]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/process.c
powerpc: Add ppc_strict_facility_enable boot option
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71 static void check_if_tm_restore_required(struct task_struct *tsk)
72 {
73 /*
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
78 */
79 if (tsk == current && tsk->thread.regs &&
80 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 !test_thread_flag(TIF_RESTORE_TM)) {
82 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 set_thread_flag(TIF_RESTORE_TM);
84 }
85 }
86 #else
87 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90 bool strict_msr_control;
91 EXPORT_SYMBOL(strict_msr_control);
92
93 static int __init enable_strict_msr_control(char *str)
94 {
95 strict_msr_control = true;
96 pr_info("Enabling strict facility control\n");
97
98 return 0;
99 }
100 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102 void msr_check_and_set(unsigned long bits)
103 {
104 unsigned long oldmsr = mfmsr();
105 unsigned long newmsr;
106
107 newmsr = oldmsr | bits;
108
109 #ifdef CONFIG_VSX
110 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 newmsr |= MSR_VSX;
112 #endif
113
114 if (oldmsr != newmsr)
115 mtmsr_isync(newmsr);
116 }
117
118 void __msr_check_and_clear(unsigned long bits)
119 {
120 unsigned long oldmsr = mfmsr();
121 unsigned long newmsr;
122
123 newmsr = oldmsr & ~bits;
124
125 #ifdef CONFIG_VSX
126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 newmsr &= ~MSR_VSX;
128 #endif
129
130 if (oldmsr != newmsr)
131 mtmsr_isync(newmsr);
132 }
133 EXPORT_SYMBOL(__msr_check_and_clear);
134
135 #ifdef CONFIG_PPC_FPU
136 void giveup_fpu(struct task_struct *tsk)
137 {
138 check_if_tm_restore_required(tsk);
139
140 msr_check_and_set(MSR_FP);
141 __giveup_fpu(tsk);
142 msr_check_and_clear(MSR_FP);
143 }
144 EXPORT_SYMBOL(giveup_fpu);
145
146 /*
147 * Make sure the floating-point register state in the
148 * the thread_struct is up to date for task tsk.
149 */
150 void flush_fp_to_thread(struct task_struct *tsk)
151 {
152 if (tsk->thread.regs) {
153 /*
154 * We need to disable preemption here because if we didn't,
155 * another process could get scheduled after the regs->msr
156 * test but before we have finished saving the FP registers
157 * to the thread_struct. That process could take over the
158 * FPU, and then when we get scheduled again we would store
159 * bogus values for the remaining FP registers.
160 */
161 preempt_disable();
162 if (tsk->thread.regs->msr & MSR_FP) {
163 /*
164 * This should only ever be called for current or
165 * for a stopped child process. Since we save away
166 * the FP register state on context switch,
167 * there is something wrong if a stopped child appears
168 * to still have its FP state in the CPU registers.
169 */
170 BUG_ON(tsk != current);
171 giveup_fpu(tsk);
172 }
173 preempt_enable();
174 }
175 }
176 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
177 #endif /* CONFIG_PPC_FPU */
178
179 void enable_kernel_fp(void)
180 {
181 WARN_ON(preemptible());
182
183 msr_check_and_set(MSR_FP);
184
185 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
186 __giveup_fpu(current);
187 }
188 EXPORT_SYMBOL(enable_kernel_fp);
189
190 #ifdef CONFIG_ALTIVEC
191 void giveup_altivec(struct task_struct *tsk)
192 {
193 check_if_tm_restore_required(tsk);
194
195 msr_check_and_set(MSR_VEC);
196 __giveup_altivec(tsk);
197 msr_check_and_clear(MSR_VEC);
198 }
199 EXPORT_SYMBOL(giveup_altivec);
200
201 void enable_kernel_altivec(void)
202 {
203 WARN_ON(preemptible());
204
205 msr_check_and_set(MSR_VEC);
206
207 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
208 __giveup_altivec(current);
209 }
210 EXPORT_SYMBOL(enable_kernel_altivec);
211
212 /*
213 * Make sure the VMX/Altivec register state in the
214 * the thread_struct is up to date for task tsk.
215 */
216 void flush_altivec_to_thread(struct task_struct *tsk)
217 {
218 if (tsk->thread.regs) {
219 preempt_disable();
220 if (tsk->thread.regs->msr & MSR_VEC) {
221 BUG_ON(tsk != current);
222 giveup_altivec(tsk);
223 }
224 preempt_enable();
225 }
226 }
227 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
228 #endif /* CONFIG_ALTIVEC */
229
230 #ifdef CONFIG_VSX
231 void giveup_vsx(struct task_struct *tsk)
232 {
233 check_if_tm_restore_required(tsk);
234
235 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
236 if (tsk->thread.regs->msr & MSR_FP)
237 __giveup_fpu(tsk);
238 if (tsk->thread.regs->msr & MSR_VEC)
239 __giveup_altivec(tsk);
240 __giveup_vsx(tsk);
241 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
242 }
243 EXPORT_SYMBOL(giveup_vsx);
244
245 void enable_kernel_vsx(void)
246 {
247 WARN_ON(preemptible());
248
249 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
250
251 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
252 if (current->thread.regs->msr & MSR_FP)
253 __giveup_fpu(current);
254 if (current->thread.regs->msr & MSR_VEC)
255 __giveup_altivec(current);
256 __giveup_vsx(current);
257 }
258 }
259 EXPORT_SYMBOL(enable_kernel_vsx);
260
261 void flush_vsx_to_thread(struct task_struct *tsk)
262 {
263 if (tsk->thread.regs) {
264 preempt_disable();
265 if (tsk->thread.regs->msr & MSR_VSX) {
266 BUG_ON(tsk != current);
267 giveup_vsx(tsk);
268 }
269 preempt_enable();
270 }
271 }
272 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
273 #endif /* CONFIG_VSX */
274
275 #ifdef CONFIG_SPE
276 void giveup_spe(struct task_struct *tsk)
277 {
278 check_if_tm_restore_required(tsk);
279
280 msr_check_and_set(MSR_SPE);
281 __giveup_spe(tsk);
282 msr_check_and_clear(MSR_SPE);
283 }
284 EXPORT_SYMBOL(giveup_spe);
285
286 void enable_kernel_spe(void)
287 {
288 WARN_ON(preemptible());
289
290 msr_check_and_set(MSR_SPE);
291
292 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
293 __giveup_spe(current);
294 }
295 EXPORT_SYMBOL(enable_kernel_spe);
296
297 void flush_spe_to_thread(struct task_struct *tsk)
