]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/process.c
Merge tag 'spi-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 #include <linux/elf-randomize.h>
42
43 #include <asm/pgtable.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <asm/code-patching.h>
59 #include <asm/exec.h>
60 #include <asm/livepatch.h>
61 #include <asm/cpu_has_feature.h>
62 #include <asm/asm-prototypes.h>
63
64 #include <linux/kprobes.h>
65 #include <linux/kdebug.h>
66
67 /* Transactional Memory debug */
68 #ifdef TM_DEBUG_SW
69 #define TM_DEBUG(x...) printk(KERN_INFO x)
70 #else
71 #define TM_DEBUG(x...) do { } while(0)
72 #endif
73
74 extern unsigned long _get_SP(void);
75
76 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77 static void check_if_tm_restore_required(struct task_struct *tsk)
78 {
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91 }
92
93 static inline bool msr_tm_active(unsigned long msr)
94 {
95 return MSR_TM_ACTIVE(msr);
96 }
97 #else
98 static inline bool msr_tm_active(unsigned long msr) { return false; }
99 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
100 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
101
102 bool strict_msr_control;
103 EXPORT_SYMBOL(strict_msr_control);
104
105 static int __init enable_strict_msr_control(char *str)
106 {
107 strict_msr_control = true;
108 pr_info("Enabling strict facility control\n");
109
110 return 0;
111 }
112 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
113
114 unsigned long msr_check_and_set(unsigned long bits)
115 {
116 unsigned long oldmsr = mfmsr();
117 unsigned long newmsr;
118
119 newmsr = oldmsr | bits;
120
121 #ifdef CONFIG_VSX
122 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
123 newmsr |= MSR_VSX;
124 #endif
125
126 if (oldmsr != newmsr)
127 mtmsr_isync(newmsr);
128
129 return newmsr;
130 }
131
132 void __msr_check_and_clear(unsigned long bits)
133 {
134 unsigned long oldmsr = mfmsr();
135 unsigned long newmsr;
136
137 newmsr = oldmsr & ~bits;
138
139 #ifdef CONFIG_VSX
140 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
141 newmsr &= ~MSR_VSX;
142 #endif
143
144 if (oldmsr != newmsr)
145 mtmsr_isync(newmsr);
146 }
147 EXPORT_SYMBOL(__msr_check_and_clear);
148
149 #ifdef CONFIG_PPC_FPU
150 void __giveup_fpu(struct task_struct *tsk)
151 {
152 unsigned long msr;
153
154 save_fpu(tsk);
155 msr = tsk->thread.regs->msr;
156 msr &= ~MSR_FP;
157 #ifdef CONFIG_VSX
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160 #endif
161 tsk->thread.regs->msr = msr;
162 }
163
164 void giveup_fpu(struct task_struct *tsk)
165 {
166 check_if_tm_restore_required(tsk);
167
168 msr_check_and_set(MSR_FP);
169 __giveup_fpu(tsk);
170 msr_check_and_clear(MSR_FP);
171 }
172 EXPORT_SYMBOL(giveup_fpu);
173
174 /*
175 * Make sure the floating-point register state in the
176 * the thread_struct is up to date for task tsk.
177 */
178 void flush_fp_to_thread(struct task_struct *tsk)
179 {
180 if (tsk->thread.regs) {
181 /*
182 * We need to disable preemption here because if we didn't,
183 * another process could get scheduled after the regs->msr
184 * test but before we have finished saving the FP registers
185 * to the thread_struct. That process could take over the
186 * FPU, and then when we get scheduled again we would store
187 * bogus values for the remaining FP registers.
188 */
189 preempt_disable();
190 if (tsk->thread.regs->msr & MSR_FP) {
191 /*
192 * This should only ever be called for current or
193 * for a stopped child process. Since we save away
194 * the FP register state on context switch,
195 * there is something wrong if a stopped child appears
196 * to still have its FP state in the CPU registers.
197 */
198 BUG_ON(tsk != current);
199 giveup_fpu(tsk);
200 }
201 preempt_enable();
202 }
203 }
204 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
205
206 void enable_kernel_fp(void)
207 {
208 unsigned long cpumsr;
209
210 WARN_ON(preemptible());
211
212 cpumsr = msr_check_and_set(MSR_FP);
213
214 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
215 check_if_tm_restore_required(current);
216 /*
217 * If a thread has already been reclaimed then the
218 * checkpointed registers are on the CPU but have definitely
219 * been saved by the reclaim code. Don't need to and *cannot*
220 * giveup as this would save to the 'live' structure not the
221 * checkpointed structure.
222 */
223 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229
230 static int restore_fp(struct task_struct *tsk) {
231 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
232 load_fp_state(&current->thread.fp_state);
233 current->thread.load_fp++;
234 return 1;
235 }
236 return 0;
237 }
238 #else
239 static int restore_fp(struct task_struct *tsk) { return 0; }
240 #endif /* CONFIG_PPC_FPU */
241
242 #ifdef CONFIG_ALTIVEC
243 #define loadvec(thr) ((thr).load_vec)
244
245 static void __giveup_altivec(struct task_struct *tsk)
246 {
247 unsigned long msr;
248
249 save_altivec(tsk);
250 msr = tsk->thread.regs->msr;
251 msr &= ~MSR_VEC;
252 #ifdef CONFIG_VSX
253 if (cpu_has_feature(CPU_FTR_VSX))
254 msr &= ~MSR_VSX;
255 #endif
256 tsk->thread.regs->msr = msr;
257 }
258
259 void giveup_altivec(struct task_struct *tsk)
260 {
261 check_if_tm_restore_required(tsk);
262
263 msr_check_and_set(MSR_VEC);
264 __giveup_altivec(tsk);
265 msr_check_and_clear(MSR_VEC);
266 }
267 EXPORT_SYMBOL(giveup_altivec);
268
269 void enable_kernel_altivec(void)
270 {
271 unsigned long cpumsr;
272
273 WARN_ON(preemptible());
274
275 cpumsr = msr_check_and_set(MSR_VEC);
276
277 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
278 check_if_tm_restore_required(current);
279 /*
280 * If a thread has already been reclaimed then the
281 * checkpointed registers are on the CPU but have definitely
282 * been saved by the reclaim code. Don't need to and *cannot*
283 * giveup as this would save to the 'live' structure not the
284 * checkpointed structure.
