]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/process.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94 }
95
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146 #endif
147 giveup_fpu_maybe_transactional(tsk);
148 }
149 preempt_enable();
150 }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
155 void enable_kernel_fp(void)
156 {
157 WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161 giveup_fpu_maybe_transactional(current);
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164 #else
165 giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173 WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177 giveup_altivec_maybe_transactional(current);
178 else
179 giveup_altivec_notask();
180 #else
181 giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197 #endif
198 giveup_altivec_maybe_transactional(tsk);
199 }
200 preempt_enable();
201 }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 void enable_kernel_vsx(void)
208 {
209 WARN_ON(preemptible());
210
211 #ifdef CONFIG_SMP
212 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
213 giveup_vsx(current);
214 else
215 giveup_vsx(NULL); /* just enable vsx for kernel - force */
216 #else
217 giveup_vsx(last_task_used_vsx);
218 #endif /* CONFIG_SMP */
219 }
220 EXPORT_SYMBOL(enable_kernel_vsx);
221
222 void giveup_vsx(struct task_struct *tsk)
223 {
224 giveup_fpu_maybe_transactional(tsk);
225 giveup_altivec_maybe_transactional(tsk);
226 __giveup_vsx(tsk);
227 }
228 EXPORT_SYMBOL(giveup_vsx);
229
230 void flush_vsx_to_thread(struct task_struct *tsk)
231 {
232 if (tsk->thread.regs) {
233 preempt_disable();
234 if (tsk->thread.regs->msr & MSR_VSX) {
235 #ifdef CONFIG_SMP
236 BUG_ON(tsk != current);
237 #endif
238 giveup_vsx(tsk);
239 }
240 preempt_enable();
241 }
242 }
243 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
244 #endif /* CONFIG_VSX */
245
246 #ifdef CONFIG_SPE
247
248 void enable_kernel_spe(void)
249 {
250 WARN_ON(preemptible());
251
252 #ifdef CONFIG_SMP
253 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
254 giveup_spe(current);
255 else
256 giveup_spe(NULL); /* just enable SPE for kernel - force */
257 #else
258 giveup_spe(last_task_used_spe);
259 #endif /* __SMP __ */
260 }
261 EXPORT_SYMBOL(enable_kernel_spe);
262
263 void flush_spe_to_thread(struct task_struct *tsk)
264 {
265 if (tsk->thread.regs) {
266 preempt_disable();
267 if (tsk->thread.regs->msr & MSR_SPE) {
268 #ifdef CONFIG_SMP
269 BUG_ON(tsk != current);
270 #endif
271 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
272 giveup_spe(tsk);
273 }
274 preempt_enable();
275 }
276 }
277 #endif /* CONFIG_SPE */
278
279 #ifndef CONFIG_SMP
280 /*
281 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
282 * and the current task has some state, discard it.
283 */
284 void discard_lazy_cpu_state(void)
285 {
286 preempt_disable();
287 if (last_task_used_math == current)
288 last_task_used_math = NULL;
289 #ifdef CONFIG_ALTIVEC
290 if (last_task_used_altivec == current)
291 last_task_used_altivec = NULL;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_VSX
294 if (last_task_used_vsx == current)
295 last_task_used_vsx = NULL;
296 #endif /* CONFIG_VSX */
297 #ifdef CONFIG_SPE
298 if (last_task_used_spe == current)
299 last_task_used_spe = NULL;
300 #endif
301 preempt_enable();
302 }
303 #endif /* CONFIG_SMP */
304
305 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
306 void do_send_trap(struct pt_regs *regs, unsigned long address,
307 unsigned long error_code, int signal_code, int breakpt)
308 {
309 siginfo_t info;
310
311 current->thread.trap_nr = signal_code;
312 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
313 11, SIGSEGV) == NOTIFY_STOP)
314 return;
315
316 /* Deliver the signal to userspace */
317 info.si_signo = SIGTRAP;
318 info.si_errno = breakpt; /* breakpoint or watchpoint id */
319 info.si_code = signal_code;
320 info.si_addr = (void __user *)address;
321 force_sig_info(SIGTRAP, &info, current);
322 }
323 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
324 void do_break (struct pt_regs *regs, unsigned long address,
325 unsigned long error_code)
326 {
327 siginfo_t info;
328
329 current->thread.trap_nr = TRAP_HWBKPT;
330 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
331 11, SIGSEGV) == NOTIFY_STOP)
332 return;
333
334 if (debugger_break_match(regs))
335 return;
336
337 /* Clear the breakpoint */
338 hw_breakpoint_disable();
339
340 /* Deliver the signal to userspace */
341 info.si_signo = SIGTRAP;
342 info.si_errno = 0;
343 info.si_code = TRAP_HWBKPT;
344 info.si_addr = (void __user *)address;
345 force_sig_info(SIGTRAP, &info, current);
346 }
347 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
348
349 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
350
351 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
352 /*
353 * Set the debug registers back to their default "safe" values.
354 */
355 static void set_debug_reg_defaults(struct thread_struct *thread)
356 {
357 thread->debug.iac1 = thread->debug.iac2 = 0;
358 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
359 thread->debug.iac3 = thread->debug.iac4 = 0;
360 #endif
361 thread->debug.dac1 = thread->debug.dac2 = 0;
362 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
363 thread->debug.dvc1 = thread->debug.dvc2 = 0;
364 #endif
365 thread->debug.dbcr0 = 0;
366 #ifdef CONFIG_BOOKE
367 /*
368 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
369 */
370 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
371 DBCR1_IAC3US | DBCR1_IAC4US;
372 /*
373 * Force Data Address Compare User/Supervisor bits to be User-only
374 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
375 */
376 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
377 #else
378 thread->debug.dbcr1 = 0;
379 #endif
380 }
381
382 static void prime_debug_regs(struct debug_reg *debug)
383 {
384 /*
385 * We could have inherited MSR_DE from userspace, since
386 * it doesn't get cleared on exception entry. Make sure
387 * MSR_DE is clear before we enable any debug events.
