]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/process.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatchin...
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70
71 #include <linux/kprobes.h>
72 #include <linux/kdebug.h>
73
74 /* Transactional Memory debug */
75 #ifdef TM_DEBUG_SW
76 #define TM_DEBUG(x...) printk(KERN_INFO x)
77 #else
78 #define TM_DEBUG(x...) do { } while(0)
79 #endif
80
81 extern unsigned long _get_SP(void);
82
83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
84 /*
85 * Are we running in "Suspend disabled" mode? If so we have to block any
86 * sigreturn that would get us into suspended state, and we also warn in some
87 * other paths that we should never reach with suspend disabled.
88 */
89 bool tm_suspend_disabled __ro_after_init = false;
90
91 static void check_if_tm_restore_required(struct task_struct *tsk)
92 {
93 /*
94 * If we are saving the current thread's registers, and the
95 * thread is in a transactional state, set the TIF_RESTORE_TM
96 * bit so that we know to restore the registers before
97 * returning to userspace.
98 */
99 if (tsk == current && tsk->thread.regs &&
100 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101 !test_thread_flag(TIF_RESTORE_TM)) {
102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
103 set_thread_flag(TIF_RESTORE_TM);
104 }
105 }
106
107 static bool tm_active_with_fp(struct task_struct *tsk)
108 {
109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
110 (tsk->thread.ckpt_regs.msr & MSR_FP);
111 }
112
113 static bool tm_active_with_altivec(struct task_struct *tsk)
114 {
115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
116 (tsk->thread.ckpt_regs.msr & MSR_VEC);
117 }
118 #else
119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123
124 bool strict_msr_control;
125 EXPORT_SYMBOL(strict_msr_control);
126
127 static int __init enable_strict_msr_control(char *str)
128 {
129 strict_msr_control = true;
130 pr_info("Enabling strict facility control\n");
131
132 return 0;
133 }
134 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135
136 unsigned long msr_check_and_set(unsigned long bits)
137 {
138 unsigned long oldmsr = mfmsr();
139 unsigned long newmsr;
140
141 newmsr = oldmsr | bits;
142
143 #ifdef CONFIG_VSX
144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 newmsr |= MSR_VSX;
146 #endif
147
148 if (oldmsr != newmsr)
149 mtmsr_isync(newmsr);
150
151 return newmsr;
152 }
153 EXPORT_SYMBOL_GPL(msr_check_and_set);
154
155 void __msr_check_and_clear(unsigned long bits)
156 {
157 unsigned long oldmsr = mfmsr();
158 unsigned long newmsr;
159
160 newmsr = oldmsr & ~bits;
161
162 #ifdef CONFIG_VSX
163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164 newmsr &= ~MSR_VSX;
165 #endif
166
167 if (oldmsr != newmsr)
168 mtmsr_isync(newmsr);
169 }
170 EXPORT_SYMBOL(__msr_check_and_clear);
171
172 #ifdef CONFIG_PPC_FPU
173 static void __giveup_fpu(struct task_struct *tsk)
174 {
175 unsigned long msr;
176
177 save_fpu(tsk);
178 msr = tsk->thread.regs->msr;
179 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
180 #ifdef CONFIG_VSX
181 if (cpu_has_feature(CPU_FTR_VSX))
182 msr &= ~MSR_VSX;
183 #endif
184 tsk->thread.regs->msr = msr;
185 }
186
187 void giveup_fpu(struct task_struct *tsk)
188 {
189 check_if_tm_restore_required(tsk);
190
191 msr_check_and_set(MSR_FP);
192 __giveup_fpu(tsk);
193 msr_check_and_clear(MSR_FP);
194 }
195 EXPORT_SYMBOL(giveup_fpu);
196
197 /*
198 * Make sure the floating-point register state in the
199 * the thread_struct is up to date for task tsk.
200 */
201 void flush_fp_to_thread(struct task_struct *tsk)
202 {
203 if (tsk->thread.regs) {
204 /*
205 * We need to disable preemption here because if we didn't,
206 * another process could get scheduled after the regs->msr
207 * test but before we have finished saving the FP registers
208 * to the thread_struct. That process could take over the
209 * FPU, and then when we get scheduled again we would store
210 * bogus values for the remaining FP registers.
211 */
212 preempt_disable();
213 if (tsk->thread.regs->msr & MSR_FP) {
214 /*
215 * This should only ever be called for current or
216 * for a stopped child process. Since we save away
217 * the FP register state on context switch,
218 * there is something wrong if a stopped child appears
219 * to still have its FP state in the CPU registers.
220 */
221 BUG_ON(tsk != current);
222 giveup_fpu(tsk);
223 }
224 preempt_enable();
225 }
226 }
227 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
228
229 void enable_kernel_fp(void)
230 {
231 unsigned long cpumsr;
232
233 WARN_ON(preemptible());
234
235 cpumsr = msr_check_and_set(MSR_FP);
236
237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238 check_if_tm_restore_required(current);
239 /*
240 * If a thread has already been reclaimed then the
241 * checkpointed registers are on the CPU but have definitely
242 * been saved by the reclaim code. Don't need to and *cannot*
243 * giveup as this would save to the 'live' structure not the
244 * checkpointed structure.
245 */
246 if (!MSR_TM_ACTIVE(cpumsr) &&
247 MSR_TM_ACTIVE(current->thread.regs->msr))
248 return;
249 __giveup_fpu(current);
250 }
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253
254 static int restore_fp(struct task_struct *tsk)
255 {
256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 load_fp_state(&current->thread.fp_state);
258 current->thread.load_fp++;
259 return 1;
260 }
261 return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272 unsigned long msr;
273
274 save_altivec(tsk);
275 msr = tsk->thread.regs->msr;
276 msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278 if (cpu_has_feature(CPU_FTR_VSX))
279 msr &= ~MSR_VSX;
280 #endif
281 tsk->thread.regs->msr = msr;
282 }
283
284 void giveup_altivec(struct task_struct *tsk)
285 {
286 check_if_tm_restore_required(tsk);
287
288 msr_check_and_set(MSR_VEC);
289 __giveup_altivec(tsk);
290 msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293
294 void enable_kernel_altivec(void)
295 {
296 unsigned long cpumsr;
297
298 WARN_ON(preemptible());
299
300 cpumsr = msr_check_and_set(MSR_VEC);
301
302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 check_if_tm_restore_required(current);
304 /*
305 * If a thread has already been reclaimed then the
306 * checkpointed registers are on the CPU but have definitely
307 * been saved by the reclaim code. Don't need to and *cannot*
308 * giveup as this would save to the 'live' structure not the
309 * checkpointed structure.
310 */
311 if (!MSR_TM_ACTIVE(cpumsr) &&
312 MSR_TM_ACTIVE(current->thread.regs->msr))
313 return;
314 __giveup_altivec(current);
315 }
316 }
317 EXPORT_SYMBOL(enable_kernel_altivec);
318
319 /*
320 * Make sure the VMX/Altivec register state in the
321 * the thread_struct is up to date for task tsk.
