]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/process.c
Merge tag 'mtd/for-5.2' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/mtd...
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/hw_breakpoint.h>
71
72 #include <linux/kprobes.h>
73 #include <linux/kdebug.h>
74
75 /* Transactional Memory debug */
76 #ifdef TM_DEBUG_SW
77 #define TM_DEBUG(x...) printk(KERN_INFO x)
78 #else
79 #define TM_DEBUG(x...) do { } while(0)
80 #endif
81
82 extern unsigned long _get_SP(void);
83
84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
85 /*
86 * Are we running in "Suspend disabled" mode? If so we have to block any
87 * sigreturn that would get us into suspended state, and we also warn in some
88 * other paths that we should never reach with suspend disabled.
89 */
90 bool tm_suspend_disabled __ro_after_init = false;
91
92 static void check_if_tm_restore_required(struct task_struct *tsk)
93 {
94 /*
95 * If we are saving the current thread's registers, and the
96 * thread is in a transactional state, set the TIF_RESTORE_TM
97 * bit so that we know to restore the registers before
98 * returning to userspace.
99 */
100 if (tsk == current && tsk->thread.regs &&
101 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
102 !test_thread_flag(TIF_RESTORE_TM)) {
103 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
104 set_thread_flag(TIF_RESTORE_TM);
105 }
106 }
107
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
111 (tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
117 (tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
124
125 bool strict_msr_control;
126 EXPORT_SYMBOL(strict_msr_control);
127
128 static int __init enable_strict_msr_control(char *str)
129 {
130 strict_msr_control = true;
131 pr_info("Enabling strict facility control\n");
132
133 return 0;
134 }
135 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
136
137 /* notrace because it's called by restore_math */
138 unsigned long notrace msr_check_and_set(unsigned long bits)
139 {
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
142
143 newmsr = oldmsr | bits;
144
145 #ifdef CONFIG_VSX
146 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
147 newmsr |= MSR_VSX;
148 #endif
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152
153 return newmsr;
154 }
155 EXPORT_SYMBOL_GPL(msr_check_and_set);
156
157 /* notrace because it's called by restore_math */
158 void notrace __msr_check_and_clear(unsigned long bits)
159 {
160 unsigned long oldmsr = mfmsr();
161 unsigned long newmsr;
162
163 newmsr = oldmsr & ~bits;
164
165 #ifdef CONFIG_VSX
166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 newmsr &= ~MSR_VSX;
168 #endif
169
170 if (oldmsr != newmsr)
171 mtmsr_isync(newmsr);
172 }
173 EXPORT_SYMBOL(__msr_check_and_clear);
174
175 #ifdef CONFIG_PPC_FPU
176 static void __giveup_fpu(struct task_struct *tsk)
177 {
178 unsigned long msr;
179
180 save_fpu(tsk);
181 msr = tsk->thread.regs->msr;
182 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
183 #ifdef CONFIG_VSX
184 if (cpu_has_feature(CPU_FTR_VSX))
185 msr &= ~MSR_VSX;
186 #endif
187 tsk->thread.regs->msr = msr;
188 }
189
190 void giveup_fpu(struct task_struct *tsk)
191 {
192 check_if_tm_restore_required(tsk);
193
194 msr_check_and_set(MSR_FP);
195 __giveup_fpu(tsk);
196 msr_check_and_clear(MSR_FP);
197 }
198 EXPORT_SYMBOL(giveup_fpu);
199
200 /*
201 * Make sure the floating-point register state in the
202 * the thread_struct is up to date for task tsk.
203 */
204 void flush_fp_to_thread(struct task_struct *tsk)
205 {
206 if (tsk->thread.regs) {
207 /*
208 * We need to disable preemption here because if we didn't,
209 * another process could get scheduled after the regs->msr
210 * test but before we have finished saving the FP registers
211 * to the thread_struct. That process could take over the
212 * FPU, and then when we get scheduled again we would store
213 * bogus values for the remaining FP registers.
214 */
215 preempt_disable();
216 if (tsk->thread.regs->msr & MSR_FP) {
217 /*
218 * This should only ever be called for current or
219 * for a stopped child process. Since we save away
220 * the FP register state on context switch,
221 * there is something wrong if a stopped child appears
222 * to still have its FP state in the CPU registers.
223 */
224 BUG_ON(tsk != current);
225 giveup_fpu(tsk);
226 }
227 preempt_enable();
228 }
229 }
230 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231
232 void enable_kernel_fp(void)
233 {
234 unsigned long cpumsr;
235
236 WARN_ON(preemptible());
237
238 cpumsr = msr_check_and_set(MSR_FP);
239
240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 check_if_tm_restore_required(current);
242 /*
243 * If a thread has already been reclaimed then the
244 * checkpointed registers are on the CPU but have definitely
245 * been saved by the reclaim code. Don't need to and *cannot*
246 * giveup as this would save to the 'live' structure not the
247 * checkpointed structure.
248 */
249 if (!MSR_TM_ACTIVE(cpumsr) &&
250 MSR_TM_ACTIVE(current->thread.regs->msr))
251 return;
252 __giveup_fpu(current);
253 }
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256
257 static int restore_fp(struct task_struct *tsk)
258 {
259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 load_fp_state(&current->thread.fp_state);
261 current->thread.load_fp++;
262 return 1;
263 }
264 return 0;
265 }
266 #else
267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272
273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275 unsigned long msr;
276
277 save_altivec(tsk);
278 msr = tsk->thread.regs->msr;
279 msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281 if (cpu_has_feature(CPU_FTR_VSX))
282 msr &= ~MSR_VSX;
283 #endif
284 tsk->thread.regs->msr = msr;
285 }
286
287 void giveup_altivec(struct task_struct *tsk)
288 {
289 check_if_tm_restore_required(tsk);
290
291 msr_check_and_set(MSR_VEC);
292 __giveup_altivec(tsk);
293 msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296
297 void enable_kernel_altivec(void)
298 {
299 unsigned long cpumsr;
300
301 WARN_ON(preemptible());
302
303 cpumsr = msr_check_and_set(MSR_VEC);
304
305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 check_if_tm_restore_required(current);
307 /*
308 * If a thread has already been reclaimed then the
309 * checkpointed registers are on the CPU but have definitely
310 * been saved by the reclaim code. Don't need to and *cannot*
311 * giveup as this would save to the 'live' structure not the
312 * checkpointed structure.
313 */
314 if (!MSR_TM_ACTIVE(cpumsr) &&
315 MSR_TM_ACTIVE(current->thread.regs->msr))
316 return;
317 __giveup_altivec(current);
318 }
319 }
320 EXPORT_SYMBOL(enable_kernel_altivec);
321
322 /*
323 * Make sure the VMX/Altivec register state in the
324 * the thread_struct is up to date for task tsk.
325 */
326 void flush_altivec_to_thread(struct task_struct *tsk)
327 {
328 if (tsk->thread.regs) {
329 preempt_disable();
330 if (tsk->thread.regs->msr & MSR_VEC) {
331 BUG_ON(tsk != current);
332 giveup_altivec(tsk);
333 }
334 preempt_enable();
335 }
336 }
337 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
338
339 static int restore_altivec(struct task_struct *tsk)
340 {
341 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
342 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
343 load_vr_state(&tsk->thread.vr_state);
344 tsk->thread.used_vr = 1;
345 tsk->thread.load_vec++;
346
347 return 1;
348 }
349 return 0;
350 }
351 #else
352 #define loadvec(thr) 0
353 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
354 #endif /* CONFIG_ALTIVEC */
355
356 #ifdef CONFIG_VSX
357 static void __giveup_vsx(struct task_struct *tsk)
358 {
359 unsigned long msr = tsk->thread.regs->msr;
360
361 /*
362 * We should never be ssetting MSR_VSX without also setting
363 * MSR_FP and MSR_VEC
364 */
365 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
366
367 /* __giveup_fpu will clear MSR_VSX */
368 if (msr & MSR_FP)
369 __giveup_fpu(tsk);
370 if (msr & MSR_VEC)
371 __giveup_altivec(tsk);
372 }
373
374 static void giveup_vsx(struct task_struct *tsk)
375 {
376 check_if_tm_restore_required(tsk);
377
378 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
379 __giveup_vsx(tsk);
380 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
381 }
382
383 void enable_kernel_vsx(void)
384 {
385 unsigned long cpumsr;
386
387 WARN_ON(preemptible());
388
389 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
390
391 if (current->thread.regs &&
392 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
393 check_if_tm_restore_required(current);
394 /*
395 * If a thread has already been reclaimed then the
396 * checkpointed registers are on the CPU but have definitely
397 * been saved by the reclaim code. Don't need to and *cannot*
398 * giveup as this would save to the 'live' structure not the
399 * checkpointed structure.