388 */
389 mtmsr(mfmsr() & ~MSR_DE);
390
391 mtspr(SPRN_IAC1, debug->iac1);
392 mtspr(SPRN_IAC2, debug->iac2);
393 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
394 mtspr(SPRN_IAC3, debug->iac3);
395 mtspr(SPRN_IAC4, debug->iac4);
396 #endif
397 mtspr(SPRN_DAC1, debug->dac1);
398 mtspr(SPRN_DAC2, debug->dac2);
399 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
400 mtspr(SPRN_DVC1, debug->dvc1);
401 mtspr(SPRN_DVC2, debug->dvc2);
402 #endif
403 mtspr(SPRN_DBCR0, debug->dbcr0);
404 mtspr(SPRN_DBCR1, debug->dbcr1);
405 #ifdef CONFIG_BOOKE
406 mtspr(SPRN_DBCR2, debug->dbcr2);
407 #endif
408 }
409 /*
410 * Unless neither the old or new thread are making use of the
411 * debug registers, set the debug registers from the values
412 * stored in the new thread.
413 */
414 void switch_booke_debug_regs(struct debug_reg *new_debug)
415 {
416 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
417 || (new_debug->dbcr0 & DBCR0_IDM))
418 prime_debug_regs(new_debug);
419 }
420 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
421 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
422 #ifndef CONFIG_HAVE_HW_BREAKPOINT
423 static void set_debug_reg_defaults(struct thread_struct *thread)
424 {
425 thread->hw_brk.address = 0;
426 thread->hw_brk.type = 0;
427 set_breakpoint(&thread->hw_brk);
428 }
429 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
430 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
431
432 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
433 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
434 {
435 mtspr(SPRN_DAC1, dabr);
436 #ifdef CONFIG_PPC_47x
437 isync();
438 #endif
439 return 0;
440 }
441 #elif defined(CONFIG_PPC_BOOK3S)
442 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
443 {
444 mtspr(SPRN_DABR, dabr);
445 if (cpu_has_feature(CPU_FTR_DABRX))
446 mtspr(SPRN_DABRX, dabrx);
447 return 0;
448 }
449 #else
450 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
451 {
452 return -EINVAL;
453 }
454 #endif
455
456 static inline int set_dabr(struct arch_hw_breakpoint *brk)
457 {
458 unsigned long dabr, dabrx;
459
460 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
461 dabrx = ((brk->type >> 3) & 0x7);
462
463 if (ppc_md.set_dabr)
464 return ppc_md.set_dabr(dabr, dabrx);
465
466 return __set_dabr(dabr, dabrx);
467 }
468
469 static inline int set_dawr(struct arch_hw_breakpoint *brk)
470 {
471 unsigned long dawr, dawrx, mrd;
472
473 dawr = brk->address;
474
475 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
476 << (63 - 58); //* read/write bits */
477 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
478 << (63 - 59); //* translate */
479 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
480 >> 3; //* PRIM bits */
481 /* dawr length is stored in field MDR bits 48:53. Matches range in
482 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
483 0b111111=64DW.
484 brk->len is in bytes.
485 This aligns up to double word size, shifts and does the bias.
486 */
487 mrd = ((brk->len + 7) >> 3) - 1;
488 dawrx |= (mrd & 0x3f) << (63 - 53);
489
490 if (ppc_md.set_dawr)
491 return ppc_md.set_dawr(dawr, dawrx);
492 mtspr(SPRN_DAWR, dawr);
493 mtspr(SPRN_DAWRX, dawrx);
494 return 0;
495 }
496
497 void __set_breakpoint(struct arch_hw_breakpoint *brk)
498 {
499 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
500
501 if (cpu_has_feature(CPU_FTR_DAWR))
502 set_dawr(brk);
503 else
504 set_dabr(brk);
505 }
506
507 void set_breakpoint(struct arch_hw_breakpoint *brk)
508 {
509 preempt_disable();
510 __set_breakpoint(brk);
511 preempt_enable();
512 }
513
514 #ifdef CONFIG_PPC64
515 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
516 #endif
517
518 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
519 struct arch_hw_breakpoint *b)
520 {
521 if (a->address != b->address)
522 return false;
523 if (a->type != b->type)
524 return false;
525 if (a->len != b->len)
526 return false;
527 return true;
528 }
529
530 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
531 static void tm_reclaim_thread(struct thread_struct *thr,
532 struct thread_info *ti, uint8_t cause)
533 {
534 unsigned long msr_diff = 0;
535
536 /*
537 * If FP/VSX registers have been already saved to the
538 * thread_struct, move them to the transact_fp array.
539 * We clear the TIF_RESTORE_TM bit since after the reclaim
540 * the thread will no longer be transactional.
541 */
542 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
543 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
544 if (msr_diff & MSR_FP)
545 memcpy(&thr->transact_fp, &thr->fp_state,
546 sizeof(struct thread_fp_state));
547 if (msr_diff & MSR_VEC)
548 memcpy(&thr->transact_vr, &thr->vr_state,
549 sizeof(struct thread_vr_state));
550 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
551 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
552 }
553
554 tm_reclaim(thr, thr->regs->msr, cause);
555
556 /* Having done the reclaim, we now have the checkpointed
557 * FP/VSX values in the registers. These might be valid
558 * even if we have previously called enable_kernel_fp() or
559 * flush_fp_to_thread(), so update thr->regs->msr to
560 * indicate their current validity.