298 {
299 if (tsk->thread.regs) {
300 preempt_disable();
301 if (tsk->thread.regs->msr & MSR_SPE) {
302 BUG_ON(tsk != current);
303 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
304 giveup_spe(tsk);
305 }
306 preempt_enable();
307 }
308 }
309 #endif /* CONFIG_SPE */
310
311 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
312 void do_send_trap(struct pt_regs *regs, unsigned long address,
313 unsigned long error_code, int signal_code, int breakpt)
314 {
315 siginfo_t info;
316
317 current->thread.trap_nr = signal_code;
318 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
319 11, SIGSEGV) == NOTIFY_STOP)
320 return;
321
322 /* Deliver the signal to userspace */
323 info.si_signo = SIGTRAP;
324 info.si_errno = breakpt; /* breakpoint or watchpoint id */
325 info.si_code = signal_code;
326 info.si_addr = (void __user *)address;
327 force_sig_info(SIGTRAP, &info, current);
328 }
329 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
330 void do_break (struct pt_regs *regs, unsigned long address,
331 unsigned long error_code)
332 {
333 siginfo_t info;
334
335 current->thread.trap_nr = TRAP_HWBKPT;
336 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
337 11, SIGSEGV) == NOTIFY_STOP)
338 return;
339
340 if (debugger_break_match(regs))
341 return;
342
343 /* Clear the breakpoint */
344 hw_breakpoint_disable();
345
346 /* Deliver the signal to userspace */
347 info.si_signo = SIGTRAP;
348 info.si_errno = 0;
349 info.si_code = TRAP_HWBKPT;
350 info.si_addr = (void __user *)address;
351 force_sig_info(SIGTRAP, &info, current);
352 }
353 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
354
355 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
356
357 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
358 /*
359 * Set the debug registers back to their default "safe" values.
360 */
361 static void set_debug_reg_defaults(struct thread_struct *thread)
362 {
363 thread->debug.iac1 = thread->debug.iac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
365 thread->debug.iac3 = thread->debug.iac4 = 0;
366 #endif
367 thread->debug.dac1 = thread->debug.dac2 = 0;
368 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
369 thread->debug.dvc1 = thread->debug.dvc2 = 0;
370 #endif
371 thread->debug.dbcr0 = 0;
372 #ifdef CONFIG_BOOKE
373 /*
374 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
375 */
376 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
377 DBCR1_IAC3US | DBCR1_IAC4US;
378 /*
379 * Force Data Address Compare User/Supervisor bits to be User-only
380 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
381 */
382 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
383 #else
384 thread->debug.dbcr1 = 0;
385 #endif
386 }
387
388 static void prime_debug_regs(struct debug_reg *debug)
389 {
390 /*
391 * We could have inherited MSR_DE from userspace, since
392 * it doesn't get cleared on exception entry. Make sure
393 * MSR_DE is clear before we enable any debug events.
394 */
395 mtmsr(mfmsr() & ~MSR_DE);
396
397 mtspr(SPRN_IAC1, debug->iac1);
398 mtspr(SPRN_IAC2, debug->iac2);
399 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
400 mtspr(SPRN_IAC3, debug->iac3);
401 mtspr(SPRN_IAC4, debug->iac4);
402 #endif
403 mtspr(SPRN_DAC1, debug->dac1);
404 mtspr(SPRN_DAC2, debug->dac2);
405 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
406 mtspr(SPRN_DVC1, debug->dvc1);
407 mtspr(SPRN_DVC2, debug->dvc2);
408 #endif
409 mtspr(SPRN_DBCR0, debug->dbcr0);
410 mtspr(SPRN_DBCR1, debug->dbcr1);
411 #ifdef CONFIG_BOOKE
412 mtspr(SPRN_DBCR2, debug->dbcr2);
413 #endif
414 }
415 /*
416 * Unless neither the old or new thread are making use of the
417 * debug registers, set the debug registers from the values
418 * stored in the new thread.
419 */
420 void switch_booke_debug_regs(struct debug_reg *new_debug)
421 {
422 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
423 || (new_debug->dbcr0 & DBCR0_IDM))
424 prime_debug_regs(new_debug);
425 }
426 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
427 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
428 #ifndef CONFIG_HAVE_HW_BREAKPOINT
429 static void set_debug_reg_defaults(struct thread_struct *thread)
430 {
431 thread->hw_brk.address = 0;
432 thread->hw_brk.type = 0;
433 set_breakpoint(&thread->hw_brk);
434 }
435 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
436 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
437
438 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
439 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
440 {
441 mtspr(SPRN_DAC1, dabr);
442 #ifdef CONFIG_PPC_47x
443 isync();
444 #endif
445 return 0;
446 }
447 #elif defined(CONFIG_PPC_BOOK3S)
448 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
449 {
450 mtspr(SPRN_DABR, dabr);
451 if (cpu_has_feature(CPU_FTR_DABRX))
452 mtspr(SPRN_DABRX, dabrx);
453 return 0;
454 }
455 #else
456 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
457 {
458 return -EINVAL;
459 }
460 #endif
461
462 static inline int set_dabr(struct arch_hw_breakpoint *brk)
463 {
464 unsigned long dabr, dabrx;
465
466 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
467 dabrx = ((brk->type >> 3) & 0x7);
468
469 if (ppc_md.set_dabr)
470 return ppc_md.set_dabr(dabr, dabrx);
471
472 return __set_dabr(dabr, dabrx);
473 }
474
475 static inline int set_dawr(struct arch_hw_breakpoint *brk)
476 {
477 unsigned long dawr, dawrx, mrd;
478
479 dawr = brk->address;
480
481 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
482 << (63 - 58); //* read/write bits */
483 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
484 << (63 - 59); //* translate */
485 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
486 >> 3; //* PRIM bits */
487 /* dawr length is stored in field MDR bits 48:53. Matches range in
488 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
489 0b111111=64DW.
490 brk->len is in bytes.