322 */
323 void flush_altivec_to_thread(struct task_struct *tsk)
324 {
325 if (tsk->thread.regs) {
326 preempt_disable();
327 if (tsk->thread.regs->msr & MSR_VEC) {
328 BUG_ON(tsk != current);
329 giveup_altivec(tsk);
330 }
331 preempt_enable();
332 }
333 }
334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
335
336 static int restore_altivec(struct task_struct *tsk)
337 {
338 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
340 load_vr_state(&tsk->thread.vr_state);
341 tsk->thread.used_vr = 1;
342 tsk->thread.load_vec++;
343
344 return 1;
345 }
346 return 0;
347 }
348 #else
349 #define loadvec(thr) 0
350 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
351 #endif /* CONFIG_ALTIVEC */
352
353 #ifdef CONFIG_VSX
354 static void __giveup_vsx(struct task_struct *tsk)
355 {
356 unsigned long msr = tsk->thread.regs->msr;
357
358 /*
359 * We should never be ssetting MSR_VSX without also setting
360 * MSR_FP and MSR_VEC
361 */
362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363
364 /* __giveup_fpu will clear MSR_VSX */
365 if (msr & MSR_FP)
366 __giveup_fpu(tsk);
367 if (msr & MSR_VEC)
368 __giveup_altivec(tsk);
369 }
370
371 static void giveup_vsx(struct task_struct *tsk)
372 {
373 check_if_tm_restore_required(tsk);
374
375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
376 __giveup_vsx(tsk);
377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
378 }
379
380 void enable_kernel_vsx(void)
381 {
382 unsigned long cpumsr;
383
384 WARN_ON(preemptible());
385
386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
387
388 if (current->thread.regs &&
389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
390 check_if_tm_restore_required(current);
391 /*
392 * If a thread has already been reclaimed then the
393 * checkpointed registers are on the CPU but have definitely
394 * been saved by the reclaim code. Don't need to and *cannot*
395 * giveup as this would save to the 'live' structure not the
396 * checkpointed structure.
397 */
398 if (!MSR_TM_ACTIVE(cpumsr) &&
399 MSR_TM_ACTIVE(current->thread.regs->msr))
400 return;
401 __giveup_vsx(current);
402 }
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408 if (tsk->thread.regs) {
409 preempt_disable();
410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 BUG_ON(tsk != current);
412 giveup_vsx(tsk);
413 }
414 preempt_enable();
415 }
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418
419 static int restore_vsx(struct task_struct *tsk)
420 {
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
424 }
425
426 return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435 check_if_tm_restore_required(tsk);
436
437 msr_check_and_set(MSR_SPE);
438 __giveup_spe(tsk);
439 msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442
443 void enable_kernel_spe(void)
444 {
445 WARN_ON(preemptible());
446
447 msr_check_and_set(MSR_SPE);
448
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
451 __giveup_spe(current);
452 }
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
461 BUG_ON(tsk != current);
462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 giveup_spe(tsk);
464 }
465 preempt_enable();
466 }
467 }
468 #endif /* CONFIG_SPE */
469
470 static unsigned long msr_all_available;
471
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488 #endif
489
490 return 0;
491 }
492 early_initcall(init_msr_all_available);
493
494 void giveup_all(struct task_struct *tsk)
495 {
496 unsigned long usermsr;
497
498 if (!tsk->thread.regs)
499 return;
500
501 usermsr = tsk->thread.regs->msr;
502
503 if ((usermsr & msr_all_available) == 0)
504 return;
505
506 msr_check_and_set(msr_all_available);
507 check_if_tm_restore_required(tsk);
508
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
511 #ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522 #endif
523
524 msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527
528 void restore_math(struct pt_regs *regs)
529 {
530 unsigned long msr;
531
532 if (!MSR_TM_ACTIVE(regs->msr) &&
533 !current->thread.load_fp && !loadvec(current->thread))
534 return;
535
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
538
539 /*
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
542 */
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
545
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
548
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
552 }
553
554 msr_check_and_clear(msr_all_available);
555
556 regs->msr = msr;
557 }
558
559 static void save_all(struct task_struct *tsk)
560 {
561 unsigned long usermsr;
562
563 if (!tsk->thread.regs)
564 return;
565
566 usermsr = tsk->thread.regs->msr;
567
568 if ((usermsr & msr_all_available) == 0)
569 return;
570
571 msr_check_and_set(msr_all_available);
572
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
577
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
580
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
583
584 msr_check_and_clear(msr_all_available);
585 thread_pkey_regs_save(&tsk->thread);
586 }
587
588 void flush_all_to_thread(struct task_struct *tsk)
589 {
590 if (tsk->thread.regs) {
591 preempt_disable();
592 BUG_ON(tsk != current);
593 #ifdef CONFIG_SPE
594 if (tsk->thread.regs->msr & MSR_SPE)
595 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
596 #endif
597 save_all(tsk);
598
599 preempt_enable();
600 }
601 }
602 EXPORT_SYMBOL(flush_all_to_thread);
603
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606 unsigned long error_code, int breakpt)
607 {
608 current->thread.trap_nr = TRAP_HWBKPT;
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 (void __user *)address);
616 }
617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619 unsigned long error_code)
620 {
621 current->thread.trap_nr = TRAP_HWBKPT;
622 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 11, SIGSEGV) == NOTIFY_STOP)
624 return;
625
626 if (debugger_break_match(regs))
627 return;
628
629 /* Clear the breakpoint */
630 hw_breakpoint_disable();
631
632 /* Deliver the signal to userspace */
633 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
634 }
635 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
636
637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
638
639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
640 /*
641 * Set the debug registers back to their default "safe" values.
642 */
643 static void set_debug_reg_defaults(struct thread_struct *thread)
644 {
645 thread->debug.iac1 = thread->debug.iac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
647 thread->debug.iac3 = thread->debug.iac4 = 0;
648 #endif
649 thread->debug.dac1 = thread->debug.dac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651 thread->debug.dvc1 = thread->debug.dvc2 = 0;
652 #endif
653 thread->debug.dbcr0 = 0;
654 #ifdef CONFIG_BOOKE
655 /*
656 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657 */
658 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659 DBCR1_IAC3US | DBCR1_IAC4US;
660 /*
661 * Force Data Address Compare User/Supervisor bits to be User-only
662 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663 */
664 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665 #else
666 thread->debug.dbcr1 = 0;
667 #endif
668 }
669
670 static void prime_debug_regs(struct debug_reg *debug)
671 {
672 /*
673 * We could have inherited MSR_DE from userspace, since
674 * it doesn't get cleared on exception entry. Make sure
675 * MSR_DE is clear before we enable any debug events.
676 */
677 mtmsr(mfmsr() & ~MSR_DE);
678
679 mtspr(SPRN_IAC1, debug->iac1);
680 mtspr(SPRN_IAC2, debug->iac2);
681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
682 mtspr(SPRN_IAC3, debug->iac3);
683 mtspr(SPRN_IAC4, debug->iac4);
684 #endif
685 mtspr(SPRN_DAC1, debug->dac1);
686 mtspr(SPRN_DAC2, debug->dac2);
687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688 mtspr(SPRN_DVC1, debug->dvc1);
689 mtspr(SPRN_DVC2, debug->dvc2);
690 #endif
691 mtspr(SPRN_DBCR0, debug->dbcr0);
692 mtspr(SPRN_DBCR1, debug->dbcr1);
693 #ifdef CONFIG_BOOKE
694 mtspr(SPRN_DBCR2, debug->dbcr2);
695 #endif
696 }
697 /*
698 * Unless neither the old or new thread are making use of the
699 * debug registers, set the debug registers from the values
700 * stored in the new thread.