561 */
562 thr->regs->msr |= msr_diff;
563 }
564
565 void tm_reclaim_current(uint8_t cause)
566 {
567 tm_enable();
568 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
569 }
570
571 static inline void tm_reclaim_task(struct task_struct *tsk)
572 {
573 /* We have to work out if we're switching from/to a task that's in the
574 * middle of a transaction.
575 *
576 * In switching we need to maintain a 2nd register state as
577 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
578 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
579 * (current) FPRs into oldtask->thread.transact_fpr[].
580 *
581 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
582 */
583 struct thread_struct *thr = &tsk->thread;
584
585 if (!thr->regs)
586 return;
587
588 if (!MSR_TM_ACTIVE(thr->regs->msr))
589 goto out_and_saveregs;
590
591 /* Stash the original thread MSR, as giveup_fpu et al will
592 * modify it. We hold onto it to see whether the task used
593 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
594 * ckpt_regs.msr is already set.
595 */
596 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
597 thr->ckpt_regs.msr = thr->regs->msr;
598
599 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
600 "ccr=%lx, msr=%lx, trap=%lx)\n",
601 tsk->pid, thr->regs->nip,
602 thr->regs->ccr, thr->regs->msr,
603 thr->regs->trap);
604
605 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
606
607 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
608 tsk->pid);
609
610 out_and_saveregs:
611 /* Always save the regs here, even if a transaction's not active.
612 * This context-switches a thread's TM info SPRs. We do it here to
613 * be consistent with the restore path (in recheckpoint) which
614 * cannot happen later in _switch().
615 */
616 tm_save_sprs(thr);
617 }
618
619 extern void __tm_recheckpoint(struct thread_struct *thread,
620 unsigned long orig_msr);
621
622 void tm_recheckpoint(struct thread_struct *thread,
623 unsigned long orig_msr)
624 {
625 unsigned long flags;
626
627 /* We really can't be interrupted here as the TEXASR registers can't
628 * change and later in the trecheckpoint code, we have a userspace R1.
629 * So let's hard disable over this region.
630 */
631 local_irq_save(flags);
632 hard_irq_disable();
633
634 /* The TM SPRs are restored here, so that TEXASR.FS can be set
635 * before the trecheckpoint and no explosion occurs.
636 */
637 tm_restore_sprs(thread);
638
639 __tm_recheckpoint(thread, orig_msr);
640
641 local_irq_restore(flags);
642 }
643
644 static inline void tm_recheckpoint_new_task(struct task_struct *new)
645 {
646 unsigned long msr;
647
648 if (!cpu_has_feature(CPU_FTR_TM))
649 return;
650
651 /* Recheckpoint the registers of the thread we're about to switch to.
652 *
653 * If the task was using FP, we non-lazily reload both the original and
654 * the speculative FP register states. This is because the kernel
655 * doesn't see if/when a TM rollback occurs, so if we take an FP
656 * unavoidable later, we are unable to determine which set of FP regs
657 * need to be restored.
658 */
659 if (!new->thread.regs)
660 return;
661
662 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
663 tm_restore_sprs(&new->thread);
664 return;
665 }
666 msr = new->thread.ckpt_regs.msr;
667 /* Recheckpoint to restore original checkpointed register state. */
668 TM_DEBUG("*** tm_recheckpoint of pid %d "
669 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
670 new->pid, new->thread.regs->msr, msr);
671
672 /* This loads the checkpointed FP/VEC state, if used */
673 tm_recheckpoint(&new->thread, msr);
674
675 /* This loads the speculative FP/VEC state, if used */
676 if (msr & MSR_FP) {
677 do_load_up_transact_fpu(&new->thread);
678 new->thread.regs->msr |=
679 (MSR_FP | new->thread.fpexc_mode);
680 }
681 #ifdef CONFIG_ALTIVEC
682 if (msr & MSR_VEC) {
683 do_load_up_transact_altivec(&new->thread);
684 new->thread.regs->msr |= MSR_VEC;
685 }
686 #endif
687 /* We may as well turn on VSX too since all the state is restored now */
688 if (msr & MSR_VSX)
689 new->thread.regs->msr |= MSR_VSX;
690
691 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
692 "(kernel msr 0x%lx)\n",
693 new->pid, mfmsr());
694 }
695
696 static inline void __switch_to_tm(struct task_struct *prev)
697 {
698 if (cpu_has_feature(CPU_FTR_TM)) {
699 tm_enable();
700 tm_reclaim_task(prev);
701 }
702 }
703
704 /*
705 * This is called if we are on the way out to userspace and the
706 * TIF_RESTORE_TM flag is set. It checks if we need to reload
707 * FP and/or vector state and does so if necessary.
708 * If userspace is inside a transaction (whether active or
709 * suspended) and FP/VMX/VSX instructions have ever been enabled
710 * inside that transaction, then we have to keep them enabled
711 * and keep the FP/VMX/VSX state loaded while ever the transaction
712 * continues. The reason is that if we didn't, and subsequently
713 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
714 * we don't know whether it's the same transaction, and thus we
715 * don't know which of the checkpointed state and the transactional
716 * state to use.
717 */
718 void restore_tm_state(struct pt_regs *regs)
719 {
720 unsigned long msr_diff;
721
722 clear_thread_flag(TIF_RESTORE_TM);
723 if (!MSR_TM_ACTIVE(regs->msr))
724 return;
725
726 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
727 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
728 if (msr_diff & MSR_FP) {
729 fp_enable();
730 load_fp_state(&current->thread.fp_state);
731 regs->msr |= current->thread.fpexc_mode;
732 }
733 if (msr_diff & MSR_VEC) {
734 vec_enable();
735 load_vr_state(&current->thread.vr_state);
736 }
737 regs->msr |= msr_diff;
738 }
739
740 #else
741 #define tm_recheckpoint_new_task(new)
742 #define __switch_to_tm(prev)
743 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
744
745 struct task_struct *__switch_to(struct task_struct *prev,
746 struct task_struct *new)
747 {
748 struct thread_struct *new_thread, *old_thread;
749 struct task_struct *last;
750 #ifdef CONFIG_PPC_BOOK3S_64
751 struct ppc64_tlb_batch *batch;
752 #endif
753
754 WARN_ON(!irqs_disabled());
755
756 /* Back up the TAR and DSCR across context switches.