400 */
401 if (!MSR_TM_ACTIVE(cpumsr) &&
402 MSR_TM_ACTIVE(current->thread.regs->msr))
403 return;
404 __giveup_vsx(current);
405 }
406 }
407 EXPORT_SYMBOL(enable_kernel_vsx);
408
409 void flush_vsx_to_thread(struct task_struct *tsk)
410 {
411 if (tsk->thread.regs) {
412 preempt_disable();
413 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
414 BUG_ON(tsk != current);
415 giveup_vsx(tsk);
416 }
417 preempt_enable();
418 }
419 }
420 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
421
422 static int restore_vsx(struct task_struct *tsk)
423 {
424 if (cpu_has_feature(CPU_FTR_VSX)) {
425 tsk->thread.used_vsr = 1;
426 return 1;
427 }
428
429 return 0;
430 }
431 #else
432 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
433 #endif /* CONFIG_VSX */
434
435 #ifdef CONFIG_SPE
436 void giveup_spe(struct task_struct *tsk)
437 {
438 check_if_tm_restore_required(tsk);
439
440 msr_check_and_set(MSR_SPE);
441 __giveup_spe(tsk);
442 msr_check_and_clear(MSR_SPE);
443 }
444 EXPORT_SYMBOL(giveup_spe);
445
446 void enable_kernel_spe(void)
447 {
448 WARN_ON(preemptible());
449
450 msr_check_and_set(MSR_SPE);
451
452 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
453 check_if_tm_restore_required(current);
454 __giveup_spe(current);
455 }
456 }
457 EXPORT_SYMBOL(enable_kernel_spe);
458
459 void flush_spe_to_thread(struct task_struct *tsk)
460 {
461 if (tsk->thread.regs) {
462 preempt_disable();
463 if (tsk->thread.regs->msr & MSR_SPE) {
464 BUG_ON(tsk != current);
465 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
466 giveup_spe(tsk);
467 }
468 preempt_enable();
469 }
470 }
471 #endif /* CONFIG_SPE */
472
473 static unsigned long msr_all_available;
474
475 static int __init init_msr_all_available(void)
476 {
477 #ifdef CONFIG_PPC_FPU
478 msr_all_available |= MSR_FP;
479 #endif
480 #ifdef CONFIG_ALTIVEC
481 if (cpu_has_feature(CPU_FTR_ALTIVEC))
482 msr_all_available |= MSR_VEC;
483 #endif
484 #ifdef CONFIG_VSX
485 if (cpu_has_feature(CPU_FTR_VSX))
486 msr_all_available |= MSR_VSX;
487 #endif
488 #ifdef CONFIG_SPE
489 if (cpu_has_feature(CPU_FTR_SPE))
490 msr_all_available |= MSR_SPE;
491 #endif
492
493 return 0;
494 }
495 early_initcall(init_msr_all_available);
496
497 void giveup_all(struct task_struct *tsk)
498 {
499 unsigned long usermsr;
500
501 if (!tsk->thread.regs)
502 return;
503
504 usermsr = tsk->thread.regs->msr;
505
506 if ((usermsr & msr_all_available) == 0)
507 return;
508
509 msr_check_and_set(msr_all_available);
510 check_if_tm_restore_required(tsk);
511
512 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
513
514 #ifdef CONFIG_PPC_FPU
515 if (usermsr & MSR_FP)
516 __giveup_fpu(tsk);
517 #endif
518 #ifdef CONFIG_ALTIVEC
519 if (usermsr & MSR_VEC)
520 __giveup_altivec(tsk);
521 #endif
522 #ifdef CONFIG_SPE
523 if (usermsr & MSR_SPE)
524 __giveup_spe(tsk);
525 #endif
526
527 msr_check_and_clear(msr_all_available);
528 }
529 EXPORT_SYMBOL(giveup_all);
530
531 /*
532 * The exception exit path calls restore_math() with interrupts hard disabled
533 * but the soft irq state not "reconciled". ftrace code that calls
534 * local_irq_save/restore causes warnings.
535 *
536 * Rather than complicate the exit path, just don't trace restore_math. This
537 * could be done by having ftrace entry code check for this un-reconciled
538 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
539 * temporarily fix it up for the duration of the ftrace call.
540 */
541 void notrace restore_math(struct pt_regs *regs)
542 {
543 unsigned long msr;
544
545 if (!MSR_TM_ACTIVE(regs->msr) &&
546 !current->thread.load_fp && !loadvec(current->thread))
547 return;
548
549 msr = regs->msr;
550 msr_check_and_set(msr_all_available);
551
552 /*
553 * Only reload if the bit is not set in the user MSR, the bit BEING set
554 * indicates that the registers are hot
555 */
556 if ((!(msr & MSR_FP)) && restore_fp(current))
557 msr |= MSR_FP | current->thread.fpexc_mode;
558
559 if ((!(msr & MSR_VEC)) && restore_altivec(current))
560 msr |= MSR_VEC;
561
562 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
563 restore_vsx(current)) {
564 msr |= MSR_VSX;
565 }
566
567 msr_check_and_clear(msr_all_available);
568
569 regs->msr = msr;
570 }
571
572 static void save_all(struct task_struct *tsk)
573 {
574 unsigned long usermsr;
575
576 if (!tsk->thread.regs)
577 return;
578
579 usermsr = tsk->thread.regs->msr;
580
581 if ((usermsr & msr_all_available) == 0)
582 return;
583
584 msr_check_and_set(msr_all_available);
585
586 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
587
588 if (usermsr & MSR_FP)
589 save_fpu(tsk);
590
591 if (usermsr & MSR_VEC)
592 save_altivec(tsk);
593
594 if (usermsr & MSR_SPE)
595 __giveup_spe(tsk);
596
597 msr_check_and_clear(msr_all_available);
598 thread_pkey_regs_save(&tsk->thread);
599 }
600
601 void flush_all_to_thread(struct task_struct *tsk)
602 {
603 if (tsk->thread.regs) {
604 preempt_disable();
605 BUG_ON(tsk != current);
606 #ifdef CONFIG_SPE
607 if (tsk->thread.regs->msr & MSR_SPE)
608 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
609 #endif
610 save_all(tsk);
611
612 preempt_enable();
613 }
614 }
615 EXPORT_SYMBOL(flush_all_to_thread);
616
617 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
618 void do_send_trap(struct pt_regs *regs, unsigned long address,
619 unsigned long error_code, int breakpt)
620 {
621 current->thread.trap_nr = TRAP_HWBKPT;
622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 11, SIGSEGV) == NOTIFY_STOP)
624 return;
625
626 /* Deliver the signal to userspace */
627 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
628 (void __user *)address);
629 }
630 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
631 void do_break (struct pt_regs *regs, unsigned long address,
632 unsigned long error_code)
633 {
634 current->thread.trap_nr = TRAP_HWBKPT;
635 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
636 11, SIGSEGV) == NOTIFY_STOP)
637 return;
638
639 if (debugger_break_match(regs))
640 return;
641
642 /* Clear the breakpoint */
643 hw_breakpoint_disable();
644
645 /* Deliver the signal to userspace */
646 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
647 }
648 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
649
650 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
651
652 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
653 /*
654 * Set the debug registers back to their default "safe" values.