491 This aligns up to double word size, shifts and does the bias.
492 */
493 mrd = ((brk->len + 7) >> 3) - 1;
494 dawrx |= (mrd & 0x3f) << (63 - 53);
495
496 if (ppc_md.set_dawr)
497 return ppc_md.set_dawr(dawr, dawrx);
498 mtspr(SPRN_DAWR, dawr);
499 mtspr(SPRN_DAWRX, dawrx);
500 return 0;
501 }
502
503 void __set_breakpoint(struct arch_hw_breakpoint *brk)
504 {
505 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
506
507 if (cpu_has_feature(CPU_FTR_DAWR))
508 set_dawr(brk);
509 else
510 set_dabr(brk);
511 }
512
513 void set_breakpoint(struct arch_hw_breakpoint *brk)
514 {
515 preempt_disable();
516 __set_breakpoint(brk);
517 preempt_enable();
518 }
519
520 #ifdef CONFIG_PPC64
521 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
522 #endif
523
524 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
525 struct arch_hw_breakpoint *b)
526 {
527 if (a->address != b->address)
528 return false;
529 if (a->type != b->type)
530 return false;
531 if (a->len != b->len)
532 return false;
533 return true;
534 }
535
536 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
537 static void tm_reclaim_thread(struct thread_struct *thr,
538 struct thread_info *ti, uint8_t cause)
539 {
540 unsigned long msr_diff = 0;
541
542 /*
543 * If FP/VSX registers have been already saved to the
544 * thread_struct, move them to the transact_fp array.
545 * We clear the TIF_RESTORE_TM bit since after the reclaim
546 * the thread will no longer be transactional.
547 */
548 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
549 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
550 if (msr_diff & MSR_FP)
551 memcpy(&thr->transact_fp, &thr->fp_state,
552 sizeof(struct thread_fp_state));
553 if (msr_diff & MSR_VEC)
554 memcpy(&thr->transact_vr, &thr->vr_state,
555 sizeof(struct thread_vr_state));
556 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
557 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
558 }
559
560 tm_reclaim(thr, thr->regs->msr, cause);
561
562 /* Having done the reclaim, we now have the checkpointed
563 * FP/VSX values in the registers. These might be valid
564 * even if we have previously called enable_kernel_fp() or
565 * flush_fp_to_thread(), so update thr->regs->msr to
566 * indicate their current validity.
567 */
568 thr->regs->msr |= msr_diff;
569 }
570
571 void tm_reclaim_current(uint8_t cause)
572 {
573 tm_enable();
574 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
575 }
576
577 static inline void tm_reclaim_task(struct task_struct *tsk)
578 {
579 /* We have to work out if we're switching from/to a task that's in the
580 * middle of a transaction.
581 *
582 * In switching we need to maintain a 2nd register state as
583 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
584 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
585 * (current) FPRs into oldtask->thread.transact_fpr[].
586 *
587 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
588 */
589 struct thread_struct *thr = &tsk->thread;
590
591 if (!thr->regs)
592 return;
593
594 if (!MSR_TM_ACTIVE(thr->regs->msr))
595 goto out_and_saveregs;
596
597 /* Stash the original thread MSR, as giveup_fpu et al will
598 * modify it. We hold onto it to see whether the task used
599 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
600 * ckpt_regs.msr is already set.
601 */
602 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
603 thr->ckpt_regs.msr = thr->regs->msr;
604
605 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
606 "ccr=%lx, msr=%lx, trap=%lx)\n",
607 tsk->pid, thr->regs->nip,
608 thr->regs->ccr, thr->regs->msr,
609 thr->regs->trap);
610
611 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
612
613 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
614 tsk->pid);
615
616 out_and_saveregs:
617 /* Always save the regs here, even if a transaction's not active.
618 * This context-switches a thread's TM info SPRs. We do it here to
619 * be consistent with the restore path (in recheckpoint) which
620 * cannot happen later in _switch().
621 */
622 tm_save_sprs(thr);
623 }
624
625 extern void __tm_recheckpoint(struct thread_struct *thread,
626 unsigned long orig_msr);
627
628 void tm_recheckpoint(struct thread_struct *thread,
629 unsigned long orig_msr)
630 {
631 unsigned long flags;
632
633 /* We really can't be interrupted here as the TEXASR registers can't
634 * change and later in the trecheckpoint code, we have a userspace R1.
635 * So let's hard disable over this region.
636 */
637 local_irq_save(flags);
638 hard_irq_disable();
639
640 /* The TM SPRs are restored here, so that TEXASR.FS can be set
641 * before the trecheckpoint and no explosion occurs.
642 */
643 tm_restore_sprs(thread);
644
645 __tm_recheckpoint(thread, orig_msr);
646
647 local_irq_restore(flags);
648 }
649
650 static inline void tm_recheckpoint_new_task(struct task_struct *new)
651 {
652 unsigned long msr;
653
654 if (!cpu_has_feature(CPU_FTR_TM))
655 return;
656
657 /* Recheckpoint the registers of the thread we're about to switch to.
658 *
659 * If the task was using FP, we non-lazily reload both the original and
660 * the speculative FP register states. This is because the kernel
661 * doesn't see if/when a TM rollback occurs, so if we take an FP
662 * unavoidable later, we are unable to determine which set of FP regs
663 * need to be restored.
664 */
665 if (!new->thread.regs)
666 return;
667
668 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
669 tm_restore_sprs(&new->thread);
670 return;
671 }
672 msr = new->thread.ckpt_regs.msr;
673 /* Recheckpoint to restore original checkpointed register state. */
674 TM_DEBUG("*** tm_recheckpoint of pid %d "
675 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
676 new->pid, new->thread.regs->msr, msr);
677
678 /* This loads the checkpointed FP/VEC state, if used */
679 tm_recheckpoint(&new->thread, msr);
680
681 /* This loads the speculative FP/VEC state, if used */
682 if (msr & MSR_FP) {
683 do_load_up_transact_fpu(&new->thread);
684 new->thread.regs->msr |=
685 (MSR_FP | new->thread.fpexc_mode);
686 }
687 #ifdef CONFIG_ALTIVEC
688 if (msr & MSR_VEC) {
689 do_load_up_transact_altivec(&new->thread);
690 new->thread.regs->msr |= MSR_VEC;
691 }
692 #endif
693 /* We may as well turn on VSX too since all the state is restored now */
694 if (msr & MSR_VSX)
695 new->thread.regs->msr |= MSR_VSX;
696
697 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
698 "(kernel msr 0x%lx)\n",
699 new->pid, mfmsr());
700 }
701
702 static inline void __switch_to_tm(struct task_struct *prev)
703 {
704 if (cpu_has_feature(CPU_FTR_TM)) {
705 tm_enable();
706 tm_reclaim_task(prev);
707 }
708 }
709
710 /*
711 * This is called if we are on the way out to userspace and the
712 * TIF_RESTORE_TM flag is set. It checks if we need to reload
713 * FP and/or vector state and does so if necessary.