757 * Note that the TAR is not available for use in the kernel. (To
758 * provide this, the TAR should be backed up/restored on exception
759 * entry/exit instead, and be in pt_regs. FIXME, this should be in
760 * pt_regs anyway (for debug).)
761 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
762 * these will change them.
763 */
764 save_early_sprs(&prev->thread);
765
766 __switch_to_tm(prev);
767
768 #ifdef CONFIG_SMP
769 /* avoid complexity of lazy save/restore of fpu
770 * by just saving it every time we switch out if
771 * this task used the fpu during the last quantum.
772 *
773 * If it tries to use the fpu again, it'll trap and
774 * reload its fp regs. So we don't have to do a restore
775 * every switch, just a save.
776 * -- Cort
777 */
778 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
779 giveup_fpu(prev);
780 #ifdef CONFIG_ALTIVEC
781 /*
782 * If the previous thread used altivec in the last quantum
783 * (thus changing altivec regs) then save them.
784 * We used to check the VRSAVE register but not all apps
785 * set it, so we don't rely on it now (and in fact we need
786 * to save & restore VSCR even if VRSAVE == 0). -- paulus
787 *
788 * On SMP we always save/restore altivec regs just to avoid the
789 * complexity of changing processors.
790 * -- Cort
791 */
792 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
793 giveup_altivec(prev);
794 #endif /* CONFIG_ALTIVEC */
795 #ifdef CONFIG_VSX
796 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
797 /* VMX and FPU registers are already save here */
798 __giveup_vsx(prev);
799 #endif /* CONFIG_VSX */
800 #ifdef CONFIG_SPE
801 /*
802 * If the previous thread used spe in the last quantum
803 * (thus changing spe regs) then save them.
804 *
805 * On SMP we always save/restore spe regs just to avoid the
806 * complexity of changing processors.
807 */
808 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
809 giveup_spe(prev);
810 #endif /* CONFIG_SPE */
811
812 #else /* CONFIG_SMP */
813 #ifdef CONFIG_ALTIVEC
814 /* Avoid the trap. On smp this this never happens since
815 * we don't set last_task_used_altivec -- Cort
816 */
817 if (new->thread.regs && last_task_used_altivec == new)
818 new->thread.regs->msr |= MSR_VEC;
819 #endif /* CONFIG_ALTIVEC */
820 #ifdef CONFIG_VSX
821 if (new->thread.regs && last_task_used_vsx == new)
822 new->thread.regs->msr |= MSR_VSX;
823 #endif /* CONFIG_VSX */
824 #ifdef CONFIG_SPE
825 /* Avoid the trap. On smp this this never happens since
826 * we don't set last_task_used_spe
827 */
828 if (new->thread.regs && last_task_used_spe == new)
829 new->thread.regs->msr |= MSR_SPE;
830 #endif /* CONFIG_SPE */
831
832 #endif /* CONFIG_SMP */
833
834 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
835 switch_booke_debug_regs(&new->thread.debug);
836 #else
837 /*
838 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
839 * schedule DABR
840 */
841 #ifndef CONFIG_HAVE_HW_BREAKPOINT
842 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
843 __set_breakpoint(&new->thread.hw_brk);
844 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
845 #endif
846
847
848 new_thread = &new->thread;
849 old_thread = &current->thread;
850
851 #ifdef CONFIG_PPC64
852 /*
853 * Collect processor utilization data per process
854 */
855 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
856 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
857 long unsigned start_tb, current_tb;
858 start_tb = old_thread->start_tb;
859 cu->current_tb = current_tb = mfspr(SPRN_PURR);
860 old_thread->accum_tb += (current_tb - start_tb);
861 new_thread->start_tb = current_tb;
862 }
863 #endif /* CONFIG_PPC64 */
864
865 #ifdef CONFIG_PPC_BOOK3S_64
866 batch = this_cpu_ptr(&ppc64_tlb_batch);
867 if (batch->active) {
868 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
869 if (batch->index)
870 __flush_tlb_pending(batch);
871 batch->active = 0;
872 }
873 #endif /* CONFIG_PPC_BOOK3S_64 */
874
875 /*
876 * We can't take a PMU exception inside _switch() since there is a
877 * window where the kernel stack SLB and the kernel stack are out
878 * of sync. Hard disable here.
879 */
880 hard_irq_disable();
881
882 tm_recheckpoint_new_task(new);
883
884 last = _switch(old_thread, new_thread);
885
886 #ifdef CONFIG_PPC_BOOK3S_64
887 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
888 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
889 batch = this_cpu_ptr(&ppc64_tlb_batch);
890 batch->active = 1;
891 }
892 #endif /* CONFIG_PPC_BOOK3S_64 */
893
894 return last;
895 }
896
897 static int instructions_to_print = 16;
898
899 static void show_instructions(struct pt_regs *regs)
900 {
901 int i;
902 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
903 sizeof(int));
904
905 printk("Instruction dump:");
906
907 for (i = 0; i < instructions_to_print; i++) {
908 int instr;
909
910 if (!(i % 8))
911 printk("\n");
912
913 #if !defined(CONFIG_BOOKE)
914 /* If executing with the IMMU off, adjust pc rather
915 * than print XXXXXXXX.