701 */
702 void switch_booke_debug_regs(struct debug_reg *new_debug)
703 {
704 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705 || (new_debug->dbcr0 & DBCR0_IDM))
706 prime_debug_regs(new_debug);
707 }
708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711 static void set_breakpoint(struct arch_hw_breakpoint *brk)
712 {
713 preempt_disable();
714 __set_breakpoint(brk);
715 preempt_enable();
716 }
717
718 static void set_debug_reg_defaults(struct thread_struct *thread)
719 {
720 thread->hw_brk.address = 0;
721 thread->hw_brk.type = 0;
722 if (ppc_breakpoint_available())
723 set_breakpoint(&thread->hw_brk);
724 }
725 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
726 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
727
728 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731 mtspr(SPRN_DAC1, dabr);
732 #ifdef CONFIG_PPC_47x
733 isync();
734 #endif
735 return 0;
736 }
737 #elif defined(CONFIG_PPC_BOOK3S)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 mtspr(SPRN_DABR, dabr);
741 if (cpu_has_feature(CPU_FTR_DABRX))
742 mtspr(SPRN_DABRX, dabrx);
743 return 0;
744 }
745 #elif defined(CONFIG_PPC_8xx)
746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747 {
748 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
749 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
750 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
751
752 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
753 lctrl1 |= 0xa0000;
754 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
755 lctrl1 |= 0xf0000;
756 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
757 lctrl2 = 0;
758
759 mtspr(SPRN_LCTRL2, 0);
760 mtspr(SPRN_CMPE, addr);
761 mtspr(SPRN_CMPF, addr + 4);
762 mtspr(SPRN_LCTRL1, lctrl1);
763 mtspr(SPRN_LCTRL2, lctrl2);
764
765 return 0;
766 }
767 #else
768 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
769 {
770 return -EINVAL;
771 }
772 #endif
773
774 static inline int set_dabr(struct arch_hw_breakpoint *brk)
775 {
776 unsigned long dabr, dabrx;
777
778 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
779 dabrx = ((brk->type >> 3) & 0x7);
780
781 if (ppc_md.set_dabr)
782 return ppc_md.set_dabr(dabr, dabrx);
783
784 return __set_dabr(dabr, dabrx);
785 }
786
787 static inline int set_dawr(struct arch_hw_breakpoint *brk)
788 {
789 unsigned long dawr, dawrx, mrd;
790
791 dawr = brk->address;
792
793 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
794 << (63 - 58); //* read/write bits */
795 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
796 << (63 - 59); //* translate */
797 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
798 >> 3; //* PRIM bits */
799 /* dawr length is stored in field MDR bits 48:53. Matches range in
800 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
801 0b111111=64DW.
802 brk->len is in bytes.
803 This aligns up to double word size, shifts and does the bias.
804 */
805 mrd = ((brk->len + 7) >> 3) - 1;
806 dawrx |= (mrd & 0x3f) << (63 - 53);
807
808 if (ppc_md.set_dawr)
809 return ppc_md.set_dawr(dawr, dawrx);
810 mtspr(SPRN_DAWR, dawr);
811 mtspr(SPRN_DAWRX, dawrx);
812 return 0;
813 }
814
815 void __set_breakpoint(struct arch_hw_breakpoint *brk)
816 {
817 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
818
819 if (cpu_has_feature(CPU_FTR_DAWR))
820 // Power8 or later
821 set_dawr(brk);
822 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
823 // Power7 or earlier
824 set_dabr(brk);
825 else
826 // Shouldn't happen due to higher level checks
827 WARN_ON_ONCE(1);
828 }
829
830 /* Check if we have DAWR or DABR hardware */
831 bool ppc_breakpoint_available(void)
832 {
833 if (cpu_has_feature(CPU_FTR_DAWR))
834 return true; /* POWER8 DAWR */
835 if (cpu_has_feature(CPU_FTR_ARCH_207S))
836 return false; /* POWER9 with DAWR disabled */
837 /* DABR: Everything but POWER8 and POWER9 */
838 return true;
839 }
840 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
841
842 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
843 struct arch_hw_breakpoint *b)
844 {
845 if (a->address != b->address)
846 return false;
847 if (a->type != b->type)
848 return false;
849 if (a->len != b->len)
850 return false;
851 return true;
852 }
853
854 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
855
856 static inline bool tm_enabled(struct task_struct *tsk)
857 {
858 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
859 }
860
861 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
862 {
863 /*
864 * Use the current MSR TM suspended bit to track if we have
865 * checkpointed state outstanding.
866 * On signal delivery, we'd normally reclaim the checkpointed
867 * state to obtain stack pointer (see:get_tm_stackpointer()).
868 * This will then directly return to userspace without going
869 * through __switch_to(). However, if the stack frame is bad,
870 * we need to exit this thread which calls __switch_to() which
871 * will again attempt to reclaim the already saved tm state.
872 * Hence we need to check that we've not already reclaimed
873 * this state.
874 * We do this using the current MSR, rather tracking it in
875 * some specific thread_struct bit, as it has the additional
876 * benefit of checking for a potential TM bad thing exception.
877 */
878 if (!MSR_TM_SUSPENDED(mfmsr()))
879 return;
880
881 giveup_all(container_of(thr, struct task_struct, thread));
882
883 tm_reclaim(thr, cause);
884
885 /*
886 * If we are in a transaction and FP is off then we can't have
887 * used FP inside that transaction. Hence the checkpointed
888 * state is the same as the live state. We need to copy the
889 * live state to the checkpointed state so that when the
890 * transaction is restored, the checkpointed state is correct
891 * and the aborted transaction sees the correct state. We use
892 * ckpt_regs.msr here as that's what tm_reclaim will use to
893 * determine if it's going to write the checkpointed state or
894 * not. So either this will write the checkpointed registers,
895 * or reclaim will. Similarly for VMX.
896 */
897 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
898 memcpy(&thr->ckfp_state, &thr->fp_state,
899 sizeof(struct thread_fp_state));
900 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
901 memcpy(&thr->ckvr_state, &thr->vr_state,
902 sizeof(struct thread_vr_state));
903 }
904
905 void tm_reclaim_current(uint8_t cause)
906 {
907 tm_enable();
908 tm_reclaim_thread(&current->thread, cause);
909 }
910
911 static inline void tm_reclaim_task(struct task_struct *tsk)
912 {
913 /* We have to work out if we're switching from/to a task that's in the
914 * middle of a transaction.
915 *
916 * In switching we need to maintain a 2nd register state as
917 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
918 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
919 * ckvr_state
920 *
921 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
922 */
923 struct thread_struct *thr = &tsk->thread;
924
925 if (!thr->regs)
926 return;
927
928 if (!MSR_TM_ACTIVE(thr->regs->msr))
929 goto out_and_saveregs;
930
931 WARN_ON(tm_suspend_disabled);
932
933 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
934 "ccr=%lx, msr=%lx, trap=%lx)\n",
935 tsk->pid, thr->regs->nip,
936 thr->regs->ccr, thr->regs->msr,
937 thr->regs->trap);
938
939 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
940
941 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
942 tsk->pid);
943
944 out_and_saveregs:
945 /* Always save the regs here, even if a transaction's not active.
946 * This context-switches a thread's TM info SPRs. We do it here to
947 * be consistent with the restore path (in recheckpoint) which
948 * cannot happen later in _switch().
949 */
950 tm_save_sprs(thr);
951 }
952
953 extern void __tm_recheckpoint(struct thread_struct *thread);
954
955 void tm_recheckpoint(struct thread_struct *thread)
956 {
957 unsigned long flags;
958
959 if (!(thread->regs->msr & MSR_TM))
960 return;
961
962 /* We really can't be interrupted here as the TEXASR registers can't
963 * change and later in the trecheckpoint code, we have a userspace R1.
964 * So let's hard disable over this region.
965 */
966 local_irq_save(flags);
967 hard_irq_disable();
968
969 /* The TM SPRs are restored here, so that TEXASR.FS can be set
970 * before the trecheckpoint and no explosion occurs.
971 */
972 tm_restore_sprs(thread);
973
974 __tm_recheckpoint(thread);
975
976 local_irq_restore(flags);
977 }
978
979 static inline void tm_recheckpoint_new_task(struct task_struct *new)
980 {
981 if (!cpu_has_feature(CPU_FTR_TM))
982 return;
983
984 /* Recheckpoint the registers of the thread we're about to switch to.