714 * If userspace is inside a transaction (whether active or
715 * suspended) and FP/VMX/VSX instructions have ever been enabled
716 * inside that transaction, then we have to keep them enabled
717 * and keep the FP/VMX/VSX state loaded while ever the transaction
718 * continues. The reason is that if we didn't, and subsequently
719 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
720 * we don't know whether it's the same transaction, and thus we
721 * don't know which of the checkpointed state and the transactional
722 * state to use.
723 */
724 void restore_tm_state(struct pt_regs *regs)
725 {
726 unsigned long msr_diff;
727
728 clear_thread_flag(TIF_RESTORE_TM);
729 if (!MSR_TM_ACTIVE(regs->msr))
730 return;
731
732 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
733 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
734 if (msr_diff & MSR_FP) {
735 fp_enable();
736 load_fp_state(&current->thread.fp_state);
737 regs->msr |= current->thread.fpexc_mode;
738 }
739 if (msr_diff & MSR_VEC) {
740 vec_enable();
741 load_vr_state(&current->thread.vr_state);
742 }
743 regs->msr |= msr_diff;
744 }
745
746 #else
747 #define tm_recheckpoint_new_task(new)
748 #define __switch_to_tm(prev)
749 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
750
751 static inline void save_sprs(struct thread_struct *t)
752 {
753 #ifdef CONFIG_ALTIVEC
754 if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
755 t->vrsave = mfspr(SPRN_VRSAVE);
756 #endif
757 #ifdef CONFIG_PPC_BOOK3S_64
758 if (cpu_has_feature(CPU_FTR_DSCR))
759 t->dscr = mfspr(SPRN_DSCR);
760
761 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
762 t->bescr = mfspr(SPRN_BESCR);
763 t->ebbhr = mfspr(SPRN_EBBHR);
764 t->ebbrr = mfspr(SPRN_EBBRR);
765
766 t->fscr = mfspr(SPRN_FSCR);
767
768 /*
769 * Note that the TAR is not available for use in the kernel.
770 * (To provide this, the TAR should be backed up/restored on
771 * exception entry/exit instead, and be in pt_regs. FIXME,
772 * this should be in pt_regs anyway (for debug).)
773 */
774 t->tar = mfspr(SPRN_TAR);
775 }
776 #endif
777 }
778
779 static inline void restore_sprs(struct thread_struct *old_thread,
780 struct thread_struct *new_thread)
781 {
782 #ifdef CONFIG_ALTIVEC
783 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
784 old_thread->vrsave != new_thread->vrsave)
785 mtspr(SPRN_VRSAVE, new_thread->vrsave);
786 #endif
787 #ifdef CONFIG_PPC_BOOK3S_64
788 if (cpu_has_feature(CPU_FTR_DSCR)) {
789 u64 dscr = get_paca()->dscr_default;
790 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
791
792 if (new_thread->dscr_inherit) {
793 dscr = new_thread->dscr;
794 fscr |= FSCR_DSCR;
795 }
796
797 if (old_thread->dscr != dscr)
798 mtspr(SPRN_DSCR, dscr);
799
800 if (old_thread->fscr != fscr)
801 mtspr(SPRN_FSCR, fscr);
802 }
803
804 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
805 if (old_thread->bescr != new_thread->bescr)
806 mtspr(SPRN_BESCR, new_thread->bescr);
807 if (old_thread->ebbhr != new_thread->ebbhr)
808 mtspr(SPRN_EBBHR, new_thread->ebbhr);
809 if (old_thread->ebbrr != new_thread->ebbrr)
810 mtspr(SPRN_EBBRR, new_thread->ebbrr);
811
812 if (old_thread->tar != new_thread->tar)
813 mtspr(SPRN_TAR, new_thread->tar);
814 }
815 #endif
816 }
817
818 struct task_struct *__switch_to(struct task_struct *prev,
819 struct task_struct *new)
820 {
821 struct thread_struct *new_thread, *old_thread;
822 struct task_struct *last;
823 #ifdef CONFIG_PPC_BOOK3S_64
824 struct ppc64_tlb_batch *batch;
825 #endif
826
827 new_thread = &new->thread;
828 old_thread = &current->thread;
829
830 WARN_ON(!irqs_disabled());
831
832 /*
833 * We need to save SPRs before treclaim/trecheckpoint as these will
834 * change a number of them.
835 */
836 save_sprs(&prev->thread);
837
838 __switch_to_tm(prev);
839
840 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
841 giveup_fpu(prev);
842 #ifdef CONFIG_ALTIVEC
843 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
844 giveup_altivec(prev);
845 #endif /* CONFIG_ALTIVEC */
846 #ifdef CONFIG_VSX
847 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
848 /* VMX and FPU registers are already save here */
849 __giveup_vsx(prev);
850 #endif /* CONFIG_VSX */
851 #ifdef CONFIG_SPE
852 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
853 giveup_spe(prev);
854 #endif /* CONFIG_SPE */
855
856 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
857 switch_booke_debug_regs(&new->thread.debug);
858 #else
859 /*
860 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
861 * schedule DABR
862 */
863 #ifndef CONFIG_HAVE_HW_BREAKPOINT
864 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
865 __set_breakpoint(&new->thread.hw_brk);
866 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
867 #endif
868
869 #ifdef CONFIG_PPC64
870 /*
871 * Collect processor utilization data per process
872 */
873 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
874 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
875 long unsigned start_tb, current_tb;
876 start_tb = old_thread->start_tb;
877 cu->current_tb = current_tb = mfspr(SPRN_PURR);
878 old_thread->accum_tb += (current_tb - start_tb);
879 new_thread->start_tb = current_tb;
880 }
881 #endif /* CONFIG_PPC64 */
882
883 #ifdef CONFIG_PPC_BOOK3S_64
884 batch = this_cpu_ptr(&ppc64_tlb_batch);
885 if (batch->active) {
886 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
887 if (batch->index)
888 __flush_tlb_pending(batch);
889 batch->active = 0;
890 }
891 #endif /* CONFIG_PPC_BOOK3S_64 */
892
893 /*
894 * We can't take a PMU exception inside _switch() since there is a
895 * window where the kernel stack SLB and the kernel stack are out
896 * of sync. Hard disable here.