655 */
656 static void set_debug_reg_defaults(struct thread_struct *thread)
657 {
658 thread->debug.iac1 = thread->debug.iac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
660 thread->debug.iac3 = thread->debug.iac4 = 0;
661 #endif
662 thread->debug.dac1 = thread->debug.dac2 = 0;
663 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
664 thread->debug.dvc1 = thread->debug.dvc2 = 0;
665 #endif
666 thread->debug.dbcr0 = 0;
667 #ifdef CONFIG_BOOKE
668 /*
669 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
670 */
671 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
672 DBCR1_IAC3US | DBCR1_IAC4US;
673 /*
674 * Force Data Address Compare User/Supervisor bits to be User-only
675 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
676 */
677 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
678 #else
679 thread->debug.dbcr1 = 0;
680 #endif
681 }
682
683 static void prime_debug_regs(struct debug_reg *debug)
684 {
685 /*
686 * We could have inherited MSR_DE from userspace, since
687 * it doesn't get cleared on exception entry. Make sure
688 * MSR_DE is clear before we enable any debug events.
689 */
690 mtmsr(mfmsr() & ~MSR_DE);
691
692 mtspr(SPRN_IAC1, debug->iac1);
693 mtspr(SPRN_IAC2, debug->iac2);
694 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
695 mtspr(SPRN_IAC3, debug->iac3);
696 mtspr(SPRN_IAC4, debug->iac4);
697 #endif
698 mtspr(SPRN_DAC1, debug->dac1);
699 mtspr(SPRN_DAC2, debug->dac2);
700 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
701 mtspr(SPRN_DVC1, debug->dvc1);
702 mtspr(SPRN_DVC2, debug->dvc2);
703 #endif
704 mtspr(SPRN_DBCR0, debug->dbcr0);
705 mtspr(SPRN_DBCR1, debug->dbcr1);
706 #ifdef CONFIG_BOOKE
707 mtspr(SPRN_DBCR2, debug->dbcr2);
708 #endif
709 }
710 /*
711 * Unless neither the old or new thread are making use of the
712 * debug registers, set the debug registers from the values
713 * stored in the new thread.
714 */
715 void switch_booke_debug_regs(struct debug_reg *new_debug)
716 {
717 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
718 || (new_debug->dbcr0 & DBCR0_IDM))
719 prime_debug_regs(new_debug);
720 }
721 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
722 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
723 #ifndef CONFIG_HAVE_HW_BREAKPOINT
724 static void set_breakpoint(struct arch_hw_breakpoint *brk)
725 {
726 preempt_disable();
727 __set_breakpoint(brk);
728 preempt_enable();
729 }
730
731 static void set_debug_reg_defaults(struct thread_struct *thread)
732 {
733 thread->hw_brk.address = 0;
734 thread->hw_brk.type = 0;
735 if (ppc_breakpoint_available())
736 set_breakpoint(&thread->hw_brk);
737 }
738 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
739 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
740
741 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
742 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
743 {
744 mtspr(SPRN_DAC1, dabr);
745 #ifdef CONFIG_PPC_47x
746 isync();
747 #endif
748 return 0;
749 }
750 #elif defined(CONFIG_PPC_BOOK3S)
751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
752 {
753 mtspr(SPRN_DABR, dabr);
754 if (cpu_has_feature(CPU_FTR_DABRX))
755 mtspr(SPRN_DABRX, dabrx);
756 return 0;
757 }
758 #elif defined(CONFIG_PPC_8xx)
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
762 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
763 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
764
765 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
766 lctrl1 |= 0xa0000;
767 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
768 lctrl1 |= 0xf0000;
769 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
770 lctrl2 = 0;
771
772 mtspr(SPRN_LCTRL2, 0);
773 mtspr(SPRN_CMPE, addr);
774 mtspr(SPRN_CMPF, addr + 4);
775 mtspr(SPRN_LCTRL1, lctrl1);
776 mtspr(SPRN_LCTRL2, lctrl2);
777
778 return 0;
779 }
780 #else
781 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
782 {
783 return -EINVAL;
784 }
785 #endif
786
787 static inline int set_dabr(struct arch_hw_breakpoint *brk)
788 {
789 unsigned long dabr, dabrx;
790
791 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
792 dabrx = ((brk->type >> 3) & 0x7);
793
794 if (ppc_md.set_dabr)
795 return ppc_md.set_dabr(dabr, dabrx);
796
797 return __set_dabr(dabr, dabrx);
798 }
799
800 int set_dawr(struct arch_hw_breakpoint *brk)
801 {
802 unsigned long dawr, dawrx, mrd;
803
804 dawr = brk->address;
805
806 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
807 << (63 - 58); //* read/write bits */
808 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
809 << (63 - 59); //* translate */
810 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
811 >> 3; //* PRIM bits */
812 /* dawr length is stored in field MDR bits 48:53. Matches range in
813 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
814 0b111111=64DW.
815 brk->len is in bytes.
816 This aligns up to double word size, shifts and does the bias.
817 */
818 mrd = ((brk->len + 7) >> 3) - 1;
819 dawrx |= (mrd & 0x3f) << (63 - 53);
820
821 if (ppc_md.set_dawr)
822 return ppc_md.set_dawr(dawr, dawrx);
823 mtspr(SPRN_DAWR, dawr);
824 mtspr(SPRN_DAWRX, dawrx);
825 return 0;
826 }
827
828 void __set_breakpoint(struct arch_hw_breakpoint *brk)
829 {
830 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
831
832 if (dawr_enabled())
833 // Power8 or later
834 set_dawr(brk);
835 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
836 // Power7 or earlier
837 set_dabr(brk);
838 else
839 // Shouldn't happen due to higher level checks
840 WARN_ON_ONCE(1);
841 }
842
843 /* Check if we have DAWR or DABR hardware */
844 bool ppc_breakpoint_available(void)
845 {
846 if (dawr_enabled())
847 return true; /* POWER8 DAWR or POWER9 forced DAWR */
848 if (cpu_has_feature(CPU_FTR_ARCH_207S))
849 return false; /* POWER9 with DAWR disabled */
850 /* DABR: Everything but POWER8 and POWER9 */
851 return true;
852 }
853 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
854
855 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
856 struct arch_hw_breakpoint *b)
857 {
858 if (a->address != b->address)
859 return false;
860 if (a->type != b->type)
861 return false;
862 if (a->len != b->len)
863 return false;
864 return true;
865 }
866
867 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
868
869 static inline bool tm_enabled(struct task_struct *tsk)
870 {
871 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
872 }
873
874 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
875 {
876 /*
877 * Use the current MSR TM suspended bit to track if we have
878 * checkpointed state outstanding.
879 * On signal delivery, we'd normally reclaim the checkpointed
880 * state to obtain stack pointer (see:get_tm_stackpointer()).
881 * This will then directly return to userspace without going
882 * through __switch_to(). However, if the stack frame is bad,
883 * we need to exit this thread which calls __switch_to() which
884 * will again attempt to reclaim the already saved tm state.
885 * Hence we need to check that we've not already reclaimed
886 * this state.
887 * We do this using the current MSR, rather tracking it in
888 * some specific thread_struct bit, as it has the additional
889 * benefit of checking for a potential TM bad thing exception.
890 */
891 if (!MSR_TM_SUSPENDED(mfmsr()))
892 return;
893
894 giveup_all(container_of(thr, struct task_struct, thread));
895
896 tm_reclaim(thr, cause);
897
898 /*
899 * If we are in a transaction and FP is off then we can't have
900 * used FP inside that transaction. Hence the checkpointed
901 * state is the same as the live state. We need to copy the
902 * live state to the checkpointed state so that when the
903 * transaction is restored, the checkpointed state is correct
904 * and the aborted transaction sees the correct state. We use
905 * ckpt_regs.msr here as that's what tm_reclaim will use to
906 * determine if it's going to write the checkpointed state or
907 * not. So either this will write the checkpointed registers,
908 * or reclaim will. Similarly for VMX.
909 */
910 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
911 memcpy(&thr->ckfp_state, &thr->fp_state,
912 sizeof(struct thread_fp_state));
913 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
914 memcpy(&thr->ckvr_state, &thr->vr_state,
915 sizeof(struct thread_vr_state));
916 }
917
918 void tm_reclaim_current(uint8_t cause)
919 {
920 tm_enable();
921 tm_reclaim_thread(&current->thread, cause);
922 }
923
924 static inline void tm_reclaim_task(struct task_struct *tsk)
925 {
926 /* We have to work out if we're switching from/to a task that's in the
927 * middle of a transaction.