985 *
986 * If the task was using FP, we non-lazily reload both the original and
987 * the speculative FP register states. This is because the kernel
988 * doesn't see if/when a TM rollback occurs, so if we take an FP
989 * unavailable later, we are unable to determine which set of FP regs
990 * need to be restored.
991 */
992 if (!tm_enabled(new))
993 return;
994
995 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
996 tm_restore_sprs(&new->thread);
997 return;
998 }
999 /* Recheckpoint to restore original checkpointed register state. */
1000 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1001 new->pid, new->thread.regs->msr);
1002
1003 tm_recheckpoint(&new->thread);
1004
1005 /*
1006 * The checkpointed state has been restored but the live state has
1007 * not, ensure all the math functionality is turned off to trigger
1008 * restore_math() to reload.
1009 */
1010 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1011
1012 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1013 "(kernel msr 0x%lx)\n",
1014 new->pid, mfmsr());
1015 }
1016
1017 static inline void __switch_to_tm(struct task_struct *prev,
1018 struct task_struct *new)
1019 {
1020 if (cpu_has_feature(CPU_FTR_TM)) {
1021 if (tm_enabled(prev) || tm_enabled(new))
1022 tm_enable();
1023
1024 if (tm_enabled(prev)) {
1025 prev->thread.load_tm++;
1026 tm_reclaim_task(prev);
1027 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1028 prev->thread.regs->msr &= ~MSR_TM;
1029 }
1030
1031 tm_recheckpoint_new_task(new);
1032 }
1033 }
1034
1035 /*
1036 * This is called if we are on the way out to userspace and the
1037 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1038 * FP and/or vector state and does so if necessary.
1039 * If userspace is inside a transaction (whether active or
1040 * suspended) and FP/VMX/VSX instructions have ever been enabled
1041 * inside that transaction, then we have to keep them enabled
1042 * and keep the FP/VMX/VSX state loaded while ever the transaction
1043 * continues. The reason is that if we didn't, and subsequently
1044 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1045 * we don't know whether it's the same transaction, and thus we
1046 * don't know which of the checkpointed state and the transactional
1047 * state to use.
1048 */
1049 void restore_tm_state(struct pt_regs *regs)
1050 {
1051 unsigned long msr_diff;
1052
1053 /*
1054 * This is the only moment we should clear TIF_RESTORE_TM as
1055 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1056 * again, anything else could lead to an incorrect ckpt_msr being
1057 * saved and therefore incorrect signal contexts.
1058 */
1059 clear_thread_flag(TIF_RESTORE_TM);
1060 if (!MSR_TM_ACTIVE(regs->msr))
1061 return;
1062
1063 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1064 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1065
1066 /* Ensure that restore_math() will restore */
1067 if (msr_diff & MSR_FP)
1068 current->thread.load_fp = 1;
1069 #ifdef CONFIG_ALTIVEC
1070 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1071 current->thread.load_vec = 1;
1072 #endif
1073 restore_math(regs);
1074
1075 regs->msr |= msr_diff;
1076 }
1077
1078 #else
1079 #define tm_recheckpoint_new_task(new)
1080 #define __switch_to_tm(prev, new)
1081 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1082
1083 static inline void save_sprs(struct thread_struct *t)
1084 {
1085 #ifdef CONFIG_ALTIVEC
1086 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1087 t->vrsave = mfspr(SPRN_VRSAVE);
1088 #endif
1089 #ifdef CONFIG_PPC_BOOK3S_64
1090 if (cpu_has_feature(CPU_FTR_DSCR))
1091 t->dscr = mfspr(SPRN_DSCR);
1092
1093 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1094 t->bescr = mfspr(SPRN_BESCR);
1095 t->ebbhr = mfspr(SPRN_EBBHR);
1096 t->ebbrr = mfspr(SPRN_EBBRR);
1097
1098 t->fscr = mfspr(SPRN_FSCR);
1099
1100 /*
1101 * Note that the TAR is not available for use in the kernel.
1102 * (To provide this, the TAR should be backed up/restored on
1103 * exception entry/exit instead, and be in pt_regs. FIXME,
1104 * this should be in pt_regs anyway (for debug).)
1105 */
1106 t->tar = mfspr(SPRN_TAR);
1107 }
1108 #endif
1109
1110 thread_pkey_regs_save(t);
1111 }
1112
1113 static inline void restore_sprs(struct thread_struct *old_thread,
1114 struct thread_struct *new_thread)
1115 {
1116 #ifdef CONFIG_ALTIVEC
1117 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1118 old_thread->vrsave != new_thread->vrsave)
1119 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1120 #endif
1121 #ifdef CONFIG_PPC_BOOK3S_64
1122 if (cpu_has_feature(CPU_FTR_DSCR)) {
1123 u64 dscr = get_paca()->dscr_default;
1124 if (new_thread->dscr_inherit)
1125 dscr = new_thread->dscr;
1126
1127 if (old_thread->dscr != dscr)
1128 mtspr(SPRN_DSCR, dscr);
1129 }
1130
1131 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1132 if (old_thread->bescr != new_thread->bescr)
1133 mtspr(SPRN_BESCR, new_thread->bescr);
1134 if (old_thread->ebbhr != new_thread->ebbhr)
1135 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1136 if (old_thread->ebbrr != new_thread->ebbrr)
1137 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1138
1139 if (old_thread->fscr != new_thread->fscr)
1140 mtspr(SPRN_FSCR, new_thread->fscr);
1141
1142 if (old_thread->tar != new_thread->tar)
1143 mtspr(SPRN_TAR, new_thread->tar);
1144 }
1145
1146 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1147 old_thread->tidr != new_thread->tidr)
1148 mtspr(SPRN_TIDR, new_thread->tidr);
1149 #endif
1150
1151 thread_pkey_regs_restore(new_thread, old_thread);
1152 }
1153
1154 #ifdef CONFIG_PPC_BOOK3S_64
1155 #define CP_SIZE 128
1156 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1157 #endif
1158
1159 struct task_struct *__switch_to(struct task_struct *prev,
1160 struct task_struct *new)
1161 {
1162 struct thread_struct *new_thread, *old_thread;
1163 struct task_struct *last;
1164 #ifdef CONFIG_PPC_BOOK3S_64
1165 struct ppc64_tlb_batch *batch;
1166 #endif
1167
1168 new_thread = &new->thread;
1169 old_thread = &current->thread;
1170
1171 WARN_ON(!irqs_disabled());
1172
1173 #ifdef CONFIG_PPC_BOOK3S_64
1174 batch = this_cpu_ptr(&ppc64_tlb_batch);
1175 if (batch->active) {
1176 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177 if (batch->index)
1178 __flush_tlb_pending(batch);
1179 batch->active = 0;
1180 }
1181 #endif /* CONFIG_PPC_BOOK3S_64 */
1182
1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184 switch_booke_debug_regs(&new->thread.debug);
1185 #else
1186 /*
1187 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188 * schedule DABR
1189 */
1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1191 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192 __set_breakpoint(&new->thread.hw_brk);
1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194 #endif
1195
1196 /*
1197 * We need to save SPRs before treclaim/trecheckpoint as these will
1198 * change a number of them.
1199 */
1200 save_sprs(&prev->thread);
1201
1202 /* Save FPU, Altivec, VSX and SPE state */
1203 giveup_all(prev);
1204
1205 __switch_to_tm(prev, new);
1206
1207 if (!radix_enabled()) {
1208 /*
1209 * We can't take a PMU exception inside _switch() since there
1210 * is a window where the kernel stack SLB and the kernel stack
1211 * are out of sync. Hard disable here.
1212 */
1213 hard_irq_disable();
1214 }
1215
1216 /*
1217 * Call restore_sprs() before calling _switch(). If we move it after
1218 * _switch() then we miss out on calling it for new tasks. The reason
1219 * for this is we manually create a stack frame for new tasks that
1220 * directly returns through ret_from_fork() or
1221 * ret_from_kernel_thread(). See copy_thread() for details.