916 */
917 if (!(regs->msr & MSR_IR))
918 pc = (unsigned long)phys_to_virt(pc);
919 #endif
920
921 if (!__kernel_text_address(pc) ||
922 probe_kernel_address((unsigned int __user *)pc, instr)) {
923 printk(KERN_CONT "XXXXXXXX ");
924 } else {
925 if (regs->nip == pc)
926 printk(KERN_CONT "<%08x> ", instr);
927 else
928 printk(KERN_CONT "%08x ", instr);
929 }
930
931 pc += sizeof(int);
932 }
933
934 printk("\n");
935 }
936
937 static struct regbit {
938 unsigned long bit;
939 const char *name;
940 } msr_bits[] = {
941 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
942 {MSR_SF, "SF"},
943 {MSR_HV, "HV"},
944 #endif
945 {MSR_VEC, "VEC"},
946 {MSR_VSX, "VSX"},
947 #ifdef CONFIG_BOOKE
948 {MSR_CE, "CE"},
949 #endif
950 {MSR_EE, "EE"},
951 {MSR_PR, "PR"},
952 {MSR_FP, "FP"},
953 {MSR_ME, "ME"},
954 #ifdef CONFIG_BOOKE
955 {MSR_DE, "DE"},
956 #else
957 {MSR_SE, "SE"},
958 {MSR_BE, "BE"},
959 #endif
960 {MSR_IR, "IR"},
961 {MSR_DR, "DR"},
962 {MSR_PMM, "PMM"},
963 #ifndef CONFIG_BOOKE
964 {MSR_RI, "RI"},
965 {MSR_LE, "LE"},
966 #endif
967 {0, NULL}
968 };
969
970 static void printbits(unsigned long val, struct regbit *bits)
971 {
972 const char *sep = "";
973
974 printk("<");
975 for (; bits->bit; ++bits)
976 if (val & bits->bit) {
977 printk("%s%s", sep, bits->name);
978 sep = ",";
979 }
980 printk(">");
981 }
982
983 #ifdef CONFIG_PPC64
984 #define REG "%016lx"
985 #define REGS_PER_LINE 4
986 #define LAST_VOLATILE 13
987 #else
988 #define REG "%08lx"
989 #define REGS_PER_LINE 8
990 #define LAST_VOLATILE 12
991 #endif
992
993 void show_regs(struct pt_regs * regs)
994 {
995 int i, trap;
996
997 show_regs_print_info(KERN_DEFAULT);
998
999 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1000 regs->nip, regs->link, regs->ctr);
1001 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1002 regs, regs->trap, print_tainted(), init_utsname()->release);
1003 printk("MSR: "REG" ", regs->msr);
1004 printbits(regs->msr, msr_bits);
1005 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1006 trap = TRAP(regs);
1007 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1008 printk("CFAR: "REG" ", regs->orig_gpr3);
1009 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1010 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1011 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1012 #else
1013 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1014 #endif
1015 #ifdef CONFIG_PPC64
1016 printk("SOFTE: %ld ", regs->softe);
1017 #endif
1018 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1019 if (MSR_TM_ACTIVE(regs->msr))
1020 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1021 #endif
1022
1023 for (i = 0; i < 32; i++) {
1024 if ((i % REGS_PER_LINE) == 0)
1025 printk("\nGPR%02d: ", i);
1026 printk(REG " ", regs->gpr[i]);
1027 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1028 break;
1029 }
1030 printk("\n");
1031 #ifdef CONFIG_KALLSYMS
1032 /*
1033 * Lookup NIP late so we have the best change of getting the
1034 * above info out without failing
1035 */
1036 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1037 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1038 #endif
1039 show_stack(current, (unsigned long *) regs->gpr[1]);
1040 if (!user_mode(regs))
1041 show_instructions(regs);
1042 }
1043
1044 void exit_thread(void)
1045 {
1046 discard_lazy_cpu_state();
1047 }
1048
1049 void flush_thread(void)
1050 {
1051 discard_lazy_cpu_state();
1052
1053 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1054 flush_ptrace_hw_breakpoint(current);
1055 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1056 set_debug_reg_defaults(&current->thread);
1057 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1058 }
1059
1060 void
1061 release_thread(struct task_struct *t)
1062 {
1063 }
1064
1065 /*
1066 * this gets called so that we can store coprocessor state into memory and
1067 * copy the current task into the new thread.
1068 */
1069 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1070 {
1071 flush_fp_to_thread(src);
1072 flush_altivec_to_thread(src);
1073 flush_vsx_to_thread(src);
1074 flush_spe_to_thread(src);
1075 /*
1076 * Flush TM state out so we can copy it. __switch_to_tm() does this
1077 * flush but it removes the checkpointed state from the current CPU and
1078 * transitions the CPU out of TM mode. Hence we need to call
1079 * tm_recheckpoint_new_task() (on the same task) to restore the
1080 * checkpointed state back and the TM mode.
1081 */
1082 __switch_to_tm(src);
1083 tm_recheckpoint_new_task(src);
1084
1085 *dst = *src;
1086
1087 clear_task_ebb(dst);
1088
1089 return 0;
1090 }
1091
1092 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1093 {
1094 #ifdef CONFIG_PPC_STD_MMU_64
1095 unsigned long sp_vsid;
1096 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1097
1098 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1099 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1100 << SLB_VSID_SHIFT_1T;
1101 else
1102 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1103 << SLB_VSID_SHIFT;
1104 sp_vsid |= SLB_VSID_KERNEL | llp;
1105 p->thread.ksp_vsid = sp_vsid;
1106 #endif
1107 }
1108
1109 /*
1110 * Copy a thread..
