= MSR_SPE;
336 #endif
337
338 return 0;
339 }
340 early_initcall(init_msr_all_available);
341
342 void giveup_all(struct task_struct *tsk)
343 {
344 unsigned long usermsr;
345
346 if (!tsk->thread.regs)
347 return;
348
349 usermsr = tsk->thread.regs->msr;
350
351 if ((usermsr & msr_all_available) == 0)
352 return;
353
354 msr_check_and_set(msr_all_available);
355
356 #ifdef CONFIG_PPC_FPU
357 if (usermsr & MSR_FP)
358 __giveup_fpu(tsk);
359 #endif
360 #ifdef CONFIG_ALTIVEC
361 if (usermsr & MSR_VEC)
362 __giveup_altivec(tsk);
363 #endif
364 #ifdef CONFIG_VSX
365 if (usermsr & MSR_VSX)
366 __giveup_vsx(tsk);
367 #endif
368 #ifdef CONFIG_SPE
369 if (usermsr & MSR_SPE)
370 __giveup_spe(tsk);
371 #endif
372
373 msr_check_and_clear(msr_all_available);
374 }
375 EXPORT_SYMBOL(giveup_all);
376
377 void flush_all_to_thread(struct task_struct *tsk)
378 {
379 if (tsk->thread.regs) {
380 preempt_disable();
381 BUG_ON(tsk != current);
382 giveup_all(tsk);
383
384 #ifdef CONFIG_SPE
385 if (tsk->thread.regs->msr & MSR_SPE)
386 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
387 #endif
388
389 preempt_enable();
390 }
391 }
392 EXPORT_SYMBOL(flush_all_to_thread);
393
394 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
395 void do_send_trap(struct pt_regs *regs, unsigned long address,
396 unsigned long error_code, int signal_code, int breakpt)
397 {
398 siginfo_t info;
399
400 current->thread.trap_nr = signal_code;
401 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
402 11, SIGSEGV) == NOTIFY_STOP)
403 return;
404
405 /* Deliver the signal to userspace */
406 info.si_signo = SIGTRAP;
407 info.si_errno = breakpt; /* breakpoint or watchpoint id */
408 info.si_code = signal_code;
409 info.si_addr = (void __user *)address;
410 force_sig_info(SIGTRAP, &info, current);
411 }
412 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
413 void do_break (struct pt_regs *regs, unsigned long address,
414 unsigned long error_code)
415 {
416 siginfo_t info;
417
418 current->thread.trap_nr = TRAP_HWBKPT;
419 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
420 11, SIGSEGV) == NOTIFY_STOP)
421 return;
422
423 if (debugger_break_match(regs))
424 return;
425
426 /* Clear the breakpoint */
427 hw_breakpoint_disable();
428
429 /* Deliver the signal to userspace */
430 info.si_signo = SIGTRAP;
431 info.si_errno = 0;
432 info.si_code = TRAP_HWBKPT;
433 info.si_addr = (void __user *)address;
434 force_sig_info(SIGTRAP, &info, current);
435 }
436 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
437
438 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
439
440 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
441 /*
442 * Set the debug registers back to their default "safe" values.
443 */
444 static void set_debug_reg_defaults(struct thread_struct *thread)
445 {
446 thread->debug.iac1 = thread->debug.iac2 = 0;
447 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
448 thread->debug.iac3 = thread->debug.iac4 = 0;
449 #endif
450 thread->debug.dac1 = thread->debug.dac2 = 0;
451 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
452 thread->debug.dvc1 = thread->debug.dvc2 = 0;
453 #endif
454 thread->debug.dbcr0 = 0;
455 #ifdef CONFIG_BOOKE
456 /*
457 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
458 */
459 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
460 DBCR1_IAC3US | DBCR1_IAC4US;
461 /*
462 * Force Data Address Compare User/Supervisor bits to be User-only
463 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
464 */
465 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
466 #else
467 thread->debug.dbcr1 = 0;
468 #endif
469 }
470
471 static void prime_debug_regs(struct debug_reg *debug)
472 {
473 /*
474 * We could have inherited MSR_DE from userspace, since
475 * it doesn't get cleared on exception entry. Make sure
476 * MSR_DE is clear before we enable any debug events.
477 */
478 mtmsr(mfmsr() & ~MSR_DE);
479
480 mtspr(SPRN_IAC1, debug->iac1);
481 mtspr(SPRN_IAC2, debug->iac2);
482 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
483 mtspr(SPRN_IAC3, debug->iac3);
484 mtspr(SPRN_IAC4, debug->iac4);
485 #endif
486 mtspr(SPRN_DAC1, debug->dac1);
487 mtspr(SPRN_DAC2, debug->dac2);
488 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
489 mtspr(SPRN_DVC1, debug->dvc1);
490 mtspr(SPRN_DVC2, debug->dvc2);
491 #endif
492 mtspr(SPRN_DBCR0, debug->dbcr0);
493 mtspr(SPRN_DBCR1, debug->dbcr1);
494 #ifdef CONFIG_BOOKE
495 mtspr(SPRN_DBCR2, debug->dbcr2);
496 #endif
497 }
498 /*
499 * Unless neither the old or new thread are making use of the
500 * debug registers, set the debug registers from the values
501 * stored in the new thread.