1222 */
1223 restore_sprs(old_thread, new_thread);
1224
1225 last = _switch(old_thread, new_thread);
1226
1227 #ifdef CONFIG_PPC_BOOK3S_64
1228 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230 batch = this_cpu_ptr(&ppc64_tlb_batch);
1231 batch->active = 1;
1232 }
1233
1234 if (current->thread.regs) {
1235 restore_math(current->thread.regs);
1236
1237 /*
1238 * The copy-paste buffer can only store into foreign real
1239 * addresses, so unprivileged processes can not see the
1240 * data or use it in any way unless they have foreign real
1241 * mappings. If the new process has the foreign real address
1242 * mappings, we must issue a cp_abort to clear any state and
1243 * prevent snooping, corruption or a covert channel.
1244 */
1245 if (current->thread.used_vas)
1246 asm volatile(PPC_CP_ABORT);
1247 }
1248 #endif /* CONFIG_PPC_BOOK3S_64 */
1249
1250 return last;
1251 }
1252
1253 #define NR_INSN_TO_PRINT 16
1254
1255 static void show_instructions(struct pt_regs *regs)
1256 {
1257 int i;
1258 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1259
1260 printk("Instruction dump:");
1261
1262 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1263 int instr;
1264
1265 if (!(i % 8))
1266 pr_cont("\n");
1267
1268 #if !defined(CONFIG_BOOKE)
1269 /* If executing with the IMMU off, adjust pc rather
1270 * than print XXXXXXXX.
1271 */
1272 if (!(regs->msr & MSR_IR))
1273 pc = (unsigned long)phys_to_virt(pc);
1274 #endif
1275
1276 if (!__kernel_text_address(pc) ||
1277 probe_kernel_address((const void *)pc, instr)) {
1278 pr_cont("XXXXXXXX ");
1279 } else {
1280 if (regs->nip == pc)
1281 pr_cont("<%08x> ", instr);
1282 else
1283 pr_cont("%08x ", instr);
1284 }
1285
1286 pc += sizeof(int);
1287 }
1288
1289 pr_cont("\n");
1290 }
1291
1292 void show_user_instructions(struct pt_regs *regs)
1293 {
1294 unsigned long pc;
1295 int n = NR_INSN_TO_PRINT;
1296 struct seq_buf s;
1297 char buf[96]; /* enough for 8 times 9 + 2 chars */
1298
1299 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300
1301 /*
1302 * Make sure the NIP points at userspace, not kernel text/data or
1303 * elsewhere.
1304 */
1305 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1306 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1307 current->comm, current->pid);
1308 return;
1309 }
1310
1311 seq_buf_init(&s, buf, sizeof(buf));
1312
1313 while (n) {
1314 int i;
1315
1316 seq_buf_clear(&s);
1317
1318 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1319 int instr;
1320
1321 if (probe_kernel_address((const void *)pc, instr)) {
1322 seq_buf_printf(&s, "XXXXXXXX ");
1323 continue;
1324 }
1325 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1326 }
1327
1328 if (!seq_buf_has_overflowed(&s))
1329 pr_info("%s[%d]: code: %s\n", current->comm,
1330 current->pid, s.buffer);
1331 }
1332 }
1333
1334 struct regbit {
1335 unsigned long bit;
1336 const char *name;
1337 };
1338
1339 static struct regbit msr_bits[] = {
1340 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1341 {MSR_SF, "SF"},
1342 {MSR_HV, "HV"},
1343 #endif
1344 {MSR_VEC, "VEC"},
1345 {MSR_VSX, "VSX"},
1346 #ifdef CONFIG_BOOKE
1347 {MSR_CE, "CE"},
1348 #endif
1349 {MSR_EE, "EE"},
1350 {MSR_PR, "PR"},
1351 {MSR_FP, "FP"},
1352 {MSR_ME, "ME"},
1353 #ifdef CONFIG_BOOKE
1354 {MSR_DE, "DE"},
1355 #else
1356 {MSR_SE, "SE"},
1357 {MSR_BE, "BE"},
1358 #endif
1359 {MSR_IR, "IR"},
1360 {MSR_DR, "DR"},
1361 {MSR_PMM, "PMM"},
1362 #ifndef CONFIG_BOOKE
1363 {MSR_RI, "RI"},
1364 {MSR_LE, "LE"},
1365 #endif
1366 {0, NULL}
1367 };
1368
1369 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1370 {
1371 const char *s = "";
1372
1373 for (; bits->bit; ++bits)
1374 if (val & bits->bit) {
1375 pr_cont("%s%s", s, bits->name);
1376 s = sep;
1377 }
1378 }
1379
1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381 static struct regbit msr_tm_bits[] = {
1382 {MSR_TS_T, "T"},
1383 {MSR_TS_S, "S"},
1384 {MSR_TM, "E"},
1385 {0, NULL}
1386 };
1387
1388 static void print_tm_bits(unsigned long val)
1389 {
1390 /*
1391 * This only prints something if at least one of the TM bit is set.
1392 * Inside the TM[], the output means:
1393 * E: Enabled (bit 32)
1394 * S: Suspended (bit 33)
1395 * T: Transactional (bit 34)
1396 */
1397 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1398 pr_cont(",TM[");
1399 print_bits(val, msr_tm_bits, "");
1400 pr_cont("]");
1401 }
1402 }
1403 #else
1404 static void print_tm_bits(unsigned long val) {}
1405 #endif
1406
1407 static void print_msr_bits(unsigned long val)
1408 {
1409 pr_cont("<");
1410 print_bits(val, msr_bits, ",");
1411 print_tm_bits(val);
1412 pr_cont(">");
1413 }
1414
1415 #ifdef CONFIG_PPC64
1416 #define REG "%016lx"
1417 #define REGS_PER_LINE 4
1418 #define LAST_VOLATILE 13
1419 #else
1420 #define REG "%08lx"
1421 #define REGS_PER_LINE 8
1422 #define LAST_VOLATILE 12
1423 #endif
1424
1425 void show_regs(struct pt_regs * regs)
1426 {
1427 int i, trap;
1428
1429 show_regs_print_info(KERN_DEFAULT);
1430
1431 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1432 regs->nip, regs->link, regs->ctr);
1433 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1434 regs, regs->trap, print_tainted(), init_utsname()->release);
1435 printk("MSR: "REG" ", regs->msr);
1436 print_msr_bits(regs->msr);
1437 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1438 trap = TRAP(regs);
1439 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1440 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1441 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1442 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1443 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1444 #else
1445 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1446 #endif
1447 #ifdef CONFIG_PPC64
1448 pr_cont("IRQMASK: %lx ", regs->softe);
1449 #endif
1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451 if (MSR_TM_ACTIVE(regs->msr))
1452 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1453 #endif
1454
1455 for (i = 0; i < 32; i++) {
1456 if ((i % REGS_PER_LINE) == 0)
1457 pr_cont("\nGPR%02d: ", i);
1458 pr_cont(REG " ", regs->gpr[i]);
1459 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1460 break;
1461 }
1462 pr_cont("\n");
1463 #ifdef CONFIG_KALLSYMS
1464 /*
1465 * Lookup NIP late so we have the best change of getting the
1466 * above info out without failing
1467 */
1468 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1469 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1470 #endif
1471 show_stack(current, (unsigned long *) regs->gpr[1]);
1472 if (!user_mode(regs))
1473 show_instructions(regs);
1474 }
1475
1476 void flush_thread(void)
1477 {
1478 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1479 flush_ptrace_hw_breakpoint(current);
1480 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1481 set_debug_reg_defaults(&current->thread);
1482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1483 }
1484
1485 #ifdef CONFIG_PPC_BOOK3S_64
1486 void arch_setup_new_exec(void)
1487 {
1488 if (radix_enabled())
1489 return;
1490 hash__setup_new_exec();
1491 }
1492 #endif
1493
1494 int set_thread_uses_vas(void)
1495 {
1496 #ifdef CONFIG_PPC_BOOK3S_64
1497 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1498 return -EINVAL;
1499
1500 current->thread.used_vas = 1;
1501
1502 /*
1503 * Even a process that has no foreign real address mapping can use
1504 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1505 * to clear any pending COPY and prevent a covert channel.