928 *
929 * In switching we need to maintain a 2nd register state as
930 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
931 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
932 * ckvr_state
933 *
934 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
935 */
936 struct thread_struct *thr = &tsk->thread;
937
938 if (!thr->regs)
939 return;
940
941 if (!MSR_TM_ACTIVE(thr->regs->msr))
942 goto out_and_saveregs;
943
944 WARN_ON(tm_suspend_disabled);
945
946 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
947 "ccr=%lx, msr=%lx, trap=%lx)\n",
948 tsk->pid, thr->regs->nip,
949 thr->regs->ccr, thr->regs->msr,
950 thr->regs->trap);
951
952 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
953
954 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
955 tsk->pid);
956
957 out_and_saveregs:
958 /* Always save the regs here, even if a transaction's not active.
959 * This context-switches a thread's TM info SPRs. We do it here to
960 * be consistent with the restore path (in recheckpoint) which
961 * cannot happen later in _switch().
962 */
963 tm_save_sprs(thr);
964 }
965
966 extern void __tm_recheckpoint(struct thread_struct *thread);
967
968 void tm_recheckpoint(struct thread_struct *thread)
969 {
970 unsigned long flags;
971
972 if (!(thread->regs->msr & MSR_TM))
973 return;
974
975 /* We really can't be interrupted here as the TEXASR registers can't
976 * change and later in the trecheckpoint code, we have a userspace R1.
977 * So let's hard disable over this region.
978 */
979 local_irq_save(flags);
980 hard_irq_disable();
981
982 /* The TM SPRs are restored here, so that TEXASR.FS can be set
983 * before the trecheckpoint and no explosion occurs.
984 */
985 tm_restore_sprs(thread);
986
987 __tm_recheckpoint(thread);
988
989 local_irq_restore(flags);
990 }
991
992 static inline void tm_recheckpoint_new_task(struct task_struct *new)
993 {
994 if (!cpu_has_feature(CPU_FTR_TM))
995 return;
996
997 /* Recheckpoint the registers of the thread we're about to switch to.
998 *
999 * If the task was using FP, we non-lazily reload both the original and
1000 * the speculative FP register states. This is because the kernel
1001 * doesn't see if/when a TM rollback occurs, so if we take an FP
1002 * unavailable later, we are unable to determine which set of FP regs
1003 * need to be restored.
1004 */
1005 if (!tm_enabled(new))
1006 return;
1007
1008 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1009 tm_restore_sprs(&new->thread);
1010 return;
1011 }
1012 /* Recheckpoint to restore original checkpointed register state. */
1013 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1014 new->pid, new->thread.regs->msr);
1015
1016 tm_recheckpoint(&new->thread);
1017
1018 /*
1019 * The checkpointed state has been restored but the live state has
1020 * not, ensure all the math functionality is turned off to trigger
1021 * restore_math() to reload.
1022 */
1023 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1024
1025 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1026 "(kernel msr 0x%lx)\n",
1027 new->pid, mfmsr());
1028 }
1029
1030 static inline void __switch_to_tm(struct task_struct *prev,
1031 struct task_struct *new)
1032 {
1033 if (cpu_has_feature(CPU_FTR_TM)) {
1034 if (tm_enabled(prev) || tm_enabled(new))
1035 tm_enable();
1036
1037 if (tm_enabled(prev)) {
1038 prev->thread.load_tm++;
1039 tm_reclaim_task(prev);
1040 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1041 prev->thread.regs->msr &= ~MSR_TM;
1042 }
1043
1044 tm_recheckpoint_new_task(new);
1045 }
1046 }
1047
1048 /*
1049 * This is called if we are on the way out to userspace and the
1050 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1051 * FP and/or vector state and does so if necessary.
1052 * If userspace is inside a transaction (whether active or
1053 * suspended) and FP/VMX/VSX instructions have ever been enabled
1054 * inside that transaction, then we have to keep them enabled
1055 * and keep the FP/VMX/VSX state loaded while ever the transaction
1056 * continues. The reason is that if we didn't, and subsequently
1057 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1058 * we don't know whether it's the same transaction, and thus we
1059 * don't know which of the checkpointed state and the transactional
1060 * state to use.
1061 */
1062 void restore_tm_state(struct pt_regs *regs)
1063 {
1064 unsigned long msr_diff;
1065
1066 /*
1067 * This is the only moment we should clear TIF_RESTORE_TM as
1068 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1069 * again, anything else could lead to an incorrect ckpt_msr being
1070 * saved and therefore incorrect signal contexts.
1071 */
1072 clear_thread_flag(TIF_RESTORE_TM);
1073 if (!MSR_TM_ACTIVE(regs->msr))
1074 return;
1075
1076 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1077 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1078
1079 /* Ensure that restore_math() will restore */
1080 if (msr_diff & MSR_FP)
1081 current->thread.load_fp = 1;
1082 #ifdef CONFIG_ALTIVEC
1083 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1084 current->thread.load_vec = 1;
1085 #endif
1086 restore_math(regs);
1087
1088 regs->msr |= msr_diff;
1089 }
1090
1091 #else
1092 #define tm_recheckpoint_new_task(new)
1093 #define __switch_to_tm(prev, new)
1094 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1095
1096 static inline void save_sprs(struct thread_struct *t)
1097 {
1098 #ifdef CONFIG_ALTIVEC
1099 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1100 t->vrsave = mfspr(SPRN_VRSAVE);
1101 #endif
1102 #ifdef CONFIG_PPC_BOOK3S_64
1103 if (cpu_has_feature(CPU_FTR_DSCR))
1104 t->dscr = mfspr(SPRN_DSCR);
1105
1106 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1107 t->bescr = mfspr(SPRN_BESCR);
1108 t->ebbhr = mfspr(SPRN_EBBHR);
1109 t->ebbrr = mfspr(SPRN_EBBRR);
1110
1111 t->fscr = mfspr(SPRN_FSCR);
1112
1113 /*
1114 * Note that the TAR is not available for use in the kernel.
1115 * (To provide this, the TAR should be backed up/restored on
1116 * exception entry/exit instead, and be in pt_regs. FIXME,
1117 * this should be in pt_regs anyway (for debug).)
1118 */
1119 t->tar = mfspr(SPRN_TAR);
1120 }
1121 #endif
1122
1123 thread_pkey_regs_save(t);
1124 }
1125
1126 static inline void restore_sprs(struct thread_struct *old_thread,
1127 struct thread_struct *new_thread)
1128 {
1129 #ifdef CONFIG_ALTIVEC
1130 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1131 old_thread->vrsave != new_thread->vrsave)
1132 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1133 #endif
1134 #ifdef CONFIG_PPC_BOOK3S_64
1135 if (cpu_has_feature(CPU_FTR_DSCR)) {
1136 u64 dscr = get_paca()->dscr_default;
1137 if (new_thread->dscr_inherit)
1138 dscr = new_thread->dscr;
1139
1140 if (old_thread->dscr != dscr)
1141 mtspr(SPRN_DSCR, dscr);
1142 }
1143
1144 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1145 if (old_thread->bescr != new_thread->bescr)
1146 mtspr(SPRN_BESCR, new_thread->bescr);
1147 if (old_thread->ebbhr != new_thread->ebbhr)
1148 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1149 if (old_thread->ebbrr != new_thread->ebbrr)
1150 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1151
1152 if (old_thread->fscr != new_thread->fscr)
1153 mtspr(SPRN_FSCR, new_thread->fscr);
1154
1155 if (old_thread->tar != new_thread->tar)
1156 mtspr(SPRN_TAR, new_thread->tar);
1157 }
1158
1159 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1160 old_thread->tidr != new_thread->tidr)
1161 mtspr(SPRN_TIDR, new_thread->tidr);
1162 #endif
1163
1164 thread_pkey_regs_restore(new_thread, old_thread);
1165 }
1166
1167 struct task_struct *__switch_to(struct task_struct *prev,
1168 struct task_struct *new)
1169 {
1170 struct thread_struct *new_thread, *old_thread;
1171 struct task_struct *last;
1172 #ifdef CONFIG_PPC_BOOK3S_64
1173 struct ppc64_tlb_batch *batch;
1174 #endif
1175
1176 new_thread = &new->thread;
1177 old_thread = &current->thread;
1178
1179 WARN_ON(!irqs_disabled());
1180
1181 #ifdef CONFIG_PPC_BOOK3S_64
1182 batch = this_cpu_ptr(&ppc64_tlb_batch);
1183 if (batch->active) {
1184 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1185 if (batch->index)
1186 __flush_tlb_pending(batch);
1187 batch->active = 0;
1188 }
1189 #endif /* CONFIG_PPC_BOOK3S_64 */
1190
1191 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1192 switch_booke_debug_regs(&new->thread.debug);
1193 #else
1194 /*
1195 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1196 * schedule DABR
1197 */
1198 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1199 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1200 __set_breakpoint(&new->thread.hw_brk);
1201 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1202 #endif
1203
1204 /*
1205 * We need to save SPRs before treclaim/trecheckpoint as these will
1206 * change a number of them.