502 */
503 void switch_booke_debug_regs(struct debug_reg *new_debug)
504 {
505 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
506 || (new_debug->dbcr0 & DBCR0_IDM))
507 prime_debug_regs(new_debug);
508 }
509 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
510 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
511 #ifndef CONFIG_HAVE_HW_BREAKPOINT
512 static void set_debug_reg_defaults(struct thread_struct *thread)
513 {
514 thread->hw_brk.address = 0;
515 thread->hw_brk.type = 0;
516 set_breakpoint(&thread->hw_brk);
517 }
518 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
519 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
520
521 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
522 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
523 {
524 mtspr(SPRN_DAC1, dabr);
525 #ifdef CONFIG_PPC_47x
526 isync();
527 #endif
528 return 0;
529 }
530 #elif defined(CONFIG_PPC_BOOK3S)
531 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
532 {
533 mtspr(SPRN_DABR, dabr);
534 if (cpu_has_feature(CPU_FTR_DABRX))
535 mtspr(SPRN_DABRX, dabrx);
536 return 0;
537 }
538 #else
539 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
540 {
541 return -EINVAL;
542 }
543 #endif
544
545 static inline int set_dabr(struct arch_hw_breakpoint *brk)
546 {
547 unsigned long dabr, dabrx;
548
549 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
550 dabrx = ((brk->type >> 3) & 0x7);
551
552 if (ppc_md.set_dabr)
553 return ppc_md.set_dabr(dabr, dabrx);
554
555 return __set_dabr(dabr, dabrx);
556 }
557
558 static inline int set_dawr(struct arch_hw_breakpoint *brk)
559 {
560 unsigned long dawr, dawrx, mrd;
561
562 dawr = brk->address;
563
564 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
565 << (63 - 58); //* read/write bits */
566 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
567 << (63 - 59); //* translate */
568 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
569 >> 3; //* PRIM bits */
570 /* dawr length is stored in field MDR bits 48:53. Matches range in
571 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
572 0b111111=64DW.
573 brk->len is in bytes.
574 This aligns up to double word size, shifts and does the bias.
575 */
576 mrd = ((brk->len + 7) >> 3) - 1;
577 dawrx |= (mrd & 0x3f) << (63 - 53);
578
579 if (ppc_md.set_dawr)
580 return ppc_md.set_dawr(dawr, dawrx);
581 mtspr(SPRN_DAWR, dawr);
582 mtspr(SPRN_DAWRX, dawrx);
583 return 0;
584 }
585
586 void __set_breakpoint(struct arch_hw_breakpoint *brk)
587 {
588 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
589
590 if (cpu_has_feature(CPU_FTR_DAWR))
591 set_dawr(brk);
592 else
593 set_dabr(brk);
594 }
595
596 void set_breakpoint(struct arch_hw_breakpoint *brk)
597 {
598 preempt_disable();
599 __set_breakpoint(brk);
600 preempt_enable();
601 }
602
603 #ifdef CONFIG_PPC64
604 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
605 #endif
606
607 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
608 struct arch_hw_breakpoint *b)
609 {
610 if (a->address != b->address)
611 return false;
612 if (a->type != b->type)
613 return false;
614 if (a->len != b->len)
615 return false;
616 return true;
617 }
618
619 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
620 static void tm_reclaim_thread(struct thread_struct *thr,
621 struct thread_info *ti, uint8_t cause)
622 {
623 unsigned long msr_diff = 0;
624
625 /*
626 * If FP/VSX registers have been already saved to the
627 * thread_struct, move them to the transact_fp array.
628 * We clear the TIF_RESTORE_TM bit since after the reclaim
629 * the thread will no longer be transactional.
630 */
631 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
632 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
633 if (msr_diff & MSR_FP)
634 memcpy(&thr->transact_fp, &thr->fp_state,
635 sizeof(struct thread_fp_state));
636 if (msr_diff & MSR_VEC)
637 memcpy(&thr->transact_vr, &thr->vr_state,
638 sizeof(struct thread_vr_state));
639 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
640 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
641 }
642
643 /*
644 * Use the current MSR TM suspended bit to track if we have
645 * checkpointed state outstanding.
646 * On signal delivery, we'd normally reclaim the checkpointed
647 * state to obtain stack pointer (see:get_tm_stackpointer()).
648 * This will then directly return to userspace without going
649 * through __switch_to(). However, if the stack frame is bad,
650 * we need to exit this thread which calls __switch_to() which
651 * will again attempt to reclaim the already saved tm state.
652 * Hence we need to check that we've not already reclaimed
653 * this state.
654 * We do this using the current MSR, rather tracking it in
655 * some specific thread_struct bit, as it has the additional
656 * benifit of checking for a potential TM bad thing exception.
657 */
658 if (!MSR_TM_SUSPENDED(mfmsr()))
659 return;
660
661 tm_reclaim(thr, thr->regs->msr, cause);
662
663 /* Having done the reclaim, we now have the checkpointed
664 * FP/VSX values in the registers. These might be valid
665 * even if we have previously called enable_kernel_fp() or
666 * flush_fp_to_thread(), so update thr->regs->msr to
667 * indicate their current validity.
668 */
669 thr->regs->msr |= msr_diff;
670 }
671
672 void tm_reclaim_current(uint8_t cause)
673 {
674 tm_enable();
675 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
676 }
677
678 static inline void tm_reclaim_task(struct task_struct *tsk)
679 {
680 /* We have to work out if we're switching from/to a task that's in the
681 * middle of a transaction.
682 *
683 * In switching we need to maintain a 2nd register state as
684 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
685 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
686 * (current) FPRs into oldtask->thread.transact_fpr[].
687 *
688 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
689 */
690 struct thread_struct *thr = &tsk->thread;
691
692 if (!thr->regs)
693 return;
694
695 if (!MSR_TM_ACTIVE(thr->regs->msr))
696 goto out_and_saveregs;
697
698 /* Stash the original thread MSR, as giveup_fpu et al will
699 * modify it. We hold onto it to see whether the task used
700 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
701 * ckpt_regs.msr is already set.
702 */
703 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
704 thr->ckpt_regs.msr = thr->regs->msr;
705
706 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
707 "ccr=%lx, msr=%lx, trap=%lx)\n",
708 tsk->pid, thr->regs->nip,
709 thr->regs->ccr, thr->regs->msr,
710 thr->regs->trap);
711
712 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
713
714 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
715 tsk->pid);
716
717 out_and_saveregs:
718 /* Always save the regs here, even if a transaction's not active.