1111 */
1112
1113 /*
1114 * Copy architecture-specific thread state
1115 */
1116 int copy_thread(unsigned long clone_flags, unsigned long usp,
1117 unsigned long kthread_arg, struct task_struct *p)
1118 {
1119 struct pt_regs *childregs, *kregs;
1120 extern void ret_from_fork(void);
1121 extern void ret_from_kernel_thread(void);
1122 void (*f)(void);
1123 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1124
1125 /* Copy registers */
1126 sp -= sizeof(struct pt_regs);
1127 childregs = (struct pt_regs *) sp;
1128 if (unlikely(p->flags & PF_KTHREAD)) {
1129 /* kernel thread */
1130 struct thread_info *ti = (void *)task_stack_page(p);
1131 memset(childregs, 0, sizeof(struct pt_regs));
1132 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1133 /* function */
1134 if (usp)
1135 childregs->gpr[14] = ppc_function_entry((void *)usp);
1136 #ifdef CONFIG_PPC64
1137 clear_tsk_thread_flag(p, TIF_32BIT);
1138 childregs->softe = 1;
1139 #endif
1140 childregs->gpr[15] = kthread_arg;
1141 p->thread.regs = NULL; /* no user register state */
1142 ti->flags |= _TIF_RESTOREALL;
1143 f = ret_from_kernel_thread;
1144 } else {
1145 /* user thread */
1146 struct pt_regs *regs = current_pt_regs();
1147 CHECK_FULL_REGS(regs);
1148 *childregs = *regs;
1149 if (usp)
1150 childregs->gpr[1] = usp;
1151 p->thread.regs = childregs;
1152 childregs->gpr[3] = 0; /* Result from fork() */
1153 if (clone_flags & CLONE_SETTLS) {
1154 #ifdef CONFIG_PPC64
1155 if (!is_32bit_task())
1156 childregs->gpr[13] = childregs->gpr[6];
1157 else
1158 #endif
1159 childregs->gpr[2] = childregs->gpr[6];
1160 }
1161
1162 f = ret_from_fork;
1163 }
1164 sp -= STACK_FRAME_OVERHEAD;
1165
1166 /*
1167 * The way this works is that at some point in the future
1168 * some task will call _switch to switch to the new task.
1169 * That will pop off the stack frame created below and start
1170 * the new task running at ret_from_fork. The new task will
1171 * do some house keeping and then return from the fork or clone
1172 * system call, using the stack frame created above.
1173 */
1174 ((unsigned long *)sp)[0] = 0;
1175 sp -= sizeof(struct pt_regs);
1176 kregs = (struct pt_regs *) sp;
1177 sp -= STACK_FRAME_OVERHEAD;
1178 p->thread.ksp = sp;
1179 #ifdef CONFIG_PPC32
1180 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1181 _ALIGN_UP(sizeof(struct thread_info), 16);
1182 #endif
1183 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1184 p->thread.ptrace_bps[0] = NULL;
1185 #endif
1186
1187 p->thread.fp_save_area = NULL;
1188 #ifdef CONFIG_ALTIVEC
1189 p->thread.vr_save_area = NULL;
1190 #endif
1191
1192 setup_ksp_vsid(p, sp);
1193
1194 #ifdef CONFIG_PPC64
1195 if (cpu_has_feature(CPU_FTR_DSCR)) {
1196 p->thread.dscr_inherit = current->thread.dscr_inherit;
1197 p->thread.dscr = current->thread.dscr;
1198 }
1199 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1200 p->thread.ppr = INIT_PPR;
1201 #endif
1202 kregs->nip = ppc_function_entry(f);
1203 return 0;
1204 }
1205
1206 /*
1207 * Set up a thread for executing a new program
1208 */
1209 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1210 {
1211 #ifdef CONFIG_PPC64
1212 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1213 #endif
1214
1215 /*
1216 * If we exec out of a kernel thread then thread.regs will not be
1217 * set. Do it now.
1218 */
1219 if (!current->thread.regs) {
1220 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1221 current->thread.regs = regs - 1;
1222 }
1223
1224 memset(regs->gpr, 0, sizeof(regs->gpr));
1225 regs->ctr = 0;
1226 regs->link = 0;
1227 regs->xer = 0;
1228 regs->ccr = 0;
1229 regs->gpr[1] = sp;
1230
1231 /*
1232 * We have just cleared all the nonvolatile GPRs, so make
1233 * FULL_REGS(regs) return true. This is necessary to allow
1234 * ptrace to examine the thread immediately after exec.
1235 */
1236 regs->trap &= ~1UL;
1237
1238 #ifdef CONFIG_PPC32
1239 regs->mq = 0;
1240 regs->nip = start;
1241 regs->msr = MSR_USER;
1242 #else
1243 if (!is_32bit_task()) {
1244 unsigned long entry;
1245
1246 if (is_elf2_task()) {
1247 /* Look ma, no function descriptors! */
1248 entry = start;
1249
1250 /*
1251 * Ulrich says:
1252 * The latest iteration of the ABI requires that when
1253 * calling a function (at its global entry point),
1254 * the caller must ensure r12 holds the entry point
1255 * address (so that the function can quickly
1256 * establish addressability).
1257 */
1258 regs->gpr[12] = start;
1259 /* Make sure that's restored on entry to userspace. */
1260 set_thread_flag(TIF_RESTOREALL);
1261 } else {
1262 unsigned long toc;
1263
1264 /* start is a relocated pointer to the function
1265 * descriptor for the elf _start routine. The first
1266 * entry in the function descriptor is the entry
1267 * address of _start and the second entry is the TOC
1268 * value we need to use.
1269 */
1270 __get_user(entry, (unsigned long __user *)start);
1271 __get_user(toc, (unsigned long __user *)start+1);
1272
1273 /* Check whether the e_entry function descriptor entries
1274 * need to be relocated before we can use them.