1207 */
1208 save_sprs(&prev->thread);
1209
1210 /* Save FPU, Altivec, VSX and SPE state */
1211 giveup_all(prev);
1212
1213 __switch_to_tm(prev, new);
1214
1215 if (!radix_enabled()) {
1216 /*
1217 * We can't take a PMU exception inside _switch() since there
1218 * is a window where the kernel stack SLB and the kernel stack
1219 * are out of sync. Hard disable here.
1220 */
1221 hard_irq_disable();
1222 }
1223
1224 /*
1225 * Call restore_sprs() before calling _switch(). If we move it after
1226 * _switch() then we miss out on calling it for new tasks. The reason
1227 * for this is we manually create a stack frame for new tasks that
1228 * directly returns through ret_from_fork() or
1229 * ret_from_kernel_thread(). See copy_thread() for details.
1230 */
1231 restore_sprs(old_thread, new_thread);
1232
1233 last = _switch(old_thread, new_thread);
1234
1235 #ifdef CONFIG_PPC_BOOK3S_64
1236 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1237 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1238 batch = this_cpu_ptr(&ppc64_tlb_batch);
1239 batch->active = 1;
1240 }
1241
1242 if (current->thread.regs) {
1243 restore_math(current->thread.regs);
1244
1245 /*
1246 * The copy-paste buffer can only store into foreign real
1247 * addresses, so unprivileged processes can not see the
1248 * data or use it in any way unless they have foreign real
1249 * mappings. If the new process has the foreign real address
1250 * mappings, we must issue a cp_abort to clear any state and
1251 * prevent snooping, corruption or a covert channel.
1252 */
1253 if (current->thread.used_vas)
1254 asm volatile(PPC_CP_ABORT);
1255 }
1256 #endif /* CONFIG_PPC_BOOK3S_64 */
1257
1258 return last;
1259 }
1260
1261 #define NR_INSN_TO_PRINT 16
1262
1263 static void show_instructions(struct pt_regs *regs)
1264 {
1265 int i;
1266 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1267
1268 printk("Instruction dump:");
1269
1270 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1271 int instr;
1272
1273 if (!(i % 8))
1274 pr_cont("\n");
1275
1276 #if !defined(CONFIG_BOOKE)
1277 /* If executing with the IMMU off, adjust pc rather
1278 * than print XXXXXXXX.
1279 */
1280 if (!(regs->msr & MSR_IR))
1281 pc = (unsigned long)phys_to_virt(pc);
1282 #endif
1283
1284 if (!__kernel_text_address(pc) ||
1285 probe_kernel_address((const void *)pc, instr)) {
1286 pr_cont("XXXXXXXX ");
1287 } else {
1288 if (regs->nip == pc)
1289 pr_cont("<%08x> ", instr);
1290 else
1291 pr_cont("%08x ", instr);
1292 }
1293
1294 pc += sizeof(int);
1295 }
1296
1297 pr_cont("\n");
1298 }
1299
1300 void show_user_instructions(struct pt_regs *regs)
1301 {
1302 unsigned long pc;
1303 int n = NR_INSN_TO_PRINT;
1304 struct seq_buf s;
1305 char buf[96]; /* enough for 8 times 9 + 2 chars */
1306
1307 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1308
1309 /*
1310 * Make sure the NIP points at userspace, not kernel text/data or
1311 * elsewhere.
1312 */
1313 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1314 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1315 current->comm, current->pid);
1316 return;
1317 }
1318
1319 seq_buf_init(&s, buf, sizeof(buf));
1320
1321 while (n) {
1322 int i;
1323
1324 seq_buf_clear(&s);
1325
1326 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1327 int instr;
1328
1329 if (probe_kernel_address((const void *)pc, instr)) {
1330 seq_buf_printf(&s, "XXXXXXXX ");
1331 continue;
1332 }
1333 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1334 }
1335
1336 if (!seq_buf_has_overflowed(&s))
1337 pr_info("%s[%d]: code: %s\n", current->comm,
1338 current->pid, s.buffer);
1339 }
1340 }
1341
1342 struct regbit {
1343 unsigned long bit;
1344 const char *name;
1345 };
1346
1347 static struct regbit msr_bits[] = {
1348 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1349 {MSR_SF, "SF"},
1350 {MSR_HV, "HV"},
1351 #endif
1352 {MSR_VEC, "VEC"},
1353 {MSR_VSX, "VSX"},
1354 #ifdef CONFIG_BOOKE
1355 {MSR_CE, "CE"},
1356 #endif
1357 {MSR_EE, "EE"},
1358 {MSR_PR, "PR"},
1359 {MSR_FP, "FP"},
1360 {MSR_ME, "ME"},
1361 #ifdef CONFIG_BOOKE
1362 {MSR_DE, "DE"},
1363 #else
1364 {MSR_SE, "SE"},
1365 {MSR_BE, "BE"},
1366 #endif
1367 {MSR_IR, "IR"},
1368 {MSR_DR, "DR"},
1369 {MSR_PMM, "PMM"},
1370 #ifndef CONFIG_BOOKE
1371 {MSR_RI, "RI"},
1372 {MSR_LE, "LE"},
1373 #endif
1374 {0, NULL}
1375 };
1376
1377 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1378 {
1379 const char *s = "";
1380
1381 for (; bits->bit; ++bits)
1382 if (val & bits->bit) {
1383 pr_cont("%s%s", s, bits->name);
1384 s = sep;
1385 }
1386 }
1387
1388 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1389 static struct regbit msr_tm_bits[] = {
1390 {MSR_TS_T, "T"},
1391 {MSR_TS_S, "S"},
1392 {MSR_TM, "E"},
1393 {0, NULL}
1394 };
1395
1396 static void print_tm_bits(unsigned long val)
1397 {
1398 /*
1399 * This only prints something if at least one of the TM bit is set.