719 * This context-switches a thread's TM info SPRs. We do it here to
720 * be consistent with the restore path (in recheckpoint) which
721 * cannot happen later in _switch().
722 */
723 tm_save_sprs(thr);
724 }
725
726 extern void __tm_recheckpoint(struct thread_struct *thread,
727 unsigned long orig_msr);
728
729 void tm_recheckpoint(struct thread_struct *thread,
730 unsigned long orig_msr)
731 {
732 unsigned long flags;
733
734 /* We really can't be interrupted here as the TEXASR registers can't
735 * change and later in the trecheckpoint code, we have a userspace R1.
736 * So let's hard disable over this region.
737 */
738 local_irq_save(flags);
739 hard_irq_disable();
740
741 /* The TM SPRs are restored here, so that TEXASR.FS can be set
742 * before the trecheckpoint and no explosion occurs.
743 */
744 tm_restore_sprs(thread);
745
746 __tm_recheckpoint(thread, orig_msr);
747
748 local_irq_restore(flags);
749 }
750
751 static inline void tm_recheckpoint_new_task(struct task_struct *new)
752 {
753 unsigned long msr;
754
755 if (!cpu_has_feature(CPU_FTR_TM))
756 return;
757
758 /* Recheckpoint the registers of the thread we're about to switch to.
759 *
760 * If the task was using FP, we non-lazily reload both the original and
761 * the speculative FP register states. This is because the kernel
762 * doesn't see if/when a TM rollback occurs, so if we take an FP
763 * unavoidable later, we are unable to determine which set of FP regs
764 * need to be restored.
765 */
766 if (!new->thread.regs)
767 return;
768
769 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
770 tm_restore_sprs(&new->thread);
771 return;
772 }
773 msr = new->thread.ckpt_regs.msr;
774 /* Recheckpoint to restore original checkpointed register state. */
775 TM_DEBUG("*** tm_recheckpoint of pid %d "
776 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
777 new->pid, new->thread.regs->msr, msr);
778
779 /* This loads the checkpointed FP/VEC state, if used */
780 tm_recheckpoint(&new->thread, msr);
781
782 /* This loads the speculative FP/VEC state, if used */
783 if (msr & MSR_FP) {
784 do_load_up_transact_fpu(&new->thread);
785 new->thread.regs->msr |=
786 (MSR_FP | new->thread.fpexc_mode);
787 }
788 #ifdef CONFIG_ALTIVEC
789 if (msr & MSR_VEC) {
790 do_load_up_transact_altivec(&new->thread);
791 new->thread.regs->msr |= MSR_VEC;
792 }
793 #endif
794 /* We may as well turn on VSX too since all the state is restored now */
795 if (msr & MSR_VSX)
796 new->thread.regs->msr |= MSR_VSX;
797
798 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
799 "(kernel msr 0x%lx)\n",
800 new->pid, mfmsr());
801 }
802
803 static inline void __switch_to_tm(struct task_struct *prev)
804 {
805 if (cpu_has_feature(CPU_FTR_TM)) {
806 tm_enable();
807 tm_reclaim_task(prev);
808 }
809 }
810
811 /*
812 * This is called if we are on the way out to userspace and the
813 * TIF_RESTORE_TM flag is set. It checks if we need to reload
814 * FP and/or vector state and does so if necessary.
815 * If userspace is inside a transaction (whether active or
816 * suspended) and FP/VMX/VSX instructions have ever been enabled
817 * inside that transaction, then we have to keep them enabled
818 * and keep the FP/VMX/VSX state loaded while ever the transaction
819 * continues. The reason is that if we didn't, and subsequently
820 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
821 * we don't know whether it's the same transaction, and thus we
822 * don't know which of the checkpointed state and the transactional
823 * state to use.
824 */
825 void restore_tm_state(struct pt_regs *regs)
826 {
827 unsigned long msr_diff;
828
829 clear_thread_flag(TIF_RESTORE_TM);
830 if (!MSR_TM_ACTIVE(regs->msr))
831 return;
832
833 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
834 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
835 if (msr_diff & MSR_FP) {
836 msr_check_and_set(MSR_FP);
837 load_fp_state(&current->thread.fp_state);
838 msr_check_and_clear(MSR_FP);
839 regs->msr |= current->thread.fpexc_mode;
840 }
841 if (msr_diff & MSR_VEC) {
842 msr_check_and_set(MSR_VEC);
843 load_vr_state(&current->thread.vr_state);
844 msr_check_and_clear(MSR_VEC);
845 }
846 regs->msr |= msr_diff;
847 }
848
849 #else
850 #define tm_recheckpoint_new_task(new)
851 #define __switch_to_tm(prev)
852 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
853
854 static inline void save_sprs(struct thread_struct *t)
855 {
856 #ifdef CONFIG_ALTIVEC
857 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
858 t->vrsave = mfspr(SPRN_VRSAVE);
859 #endif
860 #ifdef CONFIG_PPC_BOOK3S_64
861 if (cpu_has_feature(CPU_FTR_DSCR))
862 t->dscr = mfspr(SPRN_DSCR);
863
864 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
865 t->bescr = mfspr(SPRN_BESCR);
866 t->ebbhr = mfspr(SPRN_EBBHR);
867 t->ebbrr = mfspr(SPRN_EBBRR);
868
869 t->fscr = mfspr(SPRN_FSCR);
870
871 /*
872 * Note that the TAR is not available for use in the kernel.
873 * (To provide this, the TAR should be backed up/restored on
874 * exception entry/exit instead, and be in pt_regs. FIXME,
875 * this should be in pt_regs anyway (for debug).)