1275 */
1276 if (load_addr != 0) {
1277 entry += load_addr;
1278 toc += load_addr;
1279 }
1280 regs->gpr[2] = toc;
1281 }
1282 regs->nip = entry;
1283 regs->msr = MSR_USER64;
1284 } else {
1285 regs->nip = start;
1286 regs->gpr[2] = 0;
1287 regs->msr = MSR_USER32;
1288 }
1289 #endif
1290 discard_lazy_cpu_state();
1291 #ifdef CONFIG_VSX
1292 current->thread.used_vsr = 0;
1293 #endif
1294 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1295 current->thread.fp_save_area = NULL;
1296 #ifdef CONFIG_ALTIVEC
1297 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1298 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1299 current->thread.vr_save_area = NULL;
1300 current->thread.vrsave = 0;
1301 current->thread.used_vr = 0;
1302 #endif /* CONFIG_ALTIVEC */
1303 #ifdef CONFIG_SPE
1304 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1305 current->thread.acc = 0;
1306 current->thread.spefscr = 0;
1307 current->thread.used_spe = 0;
1308 #endif /* CONFIG_SPE */
1309 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1310 if (cpu_has_feature(CPU_FTR_TM))
1311 regs->msr |= MSR_TM;
1312 current->thread.tm_tfhar = 0;
1313 current->thread.tm_texasr = 0;
1314 current->thread.tm_tfiar = 0;
1315 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1316 }
1317 EXPORT_SYMBOL(start_thread);
1318
1319 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1320 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1321
1322 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1323 {
1324 struct pt_regs *regs = tsk->thread.regs;
1325
1326 /* This is a bit hairy. If we are an SPE enabled processor
1327 * (have embedded fp) we store the IEEE exception enable flags in
1328 * fpexc_mode. fpexc_mode is also used for setting FP exception
1329 * mode (asyn, precise, disabled) for 'Classic' FP. */
1330 if (val & PR_FP_EXC_SW_ENABLE) {
1331 #ifdef CONFIG_SPE
1332 if (cpu_has_feature(CPU_FTR_SPE)) {
1333 /*
1334 * When the sticky exception bits are set
1335 * directly by userspace, it must call prctl
1336 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1337 * in the existing prctl settings) or
1338 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1339 * the bits being set). <fenv.h> functions
1340 * saving and restoring the whole
1341 * floating-point environment need to do so
1342 * anyway to restore the prctl settings from
1343 * the saved environment.
1344 */
1345 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1346 tsk->thread.fpexc_mode = val &
1347 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1348 return 0;
1349 } else {
1350 return -EINVAL;
1351 }
1352 #else
1353 return -EINVAL;
1354 #endif
1355 }
1356
1357 /* on a CONFIG_SPE this does not hurt us. The bits that
1358 * __pack_fe01 use do not overlap with bits used for
1359 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1360 * on CONFIG_SPE implementations are reserved so writing to
1361 * them does not change anything */
1362 if (val > PR_FP_EXC_PRECISE)
1363 return -EINVAL;
1364 tsk->thread.fpexc_mode = __pack_fe01(val);
1365 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1366 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1367 | tsk->thread.fpexc_mode;
1368 return 0;
1369 }
1370
1371 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1372 {
1373 unsigned int val;
1374
1375 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1376 #ifdef CONFIG_SPE
1377 if (cpu_has_feature(CPU_FTR_SPE)) {
1378 /*
1379 * When the sticky exception bits are set
1380 * directly by userspace, it must call prctl
1381 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1382 * in the existing prctl settings) or
1383 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1384 * the bits being set). <fenv.h> functions
1385 * saving and restoring the whole
1386 * floating-point environment need to do so
1387 * anyway to restore the prctl settings from
1388 * the saved environment.
1389 */
1390 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1391 val = tsk->thread.fpexc_mode;
1392 } else
1393 return -EINVAL;
1394 #else
1395 return -EINVAL;
1396 #endif
1397 else
1398 val = __unpack_fe01(tsk->thread.fpexc_mode);
1399 return put_user(val, (unsigned int __user *) adr);
1400 }
1401
1402 int set_endian(struct task_struct *tsk, unsigned int val)
1403 {
1404 struct pt_regs *regs = tsk->thread.regs;
1405
1406 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1407 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1408 return -EINVAL;
1409
1410 if (regs == NULL)
1411 return -EINVAL;
1412
1413 if (val == PR_ENDIAN_BIG)
1414 regs->msr &= ~MSR_LE;
1415 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1416 regs->msr |= MSR_LE;
1417 else
1418 return -EINVAL;
1419
1420 return 0;
1421 }
1422
1423 int get_endian(struct task_struct *tsk, unsigned long adr)
1424 {
1425 struct pt_regs *regs = tsk->thread.regs;
1426 unsigned int val;
1427
1428 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1429 !cpu_has_feature(CPU_FTR_REAL_LE))
1430 return -EINVAL;
1431
1432 if (regs == NULL)
1433 return -EINVAL;
1434
1435 if (regs->msr & MSR_LE) {
1436 if (cpu_has_feature(CPU_FTR_REAL_LE))
1437 val = PR_ENDIAN_LITTLE;
1438 else
1439 val = PR_ENDIAN_PPC_LITTLE;
1440 } else
1441 val = PR_ENDIAN_BIG;
1442
1443 return put_user(val, (unsigned int __user *)adr);
1444 }
1445
1446 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1447 {
1448 tsk->thread.align_ctl = val;
1449 return 0;
1450 }
1451
1452 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1453 {
1454 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1455 }
1456
1457 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1458 unsigned long nbytes)
1459 {
1460 unsigned long stack_page;
1461 unsigned long cpu = task_cpu(p);
1462
1463 /*
1464 * Avoid crashing if the stack has overflowed and corrupted
1465 * task_cpu(p), which is in the thread_info struct.