1400 * Inside the TM[], the output means:
1401 * E: Enabled (bit 32)
1402 * S: Suspended (bit 33)
1403 * T: Transactional (bit 34)
1404 */
1405 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1406 pr_cont(",TM[");
1407 print_bits(val, msr_tm_bits, "");
1408 pr_cont("]");
1409 }
1410 }
1411 #else
1412 static void print_tm_bits(unsigned long val) {}
1413 #endif
1414
1415 static void print_msr_bits(unsigned long val)
1416 {
1417 pr_cont("<");
1418 print_bits(val, msr_bits, ",");
1419 print_tm_bits(val);
1420 pr_cont(">");
1421 }
1422
1423 #ifdef CONFIG_PPC64
1424 #define REG "%016lx"
1425 #define REGS_PER_LINE 4
1426 #define LAST_VOLATILE 13
1427 #else
1428 #define REG "%08lx"
1429 #define REGS_PER_LINE 8
1430 #define LAST_VOLATILE 12
1431 #endif
1432
1433 void show_regs(struct pt_regs * regs)
1434 {
1435 int i, trap;
1436
1437 show_regs_print_info(KERN_DEFAULT);
1438
1439 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1440 regs->nip, regs->link, regs->ctr);
1441 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1442 regs, regs->trap, print_tainted(), init_utsname()->release);
1443 printk("MSR: "REG" ", regs->msr);
1444 print_msr_bits(regs->msr);
1445 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1446 trap = TRAP(regs);
1447 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1448 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1449 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1450 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1451 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1452 #else
1453 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1454 #endif
1455 #ifdef CONFIG_PPC64
1456 pr_cont("IRQMASK: %lx ", regs->softe);
1457 #endif
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 if (MSR_TM_ACTIVE(regs->msr))
1460 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1461 #endif
1462
1463 for (i = 0; i < 32; i++) {
1464 if ((i % REGS_PER_LINE) == 0)
1465 pr_cont("\nGPR%02d: ", i);
1466 pr_cont(REG " ", regs->gpr[i]);
1467 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1468 break;
1469 }
1470 pr_cont("\n");
1471 #ifdef CONFIG_KALLSYMS
1472 /*
1473 * Lookup NIP late so we have the best change of getting the
1474 * above info out without failing
1475 */
1476 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1477 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1478 #endif
1479 show_stack(current, (unsigned long *) regs->gpr[1]);
1480 if (!user_mode(regs))
1481 show_instructions(regs);
1482 }
1483
1484 void flush_thread(void)
1485 {
1486 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1487 flush_ptrace_hw_breakpoint(current);
1488 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1489 set_debug_reg_defaults(&current->thread);
1490 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1491 }
1492
1493 #ifdef CONFIG_PPC_BOOK3S_64
1494 void arch_setup_new_exec(void)
1495 {
1496 if (radix_enabled())
1497 return;
1498 hash__setup_new_exec();
1499 }
1500 #endif
1501
1502 int set_thread_uses_vas(void)
1503 {
1504 #ifdef CONFIG_PPC_BOOK3S_64
1505 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1506 return -EINVAL;
1507
1508 current->thread.used_vas = 1;
1509
1510 /*
1511 * Even a process that has no foreign real address mapping can use
1512 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1513 * to clear any pending COPY and prevent a covert channel.
1514 *
1515 * __switch_to() will issue CP_ABORT on future context switches.
1516 */
1517 asm volatile(PPC_CP_ABORT);
1518
1519 #endif /* CONFIG_PPC_BOOK3S_64 */
1520 return 0;
1521 }
1522
1523 #ifdef CONFIG_PPC64
1524 /**
1525 * Assign a TIDR (thread ID) for task @t and set it in the thread
1526 * structure. For now, we only support setting TIDR for 'current' task.
1527 *
1528 * Since the TID value is a truncated form of it PID, it is possible
1529 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1530 * that 2 threads share the same TID and are waiting, one of the following
1531 * cases will happen:
1532 *
1533 * 1. The correct thread is running, the wrong thread is not
1534 * In this situation, the correct thread is woken and proceeds to pass it's
1535 * condition check.
1536 *
1537 * 2. Neither threads are running
1538 * In this situation, neither thread will be woken. When scheduled, the waiting
1539 * threads will execute either a wait, which will return immediately, followed
1540 * by a condition check, which will pass for the correct thread and fail
1541 * for the wrong thread, or they will execute the condition check immediately.
1542 *
1543 * 3. The wrong thread is running, the correct thread is not
1544 * The wrong thread will be woken, but will fail it's condition check and
1545 * re-execute wait. The correct thread, when scheduled, will execute either
1546 * it's condition check (which will pass), or wait, which returns immediately
1547 * when called the first time after the thread is scheduled, followed by it's
1548 * condition check (which will pass).
1549 *
1550 * 4. Both threads are running
1551 * Both threads will be woken. The wrong thread will fail it's condition check
1552 * and execute another wait, while the correct thread will pass it's condition
1553 * check.
1554 *
1555 * @t: the task to set the thread ID for
1556 */
1557 int set_thread_tidr(struct task_struct *t)
1558 {
1559 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1560 return -EINVAL;
1561
1562 if (t != current)
1563 return -EINVAL;
1564
1565 if (t->thread.tidr)
1566 return 0;
1567
1568 t->thread.tidr = (u16)task_pid_nr(t);
1569 mtspr(SPRN_TIDR, t->thread.tidr);
1570
1571 return 0;
1572 }
1573 EXPORT_SYMBOL_GPL(set_thread_tidr);
1574
1575 #endif /* CONFIG_PPC64 */
1576
1577 void
1578 release_thread(struct task_struct *t)
1579 {
1580 }
1581
1582 /*
1583 * this gets called so that we can store coprocessor state into memory and
1584 * copy the current task into the new thread.
1585 */
1586 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1587 {
1588 flush_all_to_thread(src);
1589 /*
1590 * Flush TM state out so we can copy it. __switch_to_tm() does this
1591 * flush but it removes the checkpointed state from the current CPU and
1592 * transitions the CPU out of TM mode. Hence we need to call
1593 * tm_recheckpoint_new_task() (on the same task) to restore the
1594 * checkpointed state back and the TM mode.
1595 *
1596 * Can't pass dst because it isn't ready. Doesn't matter, passing
1597 * dst is only important for __switch_to()
1598 */
1599 __switch_to_tm(src, src);
1600
1601 *dst = *src;
1602
1603 clear_task_ebb(dst);
1604
1605 return 0;
1606 }
1607
1608 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1609 {
1610 #ifdef CONFIG_PPC_BOOK3S_64
1611 unsigned long sp_vsid;
1612 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1613
1614 if (radix_enabled())
1615 return;
1616
1617 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1618 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1619 << SLB_VSID_SHIFT_1T;
1620 else
1621 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1622 << SLB_VSID_SHIFT;
1623 sp_vsid |= SLB_VSID_KERNEL | llp;
1624 p->thread.ksp_vsid = sp_vsid;
1625 #endif
1626 }
1627
1628 /*
1629 * Copy a thread..
1630 */
1631
1632 /*
1633 * Copy architecture-specific thread state
1634 */
1635 int copy_thread(unsigned long clone_flags, unsigned long usp,
1636 unsigned long kthread_arg, struct task_struct *p)
1637 {
1638 struct pt_regs *childregs, *kregs;
1639 extern void ret_from_fork(void);
1640 extern void ret_from_kernel_thread(void);
1641 void (*f)(void);
1642 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1643 struct thread_info *ti = task_thread_info(p);
1644
1645 klp_init_thread_info(p);
1646
1647 /* Copy registers */
1648 sp -= sizeof(struct pt_regs);
1649 childregs = (struct pt_regs *) sp;
1650 if (unlikely(p->flags & PF_KTHREAD)) {
1651 /* kernel thread */
1652 memset(childregs, 0, sizeof(struct pt_regs));
1653 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1654 /* function */
1655 if (usp)
1656 childregs->gpr[14] = ppc_function_entry((void *)usp);
1657 #ifdef CONFIG_PPC64
1658 clear_tsk_thread_flag(p, TIF_32BIT);
1659 childregs->softe = IRQS_ENABLED;
1660 #endif
1661 childregs->gpr[15] = kthread_arg;
1662 p->thread.regs = NULL; /* no user register state */
1663 ti->flags |= _TIF_RESTOREALL;
1664 f = ret_from_kernel_thread;
1665 } else {
1666 /* user thread */
1667 struct pt_regs *regs = current_pt_regs();
1668 CHECK_FULL_REGS(regs);
1669 *childregs = *regs;
1670 if (usp)
1671 childregs->gpr[1] = usp;
1672 p->thread.regs = childregs;
1673 childregs->gpr[3] = 0; /* Result from fork() */
1674 if (clone_flags & CLONE_SETTLS) {
1675 #ifdef CONFIG_PPC64
1676 if (!is_32bit_task())
1677 childregs->gpr[13] = childregs->gpr[6];
1678 else
1679 #endif
1680 childregs->gpr[2] = childregs->gpr[6];
1681 }
1682
1683 f = ret_from_fork;
1684 }
1685 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1686 sp -= STACK_FRAME_OVERHEAD;
1687
1688 /*
1689 * The way this works is that at some point in the future
1690 * some task will call _switch to switch to the new task.
1691 * That will pop off the stack frame created below and start
1692 * the new task running at ret_from_fork. The new task will
1693 * do some house keeping and then return from the fork or clone
1694 * system call, using the stack frame created above.