876 */
877 t->tar = mfspr(SPRN_TAR);
878 }
879 #endif
880 }
881
882 static inline void restore_sprs(struct thread_struct *old_thread,
883 struct thread_struct *new_thread)
884 {
885 #ifdef CONFIG_ALTIVEC
886 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
887 old_thread->vrsave != new_thread->vrsave)
888 mtspr(SPRN_VRSAVE, new_thread->vrsave);
889 #endif
890 #ifdef CONFIG_PPC_BOOK3S_64
891 if (cpu_has_feature(CPU_FTR_DSCR)) {
892 u64 dscr = get_paca()->dscr_default;
893 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
894
895 if (new_thread->dscr_inherit) {
896 dscr = new_thread->dscr;
897 fscr |= FSCR_DSCR;
898 }
899
900 if (old_thread->dscr != dscr)
901 mtspr(SPRN_DSCR, dscr);
902
903 if (old_thread->fscr != fscr)
904 mtspr(SPRN_FSCR, fscr);
905 }
906
907 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
908 if (old_thread->bescr != new_thread->bescr)
909 mtspr(SPRN_BESCR, new_thread->bescr);
910 if (old_thread->ebbhr != new_thread->ebbhr)
911 mtspr(SPRN_EBBHR, new_thread->ebbhr);
912 if (old_thread->ebbrr != new_thread->ebbrr)
913 mtspr(SPRN_EBBRR, new_thread->ebbrr);
914
915 if (old_thread->tar != new_thread->tar)
916 mtspr(SPRN_TAR, new_thread->tar);
917 }
918 #endif
919 }
920
921 struct task_struct *__switch_to(struct task_struct *prev,
922 struct task_struct *new)
923 {
924 struct thread_struct *new_thread, *old_thread;
925 struct task_struct *last;
926 #ifdef CONFIG_PPC_BOOK3S_64
927 struct ppc64_tlb_batch *batch;
928 #endif
929
930 new_thread = &new->thread;
931 old_thread = &current->thread;
932
933 WARN_ON(!irqs_disabled());
934
935 #ifdef CONFIG_PPC64
936 /*
937 * Collect processor utilization data per process
938 */
939 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
940 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
941 long unsigned start_tb, current_tb;
942 start_tb = old_thread->start_tb;
943 cu->current_tb = current_tb = mfspr(SPRN_PURR);
944 old_thread->accum_tb += (current_tb - start_tb);
945 new_thread->start_tb = current_tb;
946 }
947 #endif /* CONFIG_PPC64 */
948
949 #ifdef CONFIG_PPC_BOOK3S_64
950 batch = this_cpu_ptr(&ppc64_tlb_batch);
951 if (batch->active) {
952 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
953 if (batch->index)
954 __flush_tlb_pending(batch);
955 batch->active = 0;
956 }
957 #endif /* CONFIG_PPC_BOOK3S_64 */
958
959 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
960 switch_booke_debug_regs(&new->thread.debug);
961 #else
962 /*
963 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
964 * schedule DABR
965 */
966 #ifndef CONFIG_HAVE_HW_BREAKPOINT
967 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
968 __set_breakpoint(&new->thread.hw_brk);
969 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
970 #endif
971
972 /*
973 * We need to save SPRs before treclaim/trecheckpoint as these will
974 * change a number of them.
975 */
976 save_sprs(&prev->thread);
977
978 __switch_to_tm(prev);
979
980 /* Save FPU, Altivec, VSX and SPE state */
981 giveup_all(prev);
982
983 /*
984 * We can't take a PMU exception inside _switch() since there is a
985 * window where the kernel stack SLB and the kernel stack are out
986 * of sync. Hard disable here.
987 */
988 hard_irq_disable();
989
990 tm_recheckpoint_new_task(new);
991
992 /*
993 * Call restore_sprs() before calling _switch(). If we move it after
994 * _switch() then we miss out on calling it for new tasks. The reason
995 * for this is we manually create a stack frame for new tasks that
996 * directly returns through ret_from_fork() or
997 * ret_from_kernel_thread(). See copy_thread() for details.
998 */
999 restore_sprs(old_thread, new_thread);
1000
1001 last = _switch(old_thread, new_thread);
1002
1003 #ifdef CONFIG_PPC_BOOK3S_64
1004 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1005 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1006 batch = this_cpu_ptr(&ppc64_tlb_batch);
1007 batch->active = 1;
1008 }
1009 #endif /* CONFIG_PPC_BOOK3S_64 */
1010
1011 return last;
1012 }
1013
1014 static int instructions_to_print = 16;
1015
1016 static void show_instructions(struct pt_regs *regs)
1017 {
1018 int i;
1019 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1020 sizeof(int));
1021
1022 printk("Instruction dump:");
1023
1024 for (i = 0; i < instructions_to_print; i++) {
1025 int instr;
1026
1027 if (!(i % 8))
1028 printk("\n");
1029
1030 #if !defined(CONFIG_BOOKE)
1031 /* If executing with the IMMU off, adjust pc rather
1032 * than print XXXXXXXX.