1506 *
1507 * __switch_to() will issue CP_ABORT on future context switches.
1508 */
1509 asm volatile(PPC_CP_ABORT);
1510
1511 #endif /* CONFIG_PPC_BOOK3S_64 */
1512 return 0;
1513 }
1514
1515 #ifdef CONFIG_PPC64
1516 /**
1517 * Assign a TIDR (thread ID) for task @t and set it in the thread
1518 * structure. For now, we only support setting TIDR for 'current' task.
1519 *
1520 * Since the TID value is a truncated form of it PID, it is possible
1521 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1522 * that 2 threads share the same TID and are waiting, one of the following
1523 * cases will happen:
1524 *
1525 * 1. The correct thread is running, the wrong thread is not
1526 * In this situation, the correct thread is woken and proceeds to pass it's
1527 * condition check.
1528 *
1529 * 2. Neither threads are running
1530 * In this situation, neither thread will be woken. When scheduled, the waiting
1531 * threads will execute either a wait, which will return immediately, followed
1532 * by a condition check, which will pass for the correct thread and fail
1533 * for the wrong thread, or they will execute the condition check immediately.
1534 *
1535 * 3. The wrong thread is running, the correct thread is not
1536 * The wrong thread will be woken, but will fail it's condition check and
1537 * re-execute wait. The correct thread, when scheduled, will execute either
1538 * it's condition check (which will pass), or wait, which returns immediately
1539 * when called the first time after the thread is scheduled, followed by it's
1540 * condition check (which will pass).
1541 *
1542 * 4. Both threads are running
1543 * Both threads will be woken. The wrong thread will fail it's condition check
1544 * and execute another wait, while the correct thread will pass it's condition
1545 * check.
1546 *
1547 * @t: the task to set the thread ID for
1548 */
1549 int set_thread_tidr(struct task_struct *t)
1550 {
1551 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1552 return -EINVAL;
1553
1554 if (t != current)
1555 return -EINVAL;
1556
1557 if (t->thread.tidr)
1558 return 0;
1559
1560 t->thread.tidr = (u16)task_pid_nr(t);
1561 mtspr(SPRN_TIDR, t->thread.tidr);
1562
1563 return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(set_thread_tidr);
1566
1567 #endif /* CONFIG_PPC64 */
1568
1569 void
1570 release_thread(struct task_struct *t)
1571 {
1572 }
1573
1574 /*
1575 * this gets called so that we can store coprocessor state into memory and
1576 * copy the current task into the new thread.
1577 */
1578 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1579 {
1580 flush_all_to_thread(src);
1581 /*
1582 * Flush TM state out so we can copy it. __switch_to_tm() does this
1583 * flush but it removes the checkpointed state from the current CPU and
1584 * transitions the CPU out of TM mode. Hence we need to call
1585 * tm_recheckpoint_new_task() (on the same task) to restore the
1586 * checkpointed state back and the TM mode.
1587 *
1588 * Can't pass dst because it isn't ready. Doesn't matter, passing
1589 * dst is only important for __switch_to()
1590 */
1591 __switch_to_tm(src, src);
1592
1593 *dst = *src;
1594
1595 clear_task_ebb(dst);
1596
1597 return 0;
1598 }
1599
1600 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1601 {
1602 #ifdef CONFIG_PPC_BOOK3S_64
1603 unsigned long sp_vsid;
1604 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1605
1606 if (radix_enabled())
1607 return;
1608
1609 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1610 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1611 << SLB_VSID_SHIFT_1T;
1612 else
1613 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1614 << SLB_VSID_SHIFT;
1615 sp_vsid |= SLB_VSID_KERNEL | llp;
1616 p->thread.ksp_vsid = sp_vsid;
1617 #endif
1618 }
1619
1620 /*
1621 * Copy a thread..
1622 */
1623
1624 /*
1625 * Copy architecture-specific thread state
1626 */
1627 int copy_thread(unsigned long clone_flags, unsigned long usp,
1628 unsigned long kthread_arg, struct task_struct *p)
1629 {
1630 struct pt_regs *childregs, *kregs;
1631 extern void ret_from_fork(void);
1632 extern void ret_from_kernel_thread(void);
1633 void (*f)(void);
1634 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1635 struct thread_info *ti = task_thread_info(p);
1636
1637 klp_init_thread_info(p);
1638
1639 /* Copy registers */
1640 sp -= sizeof(struct pt_regs);
1641 childregs = (struct pt_regs *) sp;
1642 if (unlikely(p->flags & PF_KTHREAD)) {
1643 /* kernel thread */
1644 memset(childregs, 0, sizeof(struct pt_regs));
1645 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1646 /* function */
1647 if (usp)
1648 childregs->gpr[14] = ppc_function_entry((void *)usp);
1649 #ifdef CONFIG_PPC64
1650 clear_tsk_thread_flag(p, TIF_32BIT);
1651 childregs->softe = IRQS_ENABLED;
1652 #endif
1653 childregs->gpr[15] = kthread_arg;
1654 p->thread.regs = NULL; /* no user register state */
1655 ti->flags |= _TIF_RESTOREALL;
1656 f = ret_from_kernel_thread;
1657 } else {
1658 /* user thread */
1659 struct pt_regs *regs = current_pt_regs();
1660 CHECK_FULL_REGS(regs);
1661 *childregs = *regs;
1662 if (usp)
1663 childregs->gpr[1] = usp;
1664 p->thread.regs = childregs;
1665 childregs->gpr[3] = 0; /* Result from fork() */
1666 if (clone_flags & CLONE_SETTLS) {
1667 #ifdef CONFIG_PPC64
1668 if (!is_32bit_task())
1669 childregs->gpr[13] = childregs->gpr[6];
1670 else
1671 #endif
1672 childregs->gpr[2] = childregs->gpr[6];
1673 }
1674
1675 f = ret_from_fork;
1676 }
1677 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1678 sp -= STACK_FRAME_OVERHEAD;
1679
1680 /*
1681 * The way this works is that at some point in the future
1682 * some task will call _switch to switch to the new task.
1683 * That will pop off the stack frame created below and start
1684 * the new task running at ret_from_fork. The new task will
1685 * do some house keeping and then return from the fork or clone
1686 * system call, using the stack frame created above.
1687 */
1688 ((unsigned long *)sp)[0] = 0;
1689 sp -= sizeof(struct pt_regs);
1690 kregs = (struct pt_regs *) sp;
1691 sp -= STACK_FRAME_OVERHEAD;
1692 p->thread.ksp = sp;
1693 #ifdef CONFIG_PPC32
1694 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1695 #endif
1696 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1697 p->thread.ptrace_bps[0] = NULL;
1698 #endif
1699
1700 p->thread.fp_save_area = NULL;
1701 #ifdef CONFIG_ALTIVEC
1702 p->thread.vr_save_area = NULL;
1703 #endif
1704
1705 setup_ksp_vsid(p, sp);
1706
1707 #ifdef CONFIG_PPC64
1708 if (cpu_has_feature(CPU_FTR_DSCR)) {
1709 p->thread.dscr_inherit = current->thread.dscr_inherit;
1710 p->thread.dscr = mfspr(SPRN_DSCR);
1711 }
1712 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1713 childregs->ppr = DEFAULT_PPR;
1714
1715 p->thread.tidr = 0;
1716 #endif
1717 kregs->nip = ppc_function_entry(f);
1718 return 0;
1719 }
1720
1721 void preload_new_slb_context(unsigned long start, unsigned long sp);
1722
1723 /*
1724 * Set up a thread for executing a new program
1725 */
1726 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1727 {
1728 #ifdef CONFIG_PPC64
1729 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1730
1731 #ifdef CONFIG_PPC_BOOK3S_64
1732 preload_new_slb_context(start, sp);
1733 #endif
1734 #endif
1735
1736 /*
1737 * If we exec out of a kernel thread then thread.regs will not be
1738 * set. Do it now.