897 */
898 hard_irq_disable();
899
900 tm_recheckpoint_new_task(new);
901
902 last = _switch(old_thread, new_thread);
903
904 /* Need to recalculate these after calling _switch() */
905 old_thread = &last->thread;
906 new_thread = &current->thread;
907
908 #ifdef CONFIG_PPC_BOOK3S_64
909 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
910 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
911 batch = this_cpu_ptr(&ppc64_tlb_batch);
912 batch->active = 1;
913 }
914 #endif /* CONFIG_PPC_BOOK3S_64 */
915
916 restore_sprs(old_thread, new_thread);
917
918 return last;
919 }
920
921 static int instructions_to_print = 16;
922
923 static void show_instructions(struct pt_regs *regs)
924 {
925 int i;
926 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
927 sizeof(int));
928
929 printk("Instruction dump:");
930
931 for (i = 0; i < instructions_to_print; i++) {
932 int instr;
933
934 if (!(i % 8))
935 printk("\n");
936
937 #if !defined(CONFIG_BOOKE)
938 /* If executing with the IMMU off, adjust pc rather
939 * than print XXXXXXXX.
940 */
941 if (!(regs->msr & MSR_IR))
942 pc = (unsigned long)phys_to_virt(pc);
943 #endif
944
945 if (!__kernel_text_address(pc) ||
946 probe_kernel_address((unsigned int __user *)pc, instr)) {
947 printk(KERN_CONT "XXXXXXXX ");
948 } else {
949 if (regs->nip == pc)
950 printk(KERN_CONT "<%08x> ", instr);
951 else
952 printk(KERN_CONT "%08x ", instr);
953 }
954
955 pc += sizeof(int);
956 }
957
958 printk("\n");
959 }
960
961 static struct regbit {
962 unsigned long bit;
963 const char *name;
964 } msr_bits[] = {
965 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
966 {MSR_SF, "SF"},
967 {MSR_HV, "HV"},
968 #endif
969 {MSR_VEC, "VEC"},
970 {MSR_VSX, "VSX"},
971 #ifdef CONFIG_BOOKE
972 {MSR_CE, "CE"},
973 #endif
974 {MSR_EE, "EE"},
975 {MSR_PR, "PR"},
976 {MSR_FP, "FP"},
977 {MSR_ME, "ME"},
978 #ifdef CONFIG_BOOKE
979 {MSR_DE, "DE"},
980 #else
981 {MSR_SE, "SE"},
982 {MSR_BE, "BE"},
983 #endif
984 {MSR_IR, "IR"},
985 {MSR_DR, "DR"},
986 {MSR_PMM, "PMM"},
987 #ifndef CONFIG_BOOKE
988 {MSR_RI, "RI"},
989 {MSR_LE, "LE"},
990 #endif
991 {0, NULL}
992 };
993
994 static void printbits(unsigned long val, struct regbit *bits)
995 {
996 const char *sep = "";
997
998 printk("<");
999 for (; bits->bit; ++bits)
1000 if (val & bits->bit) {
1001 printk("%s%s", sep, bits->name);
1002 sep = ",";
1003 }
1004 printk(">");
1005 }
1006
1007 #ifdef CONFIG_PPC64
1008 #define REG "%016lx"
1009 #define REGS_PER_LINE 4
1010 #define LAST_VOLATILE 13
1011 #else
1012 #define REG "%08lx"
1013 #define REGS_PER_LINE 8
1014 #define LAST_VOLATILE 12
1015 #endif
1016
1017 void show_regs(struct pt_regs * regs)
1018 {
1019 int i, trap;
1020
1021 show_regs_print_info(KERN_DEFAULT);
1022
1023 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1024 regs->nip, regs->link, regs->ctr);
1025 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1026 regs, regs->trap, print_tainted(), init_utsname()->release);
1027 printk("MSR: "REG" ", regs->msr);
1028 printbits(regs->msr, msr_bits);
1029 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1030 trap = TRAP(regs);
1031 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1032 printk("CFAR: "REG" ", regs->orig_gpr3);
1033 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1034 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1035 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1036 #else
1037 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1038 #endif
1039 #ifdef CONFIG_PPC64
1040 printk("SOFTE: %ld ", regs->softe);
1041 #endif
1042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1043 if (MSR_TM_ACTIVE(regs->msr))
1044 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1045 #endif
1046
1047 for (i = 0; i < 32; i++) {
1048 if ((i % REGS_PER_LINE) == 0)
1049 printk("\nGPR%02d: ", i);
1050 printk(REG " ", regs->gpr[i]);
1051 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1052 break;
1053 }
1054 printk("\n");
1055 #ifdef CONFIG_KALLSYMS
1056 /*
1057 * Lookup NIP late so we have the best change of getting the
1058 * above info out without failing
1059 */
1060 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1061 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1062 #endif
1063 show_stack(current, (unsigned long *) regs->gpr[1]);
1064 if (!user_mode(regs))
1065 show_instructions(regs);
1066 }
1067
1068 void exit_thread(void)
1069 {
1070 }
1071
1072 void flush_thread(void)
1073 {
1074 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1075 flush_ptrace_hw_breakpoint(current);
1076 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1077 set_debug_reg_defaults(&current->thread);
1078 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1079 }
1080
1081 void
1082 release_thread(struct task_struct *t)
1083 {
1084 }
1085
1086 /*
1087 * this gets called so that we can store coprocessor state into memory and
1088 * copy the current task into the new thread.