1033 */
1034 if (!(regs->msr & MSR_IR))
1035 pc = (unsigned long)phys_to_virt(pc);
1036 #endif
1037
1038 if (!__kernel_text_address(pc) ||
1039 probe_kernel_address((unsigned int __user *)pc, instr)) {
1040 printk(KERN_CONT "XXXXXXXX ");
1041 } else {
1042 if (regs->nip == pc)
1043 printk(KERN_CONT "<%08x> ", instr);
1044 else
1045 printk(KERN_CONT "%08x ", instr);
1046 }
1047
1048 pc += sizeof(int);
1049 }
1050
1051 printk("\n");
1052 }
1053
1054 struct regbit {
1055 unsigned long bit;
1056 const char *name;
1057 };
1058
1059 static struct regbit msr_bits[] = {
1060 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1061 {MSR_SF, "SF"},
1062 {MSR_HV, "HV"},
1063 #endif
1064 {MSR_VEC, "VEC"},
1065 {MSR_VSX, "VSX"},
1066 #ifdef CONFIG_BOOKE
1067 {MSR_CE, "CE"},
1068 #endif
1069 {MSR_EE, "EE"},
1070 {MSR_PR, "PR"},
1071 {MSR_FP, "FP"},
1072 {MSR_ME, "ME"},
1073 #ifdef CONFIG_BOOKE
1074 {MSR_DE, "DE"},
1075 #else
1076 {MSR_SE, "SE"},
1077 {MSR_BE, "BE"},
1078 #endif
1079 {MSR_IR, "IR"},
1080 {MSR_DR, "DR"},
1081 {MSR_PMM, "PMM"},
1082 #ifndef CONFIG_BOOKE
1083 {MSR_RI, "RI"},
1084 {MSR_LE, "LE"},
1085 #endif
1086 {0, NULL}
1087 };
1088
1089 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1090 {
1091 const char *s = "";
1092
1093 for (; bits->bit; ++bits)
1094 if (val & bits->bit) {
1095 printk("%s%s", s, bits->name);
1096 s = sep;
1097 }
1098 }
1099
1100 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1101 static struct regbit msr_tm_bits[] = {
1102 {MSR_TS_T, "T"},
1103 {MSR_TS_S, "S"},
1104 {MSR_TM, "E"},
1105 {0, NULL}
1106 };
1107
1108 static void print_tm_bits(unsigned long val)
1109 {
1110 /*
1111 * This only prints something if at least one of the TM bit is set.
1112 * Inside the TM[], the output means:
1113 * E: Enabled (bit 32)
1114 * S: Suspended (bit 33)
1115 * T: Transactional (bit 34)
1116 */
1117 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1118 printk(",TM[");
1119 print_bits(val, msr_tm_bits, "");
1120 printk("]");
1121 }
1122 }
1123 #else
1124 static void print_tm_bits(unsigned long val) {}
1125 #endif
1126
1127 static void print_msr_bits(unsigned long val)
1128 {
1129 printk("<");
1130 print_bits(val, msr_bits, ",");
1131 print_tm_bits(val);
1132 printk(">");
1133 }
1134
1135 #ifdef CONFIG_PPC64
1136 #define REG "%016lx"
1137 #define REGS_PER_LINE 4
1138 #define LAST_VOLATILE 13
1139 #else
1140 #define REG "%08lx"
1141 #define REGS_PER_LINE 8
1142 #define LAST_VOLATILE 12
1143 #endif
1144
1145 void show_regs(struct pt_regs * regs)
1146 {
1147 int i, trap;
1148
1149 show_regs_print_info(KERN_DEFAULT);
1150
1151 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1152 regs->nip, regs->link, regs->ctr);
1153 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1154 regs, regs->trap, print_tainted(), init_utsname()->release);
1155 printk("MSR: "REG" ", regs->msr);
1156 print_msr_bits(regs->msr);
1157 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1158 trap = TRAP(regs);
1159 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1160 printk("CFAR: "REG" ", regs->orig_gpr3);
1161 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1162 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1163 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1164 #else
1165 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1166 #endif
1167 #ifdef CONFIG_PPC64
1168 printk("SOFTE: %ld ", regs->softe);
1169 #endif
1170 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1171 if (MSR_TM_ACTIVE(regs->msr))
1172 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1173 #endif
1174
1175 for (i = 0; i < 32; i++) {
1176 if ((i % REGS_PER_LINE) == 0)
1177 printk("\nGPR%02d: ", i);
1178 printk(REG " ", regs->gpr[i]);
1179 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1180 break;
1181 }
1182 printk("\n");
1183 #ifdef CONFIG_KALLSYMS
1184 /*
1185 * Lookup NIP late so we have the best change of getting the
1186 * above info out without failing
1187 */
1188 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1189 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1190 #endif
1191 show_stack(current, (unsigned long *) regs->gpr[1]);
1192 if (!user_mode(regs))
1193 show_instructions(regs);
1194 }
1195
1196 void exit_thread(void)
1197 {
1198 }
1199
1200 void flush_thread(void)
1201 {
1202 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1203 flush_ptrace_hw_breakpoint(current);
1204 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1205 set_debug_reg_defaults(&current->thread);
1206 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1207 }
1208
1209 void
1210 release_thread(struct task_struct *t)
1211 {
1212 }
1213
1214 /*
1215 * this gets called so that we can store coprocessor state into memory and
1216 * copy the current task into the new thread.
1217 */
1218 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1219 {
1220 flush_all_to_thread(src);
1221 /*
1222 * Flush TM state out so we can copy it. __switch_to_tm() does this
1223 * flush but it removes the checkpointed state from the current CPU and
1224 * transitions the CPU out of TM mode. Hence we need to call
1225 * tm_recheckpoint_new_task() (on the same task) to restore the
1226 * checkpointed state back and the TM mode.
1227 */
1228 __switch_to_tm(src);
1229 tm_recheckpoint_new_task(src);
1230
1231 *dst = *src;
1232
1233 clear_task_ebb(dst);
1234
1235 return 0;
1236 }
1237
1238 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1239 {
1240 #ifdef CONFIG_PPC_STD_MMU_64
1241 unsigned long sp_vsid;
1242 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1243
1244 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1245 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1246 << SLB_VSID_SHIFT_1T;
1247 else
1248 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1249 << SLB_VSID_SHIFT;
1250 sp_vsid |= SLB_VSID_KERNEL | llp;
1251 p->thread.ksp_vsid = sp_vsid;
1252 #endif
1253 }
1254
1255 /*
1256 * Copy a thread..