1695 */
1696 ((unsigned long *)sp)[0] = 0;
1697 sp -= sizeof(struct pt_regs);
1698 kregs = (struct pt_regs *) sp;
1699 sp -= STACK_FRAME_OVERHEAD;
1700 p->thread.ksp = sp;
1701 #ifdef CONFIG_PPC32
1702 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1703 #endif
1704 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1705 p->thread.ptrace_bps[0] = NULL;
1706 #endif
1707
1708 p->thread.fp_save_area = NULL;
1709 #ifdef CONFIG_ALTIVEC
1710 p->thread.vr_save_area = NULL;
1711 #endif
1712
1713 setup_ksp_vsid(p, sp);
1714
1715 #ifdef CONFIG_PPC64
1716 if (cpu_has_feature(CPU_FTR_DSCR)) {
1717 p->thread.dscr_inherit = current->thread.dscr_inherit;
1718 p->thread.dscr = mfspr(SPRN_DSCR);
1719 }
1720 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1721 childregs->ppr = DEFAULT_PPR;
1722
1723 p->thread.tidr = 0;
1724 #endif
1725 kregs->nip = ppc_function_entry(f);
1726 return 0;
1727 }
1728
1729 void preload_new_slb_context(unsigned long start, unsigned long sp);
1730
1731 /*
1732 * Set up a thread for executing a new program
1733 */
1734 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1735 {
1736 #ifdef CONFIG_PPC64
1737 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1738
1739 #ifdef CONFIG_PPC_BOOK3S_64
1740 if (!radix_enabled())
1741 preload_new_slb_context(start, sp);
1742 #endif
1743 #endif
1744
1745 /*
1746 * If we exec out of a kernel thread then thread.regs will not be
1747 * set. Do it now.
1748 */
1749 if (!current->thread.regs) {
1750 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1751 current->thread.regs = regs - 1;
1752 }
1753
1754 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1755 /*
1756 * Clear any transactional state, we're exec()ing. The cause is
1757 * not important as there will never be a recheckpoint so it's not
1758 * user visible.
1759 */
1760 if (MSR_TM_SUSPENDED(mfmsr()))
1761 tm_reclaim_current(0);
1762 #endif
1763
1764 memset(regs->gpr, 0, sizeof(regs->gpr));
1765 regs->ctr = 0;
1766 regs->link = 0;
1767 regs->xer = 0;
1768 regs->ccr = 0;
1769 regs->gpr[1] = sp;
1770
1771 /*
1772 * We have just cleared all the nonvolatile GPRs, so make
1773 * FULL_REGS(regs) return true. This is necessary to allow
1774 * ptrace to examine the thread immediately after exec.
1775 */
1776 regs->trap &= ~1UL;
1777
1778 #ifdef CONFIG_PPC32
1779 regs->mq = 0;
1780 regs->nip = start;
1781 regs->msr = MSR_USER;
1782 #else
1783 if (!is_32bit_task()) {
1784 unsigned long entry;
1785
1786 if (is_elf2_task()) {
1787 /* Look ma, no function descriptors! */
1788 entry = start;
1789
1790 /*
1791 * Ulrich says:
1792 * The latest iteration of the ABI requires that when
1793 * calling a function (at its global entry point),
1794 * the caller must ensure r12 holds the entry point
1795 * address (so that the function can quickly
1796 * establish addressability).
1797 */
1798 regs->gpr[12] = start;
1799 /* Make sure that's restored on entry to userspace. */
1800 set_thread_flag(TIF_RESTOREALL);
1801 } else {
1802 unsigned long toc;
1803
1804 /* start is a relocated pointer to the function
1805 * descriptor for the elf _start routine. The first
1806 * entry in the function descriptor is the entry
1807 * address of _start and the second entry is the TOC
1808 * value we need to use.
1809 */
1810 __get_user(entry, (unsigned long __user *)start);
1811 __get_user(toc, (unsigned long __user *)start+1);
1812
1813 /* Check whether the e_entry function descriptor entries
1814 * need to be relocated before we can use them.
1815 */
1816 if (load_addr != 0) {
1817 entry += load_addr;
1818 toc += load_addr;
1819 }
1820 regs->gpr[2] = toc;
1821 }
1822 regs->nip = entry;
1823 regs->msr = MSR_USER64;
1824 } else {
1825 regs->nip = start;
1826 regs->gpr[2] = 0;
1827 regs->msr = MSR_USER32;
1828 }
1829 #endif
1830 #ifdef CONFIG_VSX
1831 current->thread.used_vsr = 0;
1832 #endif
1833 current->thread.load_slb = 0;
1834 current->thread.load_fp = 0;
1835 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1836 current->thread.fp_save_area = NULL;
1837 #ifdef CONFIG_ALTIVEC
1838 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1839 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1840 current->thread.vr_save_area = NULL;
1841 current->thread.vrsave = 0;
1842 current->thread.used_vr = 0;
1843 current->thread.load_vec = 0;
1844 #endif /* CONFIG_ALTIVEC */
1845 #ifdef CONFIG_SPE
1846 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1847 current->thread.acc = 0;
1848 current->thread.spefscr = 0;
1849 current->thread.used_spe = 0;
1850 #endif /* CONFIG_SPE */
1851 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1852 current->thread.tm_tfhar = 0;
1853 current->thread.tm_texasr = 0;
1854 current->thread.tm_tfiar = 0;
1855 current->thread.load_tm = 0;
1856 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1857
1858 thread_pkey_regs_init(&current->thread);
1859 }
1860 EXPORT_SYMBOL(start_thread);
1861
1862 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1863 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1864
1865 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1866 {
1867 struct pt_regs *regs = tsk->thread.regs;
1868
1869 /* This is a bit hairy. If we are an SPE enabled processor
1870 * (have embedded fp) we store the IEEE exception enable flags in
1871 * fpexc_mode. fpexc_mode is also used for setting FP exception
1872 * mode (asyn, precise, disabled) for 'Classic' FP. */
1873 if (val & PR_FP_EXC_SW_ENABLE) {
1874 #ifdef CONFIG_SPE
1875 if (cpu_has_feature(CPU_FTR_SPE)) {
1876 /*
1877 * When the sticky exception bits are set
1878 * directly by userspace, it must call prctl
1879 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1880 * in the existing prctl settings) or
1881 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1882 * the bits being set). <fenv.h> functions
1883 * saving and restoring the whole
1884 * floating-point environment need to do so
1885 * anyway to restore the prctl settings from
1886 * the saved environment.
1887 */
1888 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1889 tsk->thread.fpexc_mode = val &
1890 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1891 return 0;
1892 } else {
1893 return -EINVAL;
1894 }
1895 #else
1896 return -EINVAL;
1897 #endif
1898 }
1899
1900 /* on a CONFIG_SPE this does not hurt us. The bits that
1901 * __pack_fe01 use do not overlap with bits used for
1902 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1903 * on CONFIG_SPE implementations are reserved so writing to
1904 * them does not change anything */
1905 if (val > PR_FP_EXC_PRECISE)
1906 return -EINVAL;
1907 tsk->thread.fpexc_mode = __pack_fe01(val);
1908 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1909 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1910 | tsk->thread.fpexc_mode;
1911 return 0;
1912 }
1913
1914 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1915 {
1916 unsigned int val;
1917
1918 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1919 #ifdef CONFIG_SPE
1920 if (cpu_has_feature(CPU_FTR_SPE)) {
1921 /*
1922 * When the sticky exception bits are set
1923 * directly by userspace, it must call prctl
1924 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1925 * in the existing prctl settings) or
1926 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1927 * the bits being set). <fenv.h> functions
1928 * saving and restoring the whole
1929 * floating-point environment need to do so
1930 * anyway to restore the prctl settings from
1931 * the saved environment.