1089 */
1090 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1091 {
1092 flush_fp_to_thread(src);
1093 flush_altivec_to_thread(src);
1094 flush_vsx_to_thread(src);
1095 flush_spe_to_thread(src);
1096 /*
1097 * Flush TM state out so we can copy it. __switch_to_tm() does this
1098 * flush but it removes the checkpointed state from the current CPU and
1099 * transitions the CPU out of TM mode. Hence we need to call
1100 * tm_recheckpoint_new_task() (on the same task) to restore the
1101 * checkpointed state back and the TM mode.
1102 */
1103 __switch_to_tm(src);
1104 tm_recheckpoint_new_task(src);
1105
1106 *dst = *src;
1107
1108 clear_task_ebb(dst);
1109
1110 return 0;
1111 }
1112
1113 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1114 {
1115 #ifdef CONFIG_PPC_STD_MMU_64
1116 unsigned long sp_vsid;
1117 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1118
1119 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1120 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1121 << SLB_VSID_SHIFT_1T;
1122 else
1123 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1124 << SLB_VSID_SHIFT;
1125 sp_vsid |= SLB_VSID_KERNEL | llp;
1126 p->thread.ksp_vsid = sp_vsid;
1127 #endif
1128 }
1129
1130 /*
1131 * Copy a thread..
1132 */
1133
1134 /*
1135 * Copy architecture-specific thread state
1136 */
1137 int copy_thread(unsigned long clone_flags, unsigned long usp,
1138 unsigned long kthread_arg, struct task_struct *p)
1139 {
1140 struct pt_regs *childregs, *kregs;
1141 extern void ret_from_fork(void);
1142 extern void ret_from_kernel_thread(void);
1143 void (*f)(void);
1144 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1145
1146 /* Copy registers */
1147 sp -= sizeof(struct pt_regs);
1148 childregs = (struct pt_regs *) sp;
1149 if (unlikely(p->flags & PF_KTHREAD)) {
1150 /* kernel thread */
1151 struct thread_info *ti = (void *)task_stack_page(p);
1152 memset(childregs, 0, sizeof(struct pt_regs));
1153 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1154 /* function */
1155 if (usp)
1156 childregs->gpr[14] = ppc_function_entry((void *)usp);
1157 #ifdef CONFIG_PPC64
1158 clear_tsk_thread_flag(p, TIF_32BIT);
1159 childregs->softe = 1;
1160 #endif
1161 childregs->gpr[15] = kthread_arg;
1162 p->thread.regs = NULL; /* no user register state */
1163 ti->flags |= _TIF_RESTOREALL;
1164 f = ret_from_kernel_thread;
1165 } else {
1166 /* user thread */
1167 struct pt_regs *regs = current_pt_regs();
1168 CHECK_FULL_REGS(regs);
1169 *childregs = *regs;
1170 if (usp)
1171 childregs->gpr[1] = usp;
1172 p->thread.regs = childregs;
1173 childregs->gpr[3] = 0; /* Result from fork() */
1174 if (clone_flags & CLONE_SETTLS) {
1175 #ifdef CONFIG_PPC64
1176 if (!is_32bit_task())
1177 childregs->gpr[13] = childregs->gpr[6];
1178 else
1179 #endif
1180 childregs->gpr[2] = childregs->gpr[6];
1181 }
1182
1183 f = ret_from_fork;
1184 }
1185 sp -= STACK_FRAME_OVERHEAD;
1186
1187 /*
1188 * The way this works is that at some point in the future
1189 * some task will call _switch to switch to the new task.
1190 * That will pop off the stack frame created below and start
1191 * the new task running at ret_from_fork. The new task will
1192 * do some house keeping and then return from the fork or clone
1193 * system call, using the stack frame created above.
1194 */
1195 ((unsigned long *)sp)[0] = 0;
1196 sp -= sizeof(struct pt_regs);
1197 kregs = (struct pt_regs *) sp;
1198 sp -= STACK_FRAME_OVERHEAD;
1199 p->thread.ksp = sp;
1200 #ifdef CONFIG_PPC32
1201 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1202 _ALIGN_UP(sizeof(struct thread_info), 16);
1203 #endif
1204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1205 p->thread.ptrace_bps[0] = NULL;
1206 #endif
1207
1208 p->thread.fp_save_area = NULL;
1209 #ifdef CONFIG_ALTIVEC
1210 p->thread.vr_save_area = NULL;
1211 #endif
1212
1213 setup_ksp_vsid(p, sp);
1214
1215 #ifdef CONFIG_PPC64
1216 if (cpu_has_feature(CPU_FTR_DSCR)) {
1217 p->thread.dscr_inherit = current->thread.dscr_inherit;
1218 p->thread.dscr = current->thread.dscr;
1219 }
1220 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1221 p->thread.ppr = INIT_PPR;
1222 #endif
1223 kregs->nip = ppc_function_entry(f);
1224 return 0;
1225 }
1226
1227 /*
1228 * Set up a thread for executing a new program
1229 */
1230 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1231 {
1232 #ifdef CONFIG_PPC64
1233 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1234 #endif
1235
1236 /*
1237 * If we exec out of a kernel thread then thread.regs will not be
1238 * set. Do it now.
1239 */
1240 if (!current->thread.regs) {
1241 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1242 current->thread.regs = regs - 1;
1243 }
1244
1245 memset(regs->gpr, 0, sizeof(regs->gpr));
1246 regs->ctr = 0;
1247 regs->link = 0;
1248 regs->xer = 0;
1249 regs->ccr = 0;
1250 regs->gpr[1] = sp;
1251
1252 /*
1253 * We have just cleared all the nonvolatile GPRs, so make
1254 * FULL_REGS(regs) return true. This is necessary to allow
1255 * ptrace to examine the thread immediately after exec.
1256 */
1257 regs->trap &= ~1UL;
1258
1259 #ifdef CONFIG_PPC32
1260 regs->mq = 0;
1261 regs->nip = start;
1262 regs->msr = MSR_USER;
1263 #else
1264 if (!is_32bit_task()) {
1265 unsigned long entry;
1266
1267 if (is_elf2_task()) {
1268 /* Look ma, no function descriptors! */
1269 entry = start;
1270
1271 /*
1272 * Ulrich says:
1273 * The latest iteration of the ABI requires that when
1274 * calling a function (at its global entry point),
1275 * the caller must ensure r12 holds the entry point
1276 * address (so that the function can quickly
1277 * establish addressability).