1257 */
1258
1259 /*
1260 * Copy architecture-specific thread state
1261 */
1262 int copy_thread(unsigned long clone_flags, unsigned long usp,
1263 unsigned long kthread_arg, struct task_struct *p)
1264 {
1265 struct pt_regs *childregs, *kregs;
1266 extern void ret_from_fork(void);
1267 extern void ret_from_kernel_thread(void);
1268 void (*f)(void);
1269 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1270
1271 /* Copy registers */
1272 sp -= sizeof(struct pt_regs);
1273 childregs = (struct pt_regs *) sp;
1274 if (unlikely(p->flags & PF_KTHREAD)) {
1275 /* kernel thread */
1276 struct thread_info *ti = (void *)task_stack_page(p);
1277 memset(childregs, 0, sizeof(struct pt_regs));
1278 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1279 /* function */
1280 if (usp)
1281 childregs->gpr[14] = ppc_function_entry((void *)usp);
1282 #ifdef CONFIG_PPC64
1283 clear_tsk_thread_flag(p, TIF_32BIT);
1284 childregs->softe = 1;
1285 #endif
1286 childregs->gpr[15] = kthread_arg;
1287 p->thread.regs = NULL; /* no user register state */
1288 ti->flags |= _TIF_RESTOREALL;
1289 f = ret_from_kernel_thread;
1290 } else {
1291 /* user thread */
1292 struct pt_regs *regs = current_pt_regs();
1293 CHECK_FULL_REGS(regs);
1294 *childregs = *regs;
1295 if (usp)
1296 childregs->gpr[1] = usp;
1297 p->thread.regs = childregs;
1298 childregs->gpr[3] = 0; /* Result from fork() */
1299 if (clone_flags & CLONE_SETTLS) {
1300 #ifdef CONFIG_PPC64
1301 if (!is_32bit_task())
1302 childregs->gpr[13] = childregs->gpr[6];
1303 else
1304 #endif
1305 childregs->gpr[2] = childregs->gpr[6];
1306 }
1307
1308 f = ret_from_fork;
1309 }
1310 sp -= STACK_FRAME_OVERHEAD;
1311
1312 /*
1313 * The way this works is that at some point in the future
1314 * some task will call _switch to switch to the new task.
1315 * That will pop off the stack frame created below and start
1316 * the new task running at ret_from_fork. The new task will
1317 * do some house keeping and then return from the fork or clone
1318 * system call, using the stack frame created above.
1319 */
1320 ((unsigned long *)sp)[0] = 0;
1321 sp -= sizeof(struct pt_regs);
1322 kregs = (struct pt_regs *) sp;
1323 sp -= STACK_FRAME_OVERHEAD;
1324 p->thread.ksp = sp;
1325 #ifdef CONFIG_PPC32
1326 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1327 _ALIGN_UP(sizeof(struct thread_info), 16);
1328 #endif
1329 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1330 p->thread.ptrace_bps[0] = NULL;
1331 #endif
1332
1333 p->thread.fp_save_area = NULL;
1334 #ifdef CONFIG_ALTIVEC
1335 p->thread.vr_save_area = NULL;
1336 #endif
1337
1338 setup_ksp_vsid(p, sp);
1339
1340 #ifdef CONFIG_PPC64
1341 if (cpu_has_feature(CPU_FTR_DSCR)) {
1342 p->thread.dscr_inherit = current->thread.dscr_inherit;
1343 p->thread.dscr = mfspr(SPRN_DSCR);
1344 }
1345 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1346 p->thread.ppr = INIT_PPR;
1347 #endif
1348 kregs->nip = ppc_function_entry(f);
1349 return 0;
1350 }
1351
1352 /*
1353 * Set up a thread for executing a new program
1354 */
1355 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1356 {
1357 #ifdef CONFIG_PPC64
1358 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1359 #endif
1360
1361 /*
1362 * If we exec out of a kernel thread then thread.regs will not be
1363 * set. Do it now.
1364 */
1365 if (!current->thread.regs) {
1366 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1367 current->thread.regs = regs - 1;
1368 }
1369
1370 memset(regs->gpr, 0, sizeof(regs->gpr));
1371 regs->ctr = 0;
1372 regs->link = 0;
1373 regs->xer = 0;
1374 regs->ccr = 0;
1375 regs->gpr[1] = sp;
1376
1377 /*
1378 * We have just cleared all the nonvolatile GPRs, so make
1379 * FULL_REGS(regs) return true. This is necessary to allow
1380 * ptrace to examine the thread immediately after exec.
1381 */
1382 regs->trap &= ~1UL;
1383
1384 #ifdef CONFIG_PPC32
1385 regs->mq = 0;
1386 regs->nip = start;
1387 regs->msr = MSR_USER;
1388 #else
1389 if (!is_32bit_task()) {
1390 unsigned long entry;
1391
1392 if (is_elf2_task()) {
1393 /* Look ma, no function descriptors! */
1394 entry = start;
1395
1396 /*
1397 * Ulrich says:
1398 * The latest iteration of the ABI requires that when
1399 * calling a function (at its global entry point),
1400 * the caller must ensure r12 holds the entry point
1401 * address (so that the function can quickly
1402 * establish addressability).
1403 */
1404 regs->gpr[12] = start;
1405 /* Make sure that's restored on entry to userspace. */
1406 set_thread_flag(TIF_RESTOREALL);
1407 } else {
1408 unsigned long toc;
1409
1410 /* start is a relocated pointer to the function
1411 * descriptor for the elf _start routine. The first
1412 * entry in the function descriptor is the entry
1413 * address of _start and the second entry is the TOC
1414 * value we need to use.
1415 */
1416 __get_user(entry, (unsigned long __user *)start);
1417 __get_user(toc, (unsigned long __user *)start+1);
1418
1419 /* Check whether the e_entry function descriptor entries
1420 * need to be relocated before we can use them.