1466 */
1467 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1468 stack_page = (unsigned long) hardirq_ctx[cpu];
1469 if (sp >= stack_page + sizeof(struct thread_struct)
1470 && sp <= stack_page + THREAD_SIZE - nbytes)
1471 return 1;
1472
1473 stack_page = (unsigned long) softirq_ctx[cpu];
1474 if (sp >= stack_page + sizeof(struct thread_struct)
1475 && sp <= stack_page + THREAD_SIZE - nbytes)
1476 return 1;
1477 }
1478 return 0;
1479 }
1480
1481 int validate_sp(unsigned long sp, struct task_struct *p,
1482 unsigned long nbytes)
1483 {
1484 unsigned long stack_page = (unsigned long)task_stack_page(p);
1485
1486 if (sp >= stack_page + sizeof(struct thread_struct)
1487 && sp <= stack_page + THREAD_SIZE - nbytes)
1488 return 1;
1489
1490 return valid_irq_stack(sp, p, nbytes);
1491 }
1492
1493 EXPORT_SYMBOL(validate_sp);
1494
1495 unsigned long get_wchan(struct task_struct *p)
1496 {
1497 unsigned long ip, sp;
1498 int count = 0;
1499
1500 if (!p || p == current || p->state == TASK_RUNNING)
1501 return 0;
1502
1503 sp = p->thread.ksp;
1504 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1505 return 0;
1506
1507 do {
1508 sp = *(unsigned long *)sp;
1509 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1510 return 0;
1511 if (count > 0) {
1512 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1513 if (!in_sched_functions(ip))
1514 return ip;
1515 }
1516 } while (count++ < 16);
1517 return 0;
1518 }
1519
1520 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1521
1522 void show_stack(struct task_struct *tsk, unsigned long *stack)
1523 {
1524 unsigned long sp, ip, lr, newsp;
1525 int count = 0;
1526 int firstframe = 1;
1527 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1528 int curr_frame = current->curr_ret_stack;
1529 extern void return_to_handler(void);
1530 unsigned long rth = (unsigned long)return_to_handler;
1531 #endif
1532
1533 sp = (unsigned long) stack;
1534 if (tsk == NULL)
1535 tsk = current;
1536 if (sp == 0) {
1537 if (tsk == current)
1538 sp = current_stack_pointer();
1539 else
1540 sp = tsk->thread.ksp;
1541 }
1542
1543 lr = 0;
1544 printk("Call Trace:\n");
1545 do {
1546 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1547 return;
1548
1549 stack = (unsigned long *) sp;
1550 newsp = stack[0];
1551 ip = stack[STACK_FRAME_LR_SAVE];
1552 if (!firstframe || ip != lr) {
1553 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1554 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1555 if ((ip == rth) && curr_frame >= 0) {
1556 printk(" (%pS)",
1557 (void *)current->ret_stack[curr_frame].ret);
1558 curr_frame--;
1559 }
1560 #endif
1561 if (firstframe)
1562 printk(" (unreliable)");
1563 printk("\n");
1564 }
1565 firstframe = 0;
1566
1567 /*
1568 * See if this is an exception frame.
1569 * We look for the "regshere" marker in the current frame.
1570 */
1571 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1572 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1573 struct pt_regs *regs = (struct pt_regs *)
1574 (sp + STACK_FRAME_OVERHEAD);
1575 lr = regs->link;
1576 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1577 regs->trap, (void *)regs->nip, (void *)lr);
1578 firstframe = 1;
1579 }
1580
1581 sp = newsp;
1582 } while (count++ < kstack_depth_to_print);
1583 }
1584
1585 #ifdef CONFIG_PPC64
1586 /* Called with hard IRQs off */
1587 void notrace __ppc64_runlatch_on(void)
1588 {
1589 struct thread_info *ti = current_thread_info();
1590 unsigned long ctrl;
1591
1592 ctrl = mfspr(SPRN_CTRLF);
1593 ctrl |= CTRL_RUNLATCH;
1594 mtspr(SPRN_CTRLT, ctrl);
1595
1596 ti->local_flags |= _TLF_RUNLATCH;
1597 }
1598
1599 /* Called with hard IRQs off */
1600 void notrace __ppc64_runlatch_off(void)
1601 {
1602 struct thread_info *ti = current_thread_info();
1603 unsigned long ctrl;
1604
1605 ti->local_flags &= ~_TLF_RUNLATCH;
1606
1607 ctrl = mfspr(SPRN_CTRLF);
1608 ctrl &= ~CTRL_RUNLATCH;
1609 mtspr(SPRN_CTRLT, ctrl);
1610 }
1611 #endif /* CONFIG_PPC64 */
1612
1613 unsigned long arch_align_stack(unsigned long sp)
1614 {
1615 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1616 sp -= get_random_int() & ~PAGE_MASK;
1617 return sp & ~0xf;
1618 }
1619
1620 static inline unsigned long brk_rnd(void)
1621 {
1622 unsigned long rnd = 0;
1623
1624 /* 8MB for 32bit, 1GB for 64bit */
1625 if (is_32bit_task())
1626 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1627 else
1628 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1629
1630 return rnd << PAGE_SHIFT;
1631 }
1632
1633 unsigned long arch_randomize_brk(struct mm_struct *mm)
1634 {
1635 unsigned long base = mm->brk;
1636 unsigned long ret;
1637
1638 #ifdef CONFIG_PPC_STD_MMU_64
1639 /*
1640 * If we are using 1TB segments and we are allowed to randomise
1641 * the heap, we can put it above 1TB so it is backed by a 1TB
1642 * segment. Otherwise the heap will be in the bottom 1TB
1643 * which always uses 256MB segments and this may result in a
1644 * performance penalty.
1645 */
1646 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1647 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1648 #endif
1649
1650 ret = PAGE_ALIGN(base + brk_rnd());
1651
1652 if (ret < mm->brk)
1653 return mm->brk;
1654
1655 return ret;
1656 }
1657