1278 */
1279 regs->gpr[12] = start;
1280 /* Make sure that's restored on entry to userspace. */
1281 set_thread_flag(TIF_RESTOREALL);
1282 } else {
1283 unsigned long toc;
1284
1285 /* start is a relocated pointer to the function
1286 * descriptor for the elf _start routine. The first
1287 * entry in the function descriptor is the entry
1288 * address of _start and the second entry is the TOC
1289 * value we need to use.
1290 */
1291 __get_user(entry, (unsigned long __user *)start);
1292 __get_user(toc, (unsigned long __user *)start+1);
1293
1294 /* Check whether the e_entry function descriptor entries
1295 * need to be relocated before we can use them.
1296 */
1297 if (load_addr != 0) {
1298 entry += load_addr;
1299 toc += load_addr;
1300 }
1301 regs->gpr[2] = toc;
1302 }
1303 regs->nip = entry;
1304 regs->msr = MSR_USER64;
1305 } else {
1306 regs->nip = start;
1307 regs->gpr[2] = 0;
1308 regs->msr = MSR_USER32;
1309 }
1310 #endif
1311 #ifdef CONFIG_VSX
1312 current->thread.used_vsr = 0;
1313 #endif
1314 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1315 current->thread.fp_save_area = NULL;
1316 #ifdef CONFIG_ALTIVEC
1317 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1318 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1319 current->thread.vr_save_area = NULL;
1320 current->thread.vrsave = 0;
1321 current->thread.used_vr = 0;
1322 #endif /* CONFIG_ALTIVEC */
1323 #ifdef CONFIG_SPE
1324 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1325 current->thread.acc = 0;
1326 current->thread.spefscr = 0;
1327 current->thread.used_spe = 0;
1328 #endif /* CONFIG_SPE */
1329 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1330 if (cpu_has_feature(CPU_FTR_TM))
1331 regs->msr |= MSR_TM;
1332 current->thread.tm_tfhar = 0;
1333 current->thread.tm_texasr = 0;
1334 current->thread.tm_tfiar = 0;
1335 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1336 }
1337 EXPORT_SYMBOL(start_thread);
1338
1339 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1340 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1341
1342 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1343 {
1344 struct pt_regs *regs = tsk->thread.regs;
1345
1346 /* This is a bit hairy. If we are an SPE enabled processor
1347 * (have embedded fp) we store the IEEE exception enable flags in
1348 * fpexc_mode. fpexc_mode is also used for setting FP exception
1349 * mode (asyn, precise, disabled) for 'Classic' FP. */
1350 if (val & PR_FP_EXC_SW_ENABLE) {
1351 #ifdef CONFIG_SPE
1352 if (cpu_has_feature(CPU_FTR_SPE)) {
1353 /*
1354 * When the sticky exception bits are set
1355 * directly by userspace, it must call prctl
1356 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1357 * in the existing prctl settings) or
1358 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1359 * the bits being set). <fenv.h> functions
1360 * saving and restoring the whole
1361 * floating-point environment need to do so
1362 * anyway to restore the prctl settings from
1363 * the saved environment.
1364 */
1365 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1366 tsk->thread.fpexc_mode = val &
1367 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1368 return 0;
1369 } else {
1370 return -EINVAL;
1371 }
1372 #else
1373 return -EINVAL;
1374 #endif
1375 }
1376
1377 /* on a CONFIG_SPE this does not hurt us. The bits that
1378 * __pack_fe01 use do not overlap with bits used for
1379 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1380 * on CONFIG_SPE implementations are reserved so writing to
1381 * them does not change anything */
1382 if (val > PR_FP_EXC_PRECISE)
1383 return -EINVAL;
1384 tsk->thread.fpexc_mode = __pack_fe01(val);
1385 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1386 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1387 | tsk->thread.fpexc_mode;
1388 return 0;
1389 }
1390
1391 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1392 {
1393 unsigned int val;
1394
1395 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1396 #ifdef CONFIG_SPE
1397 if (cpu_has_feature(CPU_FTR_SPE)) {
1398 /*
1399 * When the sticky exception bits are set
1400 * directly by userspace, it must call prctl
1401 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1402 * in the existing prctl settings) or
1403 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1404 * the bits being set). <fenv.h> functions
1405 * saving and restoring the whole
1406 * floating-point environment need to do so
1407 * anyway to restore the prctl settings from
1408 * the saved environment.
1409 */
1410 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1411 val = tsk->thread.fpexc_mode;
1412 } else
1413 return -EINVAL;
1414 #else
1415 return -EINVAL;
1416 #endif
1417 else
1418 val = __unpack_fe01(tsk->thread.fpexc_mode);
1419 return put_user(val, (unsigned int __user *) adr);
1420 }
1421
1422 int set_endian(struct task_struct *tsk, unsigned int val)
1423 {
1424 struct pt_regs *regs = tsk->thread.regs;
1425
1426 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1427 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1428 return -EINVAL;
1429
1430 if (regs == NULL)
1431 return -EINVAL;
1432
1433 if (val == PR_ENDIAN_BIG)
1434 regs->msr &= ~MSR_LE;
1435 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1436 regs->msr |= MSR_LE;
1437 else
1438 return -EINVAL;
1439
1440 return 0;
1441 }
1442
1443 int get_endian(struct task_struct *tsk, unsigned long adr)
1444 {
1445 struct pt_regs *regs = tsk->thread.regs;
1446 unsigned int val;
1447
1448 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1449 !cpu_has_feature(CPU_FTR_REAL_LE))
1450 return -EINVAL;
1451
1452 if (regs == NULL)
1453 return -EINVAL;
1454
1455 if (regs->msr & MSR_LE) {
1456 if (cpu_has_feature(CPU_FTR_REAL_LE))
1457 val = PR_ENDIAN_LITTLE;
1458 else
1459 val = PR_ENDIAN_PPC_LITTLE;
1460 } else
1461 val = PR_ENDIAN_BIG;
1462
1463 return put_user(val, (unsigned int __user *)adr);
1464 }
1465
1466 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1467 {
1468 tsk->thread.align_ctl = val;
1469 return 0;
1470 }
1471
1472 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1473 {
1474 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1475 }
1476
1477 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1478 unsigned long nbytes)
1479 {
1480 unsigned long stack_page;
1481 unsigned long cpu = task_cpu(p);
1482
1483 /*
1484 * Avoid crashing if the stack has overflowed and corrupted
1485 * task_cpu(p), which is in the thread_info struct.