1932 */
1933 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1934 val = tsk->thread.fpexc_mode;
1935 } else
1936 return -EINVAL;
1937 #else
1938 return -EINVAL;
1939 #endif
1940 else
1941 val = __unpack_fe01(tsk->thread.fpexc_mode);
1942 return put_user(val, (unsigned int __user *) adr);
1943 }
1944
1945 int set_endian(struct task_struct *tsk, unsigned int val)
1946 {
1947 struct pt_regs *regs = tsk->thread.regs;
1948
1949 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1950 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1951 return -EINVAL;
1952
1953 if (regs == NULL)
1954 return -EINVAL;
1955
1956 if (val == PR_ENDIAN_BIG)
1957 regs->msr &= ~MSR_LE;
1958 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1959 regs->msr |= MSR_LE;
1960 else
1961 return -EINVAL;
1962
1963 return 0;
1964 }
1965
1966 int get_endian(struct task_struct *tsk, unsigned long adr)
1967 {
1968 struct pt_regs *regs = tsk->thread.regs;
1969 unsigned int val;
1970
1971 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1972 !cpu_has_feature(CPU_FTR_REAL_LE))
1973 return -EINVAL;
1974
1975 if (regs == NULL)
1976 return -EINVAL;
1977
1978 if (regs->msr & MSR_LE) {
1979 if (cpu_has_feature(CPU_FTR_REAL_LE))
1980 val = PR_ENDIAN_LITTLE;
1981 else
1982 val = PR_ENDIAN_PPC_LITTLE;
1983 } else
1984 val = PR_ENDIAN_BIG;
1985
1986 return put_user(val, (unsigned int __user *)adr);
1987 }
1988
1989 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1990 {
1991 tsk->thread.align_ctl = val;
1992 return 0;
1993 }
1994
1995 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1996 {
1997 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1998 }
1999
2000 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2001 unsigned long nbytes)
2002 {
2003 unsigned long stack_page;
2004 unsigned long cpu = task_cpu(p);
2005
2006 stack_page = (unsigned long)hardirq_ctx[cpu];
2007 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2008 return 1;
2009
2010 stack_page = (unsigned long)softirq_ctx[cpu];
2011 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2012 return 1;
2013
2014 return 0;
2015 }
2016
2017 int validate_sp(unsigned long sp, struct task_struct *p,
2018 unsigned long nbytes)
2019 {
2020 unsigned long stack_page = (unsigned long)task_stack_page(p);
2021
2022 if (sp < THREAD_SIZE)
2023 return 0;
2024
2025 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2026 return 1;
2027
2028 return valid_irq_stack(sp, p, nbytes);
2029 }
2030
2031 EXPORT_SYMBOL(validate_sp);
2032
2033 static unsigned long __get_wchan(struct task_struct *p)
2034 {
2035 unsigned long ip, sp;
2036 int count = 0;
2037
2038 if (!p || p == current || p->state == TASK_RUNNING)
2039 return 0;
2040
2041 sp = p->thread.ksp;
2042 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2043 return 0;
2044
2045 do {
2046 sp = *(unsigned long *)sp;
2047 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2048 p->state == TASK_RUNNING)
2049 return 0;
2050 if (count > 0) {
2051 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2052 if (!in_sched_functions(ip))
2053 return ip;
2054 }
2055 } while (count++ < 16);
2056 return 0;
2057 }
2058
2059 unsigned long get_wchan(struct task_struct *p)
2060 {
2061 unsigned long ret;
2062
2063 if (!try_get_task_stack(p))
2064 return 0;
2065
2066 ret = __get_wchan(p);
2067
2068 put_task_stack(p);
2069
2070 return ret;
2071 }
2072
2073 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2074
2075 void show_stack(struct task_struct *tsk, unsigned long *stack)
2076 {
2077 unsigned long sp, ip, lr, newsp;
2078 int count = 0;
2079 int firstframe = 1;
2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081 struct ftrace_ret_stack *ret_stack;
2082 extern void return_to_handler(void);
2083 unsigned long rth = (unsigned long)return_to_handler;
2084 int curr_frame = 0;
2085 #endif
2086
2087 if (tsk == NULL)
2088 tsk = current;
2089
2090 if (!try_get_task_stack(tsk))
2091 return;
2092
2093 sp = (unsigned long) stack;
2094 if (sp == 0) {
2095 if (tsk == current)
2096 sp = current_stack_pointer();
2097 else
2098 sp = tsk->thread.ksp;
2099 }
2100
2101 lr = 0;
2102 printk("Call Trace:\n");
2103 do {
2104 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2105 break;
2106
2107 stack = (unsigned long *) sp;
2108 newsp = stack[0];
2109 ip = stack[STACK_FRAME_LR_SAVE];
2110 if (!firstframe || ip != lr) {
2111 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2112 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2113 if ((ip == rth) && curr_frame >= 0) {
2114 ret_stack = ftrace_graph_get_ret_stack(current,
2115 curr_frame++);
2116 if (ret_stack)
2117 pr_cont(" (%pS)",
2118 (void *)ret_stack->ret);
2119 else
2120 curr_frame = -1;
2121 }
2122 #endif
2123 if (firstframe)
2124 pr_cont(" (unreliable)");
2125 pr_cont("\n");
2126 }
2127 firstframe = 0;
2128
2129 /*
2130 * See if this is an exception frame.
2131 * We look for the "regshere" marker in the current frame.
2132 */
2133 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2134 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2135 struct pt_regs *regs = (struct pt_regs *)
2136 (sp + STACK_FRAME_OVERHEAD);
2137 lr = regs->link;
2138 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2139 regs->trap, (void *)regs->nip, (void *)lr);
2140 firstframe = 1;
2141 }
2142
2143 sp = newsp;
2144 } while (count++ < kstack_depth_to_print);
2145
2146 put_task_stack(tsk);
2147 }
2148
2149 #ifdef CONFIG_PPC64
2150 /* Called with hard IRQs off */
2151 void notrace __ppc64_runlatch_on(void)
2152 {
2153 struct thread_info *ti = current_thread_info();
2154
2155 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2156 /*
2157 * Least significant bit (RUN) is the only writable bit of
2158 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2159 * earliest ISA where this is the case, but it's convenient.
2160 */
2161 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2162 } else {
2163 unsigned long ctrl;
2164
2165 /*
2166 * Some architectures (e.g., Cell) have writable fields other
2167 * than RUN, so do the read-modify-write.
2168 */
2169 ctrl = mfspr(SPRN_CTRLF);
2170 ctrl |= CTRL_RUNLATCH;
2171 mtspr(SPRN_CTRLT, ctrl);
2172 }
2173
2174 ti->local_flags |= _TLF_RUNLATCH;
2175 }
2176
2177 /* Called with hard IRQs off */
2178 void notrace __ppc64_runlatch_off(void)
2179 {
2180 struct thread_info *ti = current_thread_info();
2181
2182 ti->local_flags &= ~_TLF_RUNLATCH;
2183
2184 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2185 mtspr(SPRN_CTRLT, 0);
2186 } else {
2187 unsigned long ctrl;
2188
2189 ctrl = mfspr(SPRN_CTRLF);
2190 ctrl &= ~CTRL_RUNLATCH;
2191 mtspr(SPRN_CTRLT, ctrl);
2192 }
2193 }
2194 #endif /* CONFIG_PPC64 */
2195
2196 unsigned long arch_align_stack(unsigned long sp)
2197 {
2198 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2199 sp -= get_random_int() & ~PAGE_MASK;
2200 return sp & ~0xf;
2201 }
2202
2203 static inline unsigned long brk_rnd(void)
2204 {
2205 unsigned long rnd = 0;
2206
2207 /* 8MB for 32bit, 1GB for 64bit */
2208 if (is_32bit_task())
2209 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2210 else
2211 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2212
2213 return rnd << PAGE_SHIFT;
2214 }
2215
2216 unsigned long arch_randomize_brk(struct mm_struct *mm)
2217 {
2218 unsigned long base = mm->brk;
2219 unsigned long ret;
2220
2221 #ifdef CONFIG_PPC_BOOK3S_64
2222 /*
2223 * If we are using 1TB segments and we are allowed to randomise
2224 * the heap, we can put it above 1TB so it is backed by a 1TB
2225 * segment. Otherwise the heap will be in the bottom 1TB
2226 * which always uses 256MB segments and this may result in a
2227 * performance penalty. We don't need to worry about radix. For
2228 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2229 */
2230 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2231 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2232 #endif
2233
2234 ret = PAGE_ALIGN(base + brk_rnd());
2235
2236 if (ret < mm->brk)
2237 return mm->brk;
2238
2239 return ret;
2240 }
2241