1421 */
1422 if (load_addr != 0) {
1423 entry += load_addr;
1424 toc += load_addr;
1425 }
1426 regs->gpr[2] = toc;
1427 }
1428 regs->nip = entry;
1429 regs->msr = MSR_USER64;
1430 } else {
1431 regs->nip = start;
1432 regs->gpr[2] = 0;
1433 regs->msr = MSR_USER32;
1434 }
1435 #endif
1436 #ifdef CONFIG_VSX
1437 current->thread.used_vsr = 0;
1438 #endif
1439 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1440 current->thread.fp_save_area = NULL;
1441 #ifdef CONFIG_ALTIVEC
1442 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1443 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1444 current->thread.vr_save_area = NULL;
1445 current->thread.vrsave = 0;
1446 current->thread.used_vr = 0;
1447 #endif /* CONFIG_ALTIVEC */
1448 #ifdef CONFIG_SPE
1449 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1450 current->thread.acc = 0;
1451 current->thread.spefscr = 0;
1452 current->thread.used_spe = 0;
1453 #endif /* CONFIG_SPE */
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 if (cpu_has_feature(CPU_FTR_TM))
1456 regs->msr |= MSR_TM;
1457 current->thread.tm_tfhar = 0;
1458 current->thread.tm_texasr = 0;
1459 current->thread.tm_tfiar = 0;
1460 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1461 }
1462 EXPORT_SYMBOL(start_thread);
1463
1464 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1465 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1466
1467 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1468 {
1469 struct pt_regs *regs = tsk->thread.regs;
1470
1471 /* This is a bit hairy. If we are an SPE enabled processor
1472 * (have embedded fp) we store the IEEE exception enable flags in
1473 * fpexc_mode. fpexc_mode is also used for setting FP exception
1474 * mode (asyn, precise, disabled) for 'Classic' FP. */
1475 if (val & PR_FP_EXC_SW_ENABLE) {
1476 #ifdef CONFIG_SPE
1477 if (cpu_has_feature(CPU_FTR_SPE)) {
1478 /*
1479 * When the sticky exception bits are set
1480 * directly by userspace, it must call prctl
1481 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1482 * in the existing prctl settings) or
1483 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1484 * the bits being set). <fenv.h> functions
1485 * saving and restoring the whole
1486 * floating-point environment need to do so
1487 * anyway to restore the prctl settings from
1488 * the saved environment.
1489 */
1490 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1491 tsk->thread.fpexc_mode = val &
1492 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1493 return 0;
1494 } else {
1495 return -EINVAL;
1496 }
1497 #else
1498 return -EINVAL;
1499 #endif
1500 }
1501
1502 /* on a CONFIG_SPE this does not hurt us. The bits that
1503 * __pack_fe01 use do not overlap with bits used for
1504 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1505 * on CONFIG_SPE implementations are reserved so writing to
1506 * them does not change anything */
1507 if (val > PR_FP_EXC_PRECISE)
1508 return -EINVAL;
1509 tsk->thread.fpexc_mode = __pack_fe01(val);
1510 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1511 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1512 | tsk->thread.fpexc_mode;
1513 return 0;
1514 }
1515
1516 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1517 {
1518 unsigned int val;
1519
1520 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1521 #ifdef CONFIG_SPE
1522 if (cpu_has_feature(CPU_FTR_SPE)) {
1523 /*
1524 * When the sticky exception bits are set
1525 * directly by userspace, it must call prctl
1526 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1527 * in the existing prctl settings) or
1528 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1529 * the bits being set). <fenv.h> functions
1530 * saving and restoring the whole
1531 * floating-point environment need to do so
1532 * anyway to restore the prctl settings from
1533 * the saved environment.
1534 */
1535 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1536 val = tsk->thread.fpexc_mode;
1537 } else
1538 return -EINVAL;
1539 #else
1540 return -EINVAL;
1541 #endif
1542 else
1543 val = __unpack_fe01(tsk->thread.fpexc_mode);
1544 return put_user(val, (unsigned int __user *) adr);
1545 }
1546
1547 int set_endian(struct task_struct *tsk, unsigned int val)
1548 {
1549 struct pt_regs *regs = tsk->thread.regs;
1550
1551 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1552 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1553 return -EINVAL;
1554
1555 if (regs == NULL)
1556 return -EINVAL;
1557
1558 if (val == PR_ENDIAN_BIG)
1559 regs->msr &= ~MSR_LE;
1560 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1561 regs->msr |= MSR_LE;
1562 else
1563 return -EINVAL;
1564
1565 return 0;
1566 }
1567
1568 int get_endian(struct task_struct *tsk, unsigned long adr)
1569 {
1570 struct pt_regs *regs = tsk->thread.regs;
1571 unsigned int val;
1572
1573 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1574 !cpu_has_feature(CPU_FTR_REAL_LE))
1575 return -EINVAL;
1576
1577 if (regs == NULL)
1578 return -EINVAL;
1579
1580 if (regs->msr & MSR_LE) {
1581 if (cpu_has_feature(CPU_FTR_REAL_LE))
1582 val = PR_ENDIAN_LITTLE;
1583 else
1584 val = PR_ENDIAN_PPC_LITTLE;
1585 } else
1586 val = PR_ENDIAN_BIG;
1587
1588 return put_user(val, (unsigned int __user *)adr);
1589 }
1590
1591 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1592 {
1593 tsk->thread.align_ctl = val;
1594 return 0;
1595 }
1596
1597 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1598 {
1599 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1600 }
1601
1602 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1603 unsigned long nbytes)
1604 {
1605 unsigned long stack_page;
1606 unsigned long cpu = task_cpu(p);
1607
1608 /*
1609 * Avoid crashing if the stack has overflowed and corrupted
1610 * task_cpu(p), which is in the thread_info struct.