1739 */
1740 if (!current->thread.regs) {
1741 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1742 current->thread.regs = regs - 1;
1743 }
1744
1745 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1746 /*
1747 * Clear any transactional state, we're exec()ing. The cause is
1748 * not important as there will never be a recheckpoint so it's not
1749 * user visible.
1750 */
1751 if (MSR_TM_SUSPENDED(mfmsr()))
1752 tm_reclaim_current(0);
1753 #endif
1754
1755 memset(regs->gpr, 0, sizeof(regs->gpr));
1756 regs->ctr = 0;
1757 regs->link = 0;
1758 regs->xer = 0;
1759 regs->ccr = 0;
1760 regs->gpr[1] = sp;
1761
1762 /*
1763 * We have just cleared all the nonvolatile GPRs, so make
1764 * FULL_REGS(regs) return true. This is necessary to allow
1765 * ptrace to examine the thread immediately after exec.
1766 */
1767 regs->trap &= ~1UL;
1768
1769 #ifdef CONFIG_PPC32
1770 regs->mq = 0;
1771 regs->nip = start;
1772 regs->msr = MSR_USER;
1773 #else
1774 if (!is_32bit_task()) {
1775 unsigned long entry;
1776
1777 if (is_elf2_task()) {
1778 /* Look ma, no function descriptors! */
1779 entry = start;
1780
1781 /*
1782 * Ulrich says:
1783 * The latest iteration of the ABI requires that when
1784 * calling a function (at its global entry point),
1785 * the caller must ensure r12 holds the entry point
1786 * address (so that the function can quickly
1787 * establish addressability).
1788 */
1789 regs->gpr[12] = start;
1790 /* Make sure that's restored on entry to userspace. */
1791 set_thread_flag(TIF_RESTOREALL);
1792 } else {
1793 unsigned long toc;
1794
1795 /* start is a relocated pointer to the function
1796 * descriptor for the elf _start routine. The first
1797 * entry in the function descriptor is the entry
1798 * address of _start and the second entry is the TOC
1799 * value we need to use.
1800 */
1801 __get_user(entry, (unsigned long __user *)start);
1802 __get_user(toc, (unsigned long __user *)start+1);
1803
1804 /* Check whether the e_entry function descriptor entries
1805 * need to be relocated before we can use them.
1806 */
1807 if (load_addr != 0) {
1808 entry += load_addr;
1809 toc += load_addr;
1810 }
1811 regs->gpr[2] = toc;
1812 }
1813 regs->nip = entry;
1814 regs->msr = MSR_USER64;
1815 } else {
1816 regs->nip = start;
1817 regs->gpr[2] = 0;
1818 regs->msr = MSR_USER32;
1819 }
1820 #endif
1821 #ifdef CONFIG_VSX
1822 current->thread.used_vsr = 0;
1823 #endif
1824 current->thread.load_slb = 0;
1825 current->thread.load_fp = 0;
1826 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1827 current->thread.fp_save_area = NULL;
1828 #ifdef CONFIG_ALTIVEC
1829 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1830 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1831 current->thread.vr_save_area = NULL;
1832 current->thread.vrsave = 0;
1833 current->thread.used_vr = 0;
1834 current->thread.load_vec = 0;
1835 #endif /* CONFIG_ALTIVEC */
1836 #ifdef CONFIG_SPE
1837 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1838 current->thread.acc = 0;
1839 current->thread.spefscr = 0;
1840 current->thread.used_spe = 0;
1841 #endif /* CONFIG_SPE */
1842 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1843 current->thread.tm_tfhar = 0;
1844 current->thread.tm_texasr = 0;
1845 current->thread.tm_tfiar = 0;
1846 current->thread.load_tm = 0;
1847 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1848
1849 thread_pkey_regs_init(&current->thread);
1850 }
1851 EXPORT_SYMBOL(start_thread);
1852
1853 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1854 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1855
1856 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1857 {
1858 struct pt_regs *regs = tsk->thread.regs;
1859
1860 /* This is a bit hairy. If we are an SPE enabled processor
1861 * (have embedded fp) we store the IEEE exception enable flags in
1862 * fpexc_mode. fpexc_mode is also used for setting FP exception
1863 * mode (asyn, precise, disabled) for 'Classic' FP. */
1864 if (val & PR_FP_EXC_SW_ENABLE) {
1865 #ifdef CONFIG_SPE
1866 if (cpu_has_feature(CPU_FTR_SPE)) {
1867 /*
1868 * When the sticky exception bits are set
1869 * directly by userspace, it must call prctl
1870 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1871 * in the existing prctl settings) or
1872 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1873 * the bits being set). <fenv.h> functions
1874 * saving and restoring the whole
1875 * floating-point environment need to do so
1876 * anyway to restore the prctl settings from
1877 * the saved environment.
1878 */
1879 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1880 tsk->thread.fpexc_mode = val &
1881 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1882 return 0;
1883 } else {
1884 return -EINVAL;
1885 }
1886 #else
1887 return -EINVAL;
1888 #endif
1889 }
1890
1891 /* on a CONFIG_SPE this does not hurt us. The bits that
1892 * __pack_fe01 use do not overlap with bits used for
1893 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1894 * on CONFIG_SPE implementations are reserved so writing to
1895 * them does not change anything */
1896 if (val > PR_FP_EXC_PRECISE)
1897 return -EINVAL;
1898 tsk->thread.fpexc_mode = __pack_fe01(val);
1899 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1900 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1901 | tsk->thread.fpexc_mode;
1902 return 0;
1903 }
1904
1905 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1906 {
1907 unsigned int val;
1908
1909 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1910 #ifdef CONFIG_SPE
1911 if (cpu_has_feature(CPU_FTR_SPE)) {
1912 /*
1913 * When the sticky exception bits are set
1914 * directly by userspace, it must call prctl
1915 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1916 * in the existing prctl settings) or
1917 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1918 * the bits being set). <fenv.h> functions
1919 * saving and restoring the whole
1920 * floating-point environment need to do so
1921 * anyway to restore the prctl settings from
1922 * the saved environment.