1486 */
1487 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1488 stack_page = (unsigned long) hardirq_ctx[cpu];
1489 if (sp >= stack_page + sizeof(struct thread_struct)
1490 && sp <= stack_page + THREAD_SIZE - nbytes)
1491 return 1;
1492
1493 stack_page = (unsigned long) softirq_ctx[cpu];
1494 if (sp >= stack_page + sizeof(struct thread_struct)
1495 && sp <= stack_page + THREAD_SIZE - nbytes)
1496 return 1;
1497 }
1498 return 0;
1499 }
1500
1501 int validate_sp(unsigned long sp, struct task_struct *p,
1502 unsigned long nbytes)
1503 {
1504 unsigned long stack_page = (unsigned long)task_stack_page(p);
1505
1506 if (sp >= stack_page + sizeof(struct thread_struct)
1507 && sp <= stack_page + THREAD_SIZE - nbytes)
1508 return 1;
1509
1510 return valid_irq_stack(sp, p, nbytes);
1511 }
1512
1513 EXPORT_SYMBOL(validate_sp);
1514
1515 unsigned long get_wchan(struct task_struct *p)
1516 {
1517 unsigned long ip, sp;
1518 int count = 0;
1519
1520 if (!p || p == current || p->state == TASK_RUNNING)
1521 return 0;
1522
1523 sp = p->thread.ksp;
1524 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1525 return 0;
1526
1527 do {
1528 sp = *(unsigned long *)sp;
1529 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1530 return 0;
1531 if (count > 0) {
1532 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1533 if (!in_sched_functions(ip))
1534 return ip;
1535 }
1536 } while (count++ < 16);
1537 return 0;
1538 }
1539
1540 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1541
1542 void show_stack(struct task_struct *tsk, unsigned long *stack)
1543 {
1544 unsigned long sp, ip, lr, newsp;
1545 int count = 0;
1546 int firstframe = 1;
1547 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1548 int curr_frame = current->curr_ret_stack;
1549 extern void return_to_handler(void);
1550 unsigned long rth = (unsigned long)return_to_handler;
1551 #endif
1552
1553 sp = (unsigned long) stack;
1554 if (tsk == NULL)
1555 tsk = current;
1556 if (sp == 0) {
1557 if (tsk == current)
1558 sp = current_stack_pointer();
1559 else
1560 sp = tsk->thread.ksp;
1561 }
1562
1563 lr = 0;
1564 printk("Call Trace:\n");
1565 do {
1566 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1567 return;
1568
1569 stack = (unsigned long *) sp;
1570 newsp = stack[0];
1571 ip = stack[STACK_FRAME_LR_SAVE];
1572 if (!firstframe || ip != lr) {
1573 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1574 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1575 if ((ip == rth) && curr_frame >= 0) {
1576 printk(" (%pS)",
1577 (void *)current->ret_stack[curr_frame].ret);
1578 curr_frame--;
1579 }
1580 #endif
1581 if (firstframe)
1582 printk(" (unreliable)");
1583 printk("\n");
1584 }
1585 firstframe = 0;
1586
1587 /*
1588 * See if this is an exception frame.
1589 * We look for the "regshere" marker in the current frame.
1590 */
1591 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1592 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1593 struct pt_regs *regs = (struct pt_regs *)
1594 (sp + STACK_FRAME_OVERHEAD);
1595 lr = regs->link;
1596 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1597 regs->trap, (void *)regs->nip, (void *)lr);
1598 firstframe = 1;
1599 }
1600
1601 sp = newsp;
1602 } while (count++ < kstack_depth_to_print);
1603 }
1604
1605 #ifdef CONFIG_PPC64
1606 /* Called with hard IRQs off */
1607 void notrace __ppc64_runlatch_on(void)
1608 {
1609 struct thread_info *ti = current_thread_info();
1610 unsigned long ctrl;
1611
1612 ctrl = mfspr(SPRN_CTRLF);
1613 ctrl |= CTRL_RUNLATCH;
1614 mtspr(SPRN_CTRLT, ctrl);
1615
1616 ti->local_flags |= _TLF_RUNLATCH;
1617 }
1618
1619 /* Called with hard IRQs off */
1620 void notrace __ppc64_runlatch_off(void)
1621 {
1622 struct thread_info *ti = current_thread_info();
1623 unsigned long ctrl;
1624
1625 ti->local_flags &= ~_TLF_RUNLATCH;
1626
1627 ctrl = mfspr(SPRN_CTRLF);
1628 ctrl &= ~CTRL_RUNLATCH;
1629 mtspr(SPRN_CTRLT, ctrl);
1630 }
1631 #endif /* CONFIG_PPC64 */
1632
1633 unsigned long arch_align_stack(unsigned long sp)
1634 {
1635 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1636 sp -= get_random_int() & ~PAGE_MASK;
1637 return sp & ~0xf;
1638 }
1639
1640 static inline unsigned long brk_rnd(void)
1641 {
1642 unsigned long rnd = 0;
1643
1644 /* 8MB for 32bit, 1GB for 64bit */
1645 if (is_32bit_task())
1646 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1647 else
1648 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1649
1650 return rnd << PAGE_SHIFT;
1651 }
1652
1653 unsigned long arch_randomize_brk(struct mm_struct *mm)
1654 {
1655 unsigned long base = mm->brk;
1656 unsigned long ret;
1657
1658 #ifdef CONFIG_PPC_STD_MMU_64
1659 /*
1660 * If we are using 1TB segments and we are allowed to randomise
1661 * the heap, we can put it above 1TB so it is backed by a 1TB
1662 * segment. Otherwise the heap will be in the bottom 1TB
1663 * which always uses 256MB segments and this may result in a
1664 * performance penalty.
1665 */
1666 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1667 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1668 #endif
1669
1670 ret = PAGE_ALIGN(base + brk_rnd());
1671
1672 if (ret < mm->brk)
1673 return mm->brk;
1674
1675 return ret;
1676 }
1677