1611 */
1612 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1613 stack_page = (unsigned long) hardirq_ctx[cpu];
1614 if (sp >= stack_page + sizeof(struct thread_struct)
1615 && sp <= stack_page + THREAD_SIZE - nbytes)
1616 return 1;
1617
1618 stack_page = (unsigned long) softirq_ctx[cpu];
1619 if (sp >= stack_page + sizeof(struct thread_struct)
1620 && sp <= stack_page + THREAD_SIZE - nbytes)
1621 return 1;
1622 }
1623 return 0;
1624 }
1625
1626 int validate_sp(unsigned long sp, struct task_struct *p,
1627 unsigned long nbytes)
1628 {
1629 unsigned long stack_page = (unsigned long)task_stack_page(p);
1630
1631 if (sp >= stack_page + sizeof(struct thread_struct)
1632 && sp <= stack_page + THREAD_SIZE - nbytes)
1633 return 1;
1634
1635 return valid_irq_stack(sp, p, nbytes);
1636 }
1637
1638 EXPORT_SYMBOL(validate_sp);
1639
1640 unsigned long get_wchan(struct task_struct *p)
1641 {
1642 unsigned long ip, sp;
1643 int count = 0;
1644
1645 if (!p || p == current || p->state == TASK_RUNNING)
1646 return 0;
1647
1648 sp = p->thread.ksp;
1649 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1650 return 0;
1651
1652 do {
1653 sp = *(unsigned long *)sp;
1654 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1655 return 0;
1656 if (count > 0) {
1657 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1658 if (!in_sched_functions(ip))
1659 return ip;
1660 }
1661 } while (count++ < 16);
1662 return 0;
1663 }
1664
1665 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1666
1667 void show_stack(struct task_struct *tsk, unsigned long *stack)
1668 {
1669 unsigned long sp, ip, lr, newsp;
1670 int count = 0;
1671 int firstframe = 1;
1672 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1673 int curr_frame = current->curr_ret_stack;
1674 extern void return_to_handler(void);
1675 unsigned long rth = (unsigned long)return_to_handler;
1676 #endif
1677
1678 sp = (unsigned long) stack;
1679 if (tsk == NULL)
1680 tsk = current;
1681 if (sp == 0) {
1682 if (tsk == current)
1683 sp = current_stack_pointer();
1684 else
1685 sp = tsk->thread.ksp;
1686 }
1687
1688 lr = 0;
1689 printk("Call Trace:\n");
1690 do {
1691 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1692 return;
1693
1694 stack = (unsigned long *) sp;
1695 newsp = stack[0];
1696 ip = stack[STACK_FRAME_LR_SAVE];
1697 if (!firstframe || ip != lr) {
1698 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1699 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1700 if ((ip == rth) && curr_frame >= 0) {
1701 printk(" (%pS)",
1702 (void *)current->ret_stack[curr_frame].ret);
1703 curr_frame--;
1704 }
1705 #endif
1706 if (firstframe)
1707 printk(" (unreliable)");
1708 printk("\n");
1709 }
1710 firstframe = 0;
1711
1712 /*
1713 * See if this is an exception frame.
1714 * We look for the "regshere" marker in the current frame.
1715 */
1716 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1717 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1718 struct pt_regs *regs = (struct pt_regs *)
1719 (sp + STACK_FRAME_OVERHEAD);
1720 lr = regs->link;
1721 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1722 regs->trap, (void *)regs->nip, (void *)lr);
1723 firstframe = 1;
1724 }
1725
1726 sp = newsp;
1727 } while (count++ < kstack_depth_to_print);
1728 }
1729
1730 #ifdef CONFIG_PPC64
1731 /* Called with hard IRQs off */
1732 void notrace __ppc64_runlatch_on(void)
1733 {
1734 struct thread_info *ti = current_thread_info();
1735 unsigned long ctrl;
1736
1737 ctrl = mfspr(SPRN_CTRLF);
1738 ctrl |= CTRL_RUNLATCH;
1739 mtspr(SPRN_CTRLT, ctrl);
1740
1741 ti->local_flags |= _TLF_RUNLATCH;
1742 }
1743
1744 /* Called with hard IRQs off */
1745 void notrace __ppc64_runlatch_off(void)
1746 {
1747 struct thread_info *ti = current_thread_info();
1748 unsigned long ctrl;
1749
1750 ti->local_flags &= ~_TLF_RUNLATCH;
1751
1752 ctrl = mfspr(SPRN_CTRLF);
1753 ctrl &= ~CTRL_RUNLATCH;
1754 mtspr(SPRN_CTRLT, ctrl);
1755 }
1756 #endif /* CONFIG_PPC64 */
1757
1758 unsigned long arch_align_stack(unsigned long sp)
1759 {
1760 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1761 sp -= get_random_int() & ~PAGE_MASK;
1762 return sp & ~0xf;
1763 }
1764
1765 static inline unsigned long brk_rnd(void)
1766 {
1767 unsigned long rnd = 0;
1768
1769 /* 8MB for 32bit, 1GB for 64bit */
1770 if (is_32bit_task())
1771 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1772 else
1773 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1774
1775 return rnd << PAGE_SHIFT;
1776 }
1777
1778 unsigned long arch_randomize_brk(struct mm_struct *mm)
1779 {
1780 unsigned long base = mm->brk;
1781 unsigned long ret;
1782
1783 #ifdef CONFIG_PPC_STD_MMU_64
1784 /*
1785 * If we are using 1TB segments and we are allowed to randomise
1786 * the heap, we can put it above 1TB so it is backed by a 1TB
1787 * segment. Otherwise the heap will be in the bottom 1TB
1788 * which always uses 256MB segments and this may result in a
1789 * performance penalty.
1790 */
1791 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1792 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1793 #endif
1794
1795 ret = PAGE_ALIGN(base + brk_rnd());
1796
1797 if (ret < mm->brk)
1798 return mm->brk;
1799
1800 return ret;
1801 }
1802