1923 */
1924 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1925 val = tsk->thread.fpexc_mode;
1926 } else
1927 return -EINVAL;
1928 #else
1929 return -EINVAL;
1930 #endif
1931 else
1932 val = __unpack_fe01(tsk->thread.fpexc_mode);
1933 return put_user(val, (unsigned int __user *) adr);
1934 }
1935
1936 int set_endian(struct task_struct *tsk, unsigned int val)
1937 {
1938 struct pt_regs *regs = tsk->thread.regs;
1939
1940 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1941 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1942 return -EINVAL;
1943
1944 if (regs == NULL)
1945 return -EINVAL;
1946
1947 if (val == PR_ENDIAN_BIG)
1948 regs->msr &= ~MSR_LE;
1949 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1950 regs->msr |= MSR_LE;
1951 else
1952 return -EINVAL;
1953
1954 return 0;
1955 }
1956
1957 int get_endian(struct task_struct *tsk, unsigned long adr)
1958 {
1959 struct pt_regs *regs = tsk->thread.regs;
1960 unsigned int val;
1961
1962 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1963 !cpu_has_feature(CPU_FTR_REAL_LE))
1964 return -EINVAL;
1965
1966 if (regs == NULL)
1967 return -EINVAL;
1968
1969 if (regs->msr & MSR_LE) {
1970 if (cpu_has_feature(CPU_FTR_REAL_LE))
1971 val = PR_ENDIAN_LITTLE;
1972 else
1973 val = PR_ENDIAN_PPC_LITTLE;
1974 } else
1975 val = PR_ENDIAN_BIG;
1976
1977 return put_user(val, (unsigned int __user *)adr);
1978 }
1979
1980 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1981 {
1982 tsk->thread.align_ctl = val;
1983 return 0;
1984 }
1985
1986 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1987 {
1988 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1989 }
1990
1991 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1992 unsigned long nbytes)
1993 {
1994 unsigned long stack_page;
1995 unsigned long cpu = task_cpu(p);
1996
1997 stack_page = (unsigned long)hardirq_ctx[cpu];
1998 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1999 return 1;
2000
2001 stack_page = (unsigned long)softirq_ctx[cpu];
2002 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003 return 1;
2004
2005 return 0;
2006 }
2007
2008 int validate_sp(unsigned long sp, struct task_struct *p,
2009 unsigned long nbytes)
2010 {
2011 unsigned long stack_page = (unsigned long)task_stack_page(p);
2012
2013 if (sp < THREAD_SIZE)
2014 return 0;
2015
2016 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2017 return 1;
2018
2019 return valid_irq_stack(sp, p, nbytes);
2020 }
2021
2022 EXPORT_SYMBOL(validate_sp);
2023
2024 static unsigned long __get_wchan(struct task_struct *p)
2025 {
2026 unsigned long ip, sp;
2027 int count = 0;
2028
2029 if (!p || p == current || p->state == TASK_RUNNING)
2030 return 0;
2031
2032 sp = p->thread.ksp;
2033 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2034 return 0;
2035
2036 do {
2037 sp = *(unsigned long *)sp;
2038 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2039 p->state == TASK_RUNNING)
2040 return 0;
2041 if (count > 0) {
2042 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2043 if (!in_sched_functions(ip))
2044 return ip;
2045 }
2046 } while (count++ < 16);
2047 return 0;
2048 }
2049
2050 unsigned long get_wchan(struct task_struct *p)
2051 {
2052 unsigned long ret;
2053
2054 if (!try_get_task_stack(p))
2055 return 0;
2056
2057 ret = __get_wchan(p);
2058
2059 put_task_stack(p);
2060
2061 return ret;
2062 }
2063
2064 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2065
2066 void show_stack(struct task_struct *tsk, unsigned long *stack)
2067 {
2068 unsigned long sp, ip, lr, newsp;
2069 int count = 0;
2070 int firstframe = 1;
2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2072 struct ftrace_ret_stack *ret_stack;
2073 extern void return_to_handler(void);
2074 unsigned long rth = (unsigned long)return_to_handler;
2075 int curr_frame = 0;
2076 #endif
2077
2078 if (tsk == NULL)
2079 tsk = current;
2080
2081 if (!try_get_task_stack(tsk))
2082 return;
2083
2084 sp = (unsigned long) stack;
2085 if (sp == 0) {
2086 if (tsk == current)
2087 sp = current_stack_pointer();
2088 else
2089 sp = tsk->thread.ksp;
2090 }
2091
2092 lr = 0;
2093 printk("Call Trace:\n");
2094 do {
2095 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2096 break;
2097
2098 stack = (unsigned long *) sp;
2099 newsp = stack[0];
2100 ip = stack[STACK_FRAME_LR_SAVE];
2101 if (!firstframe || ip != lr) {
2102 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2103 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2104 if ((ip == rth) && curr_frame >= 0) {
2105 ret_stack = ftrace_graph_get_ret_stack(current,
2106 curr_frame++);
2107 if (ret_stack)
2108 pr_cont(" (%pS)",
2109 (void *)ret_stack->ret);
2110 else
2111 curr_frame = -1;
2112 }
2113 #endif
2114 if (firstframe)
2115 pr_cont(" (unreliable)");
2116 pr_cont("\n");
2117 }
2118 firstframe = 0;
2119
2120 /*
2121 * See if this is an exception frame.
2122 * We look for the "regshere" marker in the current frame.
2123 */
2124 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2125 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2126 struct pt_regs *regs = (struct pt_regs *)
2127 (sp + STACK_FRAME_OVERHEAD);
2128 lr = regs->link;
2129 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2130 regs->trap, (void *)regs->nip, (void *)lr);
2131 firstframe = 1;
2132 }
2133
2134 sp = newsp;
2135 } while (count++ < kstack_depth_to_print);
2136
2137 put_task_stack(tsk);
2138 }
2139
2140 #ifdef CONFIG_PPC64
2141 /* Called with hard IRQs off */
2142 void notrace __ppc64_runlatch_on(void)
2143 {
2144 struct thread_info *ti = current_thread_info();
2145
2146 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2147 /*
2148 * Least significant bit (RUN) is the only writable bit of
2149 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2150 * earliest ISA where this is the case, but it's convenient.
2151 */
2152 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2153 } else {
2154 unsigned long ctrl;
2155
2156 /*
2157 * Some architectures (e.g., Cell) have writable fields other
2158 * than RUN, so do the read-modify-write.
2159 */
2160 ctrl = mfspr(SPRN_CTRLF);
2161 ctrl |= CTRL_RUNLATCH;
2162 mtspr(SPRN_CTRLT, ctrl);
2163 }
2164
2165 ti->local_flags |= _TLF_RUNLATCH;
2166 }
2167
2168 /* Called with hard IRQs off */
2169 void notrace __ppc64_runlatch_off(void)
2170 {
2171 struct thread_info *ti = current_thread_info();
2172
2173 ti->local_flags &= ~_TLF_RUNLATCH;
2174
2175 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176 mtspr(SPRN_CTRLT, 0);
2177 } else {
2178 unsigned long ctrl;
2179
2180 ctrl = mfspr(SPRN_CTRLF);
2181 ctrl &= ~CTRL_RUNLATCH;
2182 mtspr(SPRN_CTRLT, ctrl);
2183 }
2184 }
2185 #endif /* CONFIG_PPC64 */
2186
2187 unsigned long arch_align_stack(unsigned long sp)
2188 {
2189 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2190 sp -= get_random_int() & ~PAGE_MASK;
2191 return sp & ~0xf;
2192 }
2193
2194 static inline unsigned long brk_rnd(void)
2195 {
2196 unsigned long rnd = 0;
2197
2198 /* 8MB for 32bit, 1GB for 64bit */
2199 if (is_32bit_task())
2200 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2201 else
2202 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2203
2204 return rnd << PAGE_SHIFT;
2205 }
2206
2207 unsigned long arch_randomize_brk(struct mm_struct *mm)
2208 {
2209 unsigned long base = mm->brk;
2210 unsigned long ret;
2211
2212 #ifdef CONFIG_PPC_BOOK3S_64
2213 /*
2214 * If we are using 1TB segments and we are allowed to randomise
2215 * the heap, we can put it above 1TB so it is backed by a 1TB
2216 * segment. Otherwise the heap will be in the bottom 1TB
2217 * which always uses 256MB segments and this may result in a
2218 * performance penalty. We don't need to worry about radix. For
2219 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2220 */
2221 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2222 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2223 #endif
2224
2225 ret = PAGE_ALIGN(base + brk_rnd());
2226
2227 if (ret < mm->brk)
2228 return mm->brk;
2229
2230 return ret;
2231 }
2232