285 */
286 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
287 return;
288 __giveup_altivec(current);
289 }
290 }
291 EXPORT_SYMBOL(enable_kernel_altivec);
292
293 /*
294 * Make sure the VMX/Altivec register state in the
295 * the thread_struct is up to date for task tsk.
296 */
297 void flush_altivec_to_thread(struct task_struct *tsk)
298 {
299 if (tsk->thread.regs) {
300 preempt_disable();
301 if (tsk->thread.regs->msr & MSR_VEC) {
302 BUG_ON(tsk != current);
303 giveup_altivec(tsk);
304 }
305 preempt_enable();
306 }
307 }
308 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
309
310 static int restore_altivec(struct task_struct *tsk)
311 {
312 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
313 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
314 load_vr_state(&tsk->thread.vr_state);
315 tsk->thread.used_vr = 1;
316 tsk->thread.load_vec++;
317
318 return 1;
319 }
320 return 0;
321 }
322 #else
323 #define loadvec(thr) 0
324 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
325 #endif /* CONFIG_ALTIVEC */
326
327 #ifdef CONFIG_VSX
328 static void __giveup_vsx(struct task_struct *tsk)
329 {
330 if (tsk->thread.regs->msr & MSR_FP)
331 __giveup_fpu(tsk);
332 if (tsk->thread.regs->msr & MSR_VEC)
333 __giveup_altivec(tsk);
334 tsk->thread.regs->msr &= ~MSR_VSX;
335 }
336
337 static void giveup_vsx(struct task_struct *tsk)
338 {
339 check_if_tm_restore_required(tsk);
340
341 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
342 __giveup_vsx(tsk);
343 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
344 }
345
346 static void save_vsx(struct task_struct *tsk)
347 {
348 if (tsk->thread.regs->msr & MSR_FP)
349 save_fpu(tsk);
350 if (tsk->thread.regs->msr & MSR_VEC)
351 save_altivec(tsk);
352 }
353
354 void enable_kernel_vsx(void)
355 {
356 unsigned long cpumsr;
357
358 WARN_ON(preemptible());
359
360 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
361
362 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
363 check_if_tm_restore_required(current);
364 /*
365 * If a thread has already been reclaimed then the
366 * checkpointed registers are on the CPU but have definitely
367 * been saved by the reclaim code. Don't need to and *cannot*
368 * giveup as this would save to the 'live' structure not the
369 * checkpointed structure.
370 */
371 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
372 return;
373 if (current->thread.regs->msr & MSR_FP)
374 __giveup_fpu(current);
375 if (current->thread.regs->msr & MSR_VEC)
376 __giveup_altivec(current);
377 __giveup_vsx(current);
378 }
379 }
380 EXPORT_SYMBOL(enable_kernel_vsx);
381
382 void flush_vsx_to_thread(struct task_struct *tsk)
383 {
384 if (tsk->thread.regs) {
385 preempt_disable();
386 if (tsk->thread.regs->msr & MSR_VSX) {
387 BUG_ON(tsk != current);
388 giveup_vsx(tsk);
389 }
390 preempt_enable();
391 }
392 }
393 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
394
395 static int restore_vsx(struct task_struct *tsk)
396 {
397 if (cpu_has_feature(CPU_FTR_VSX)) {
398 tsk->thread.used_vsr = 1;
399 return 1;
400 }
401
402 return 0;
403 }
404 #else
405 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
406 static inline void save_vsx(struct task_struct *tsk) { }
407 #endif /* CONFIG_VSX */
408
409 #ifdef CONFIG_SPE
410 void giveup_spe(struct task_struct *tsk)
411 {
412 check_if_tm_restore_required(tsk);
413
414 msr_check_and_set(MSR_SPE);
415 __giveup_spe(tsk);
416 msr_check_and_clear(MSR_SPE);
417 }
418 EXPORT_SYMBOL(giveup_spe);
419
420 void enable_kernel_spe(void)
421 {
422 WARN_ON(preemptible());
423
424 msr_check_and_set(MSR_SPE);
425
426 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
427 check_if_tm_restore_required(current);
428 __giveup_spe(current);
429 }
430 }
431 EXPORT_SYMBOL(enable_kernel_spe);
432
433 void flush_spe_to_thread(struct task_struct *tsk)
434 {
435 if (tsk->thread.regs) {
436 preempt_disable();
437 if (tsk->thread.regs->msr & MSR_SPE) {
438 BUG_ON(tsk != current);
439 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
440 giveup_spe(tsk);
441 }
442 preempt_enable();
443 }
444 }
445 #endif /* CONFIG_SPE */
446
447 static unsigned long msr_all_available;
448
449 static int __init init_msr_all_available(void)
450 {
451 #ifdef CONFIG_PPC_FPU
452 msr_all_available |= MSR_FP;
453 #endif
454 #ifdef CONFIG_ALTIVEC
455 if (cpu_has_feature(CPU_FTR_ALTIVEC))
456 msr_all_available |= MSR_VEC;
457 #endif
458 #ifdef CONFIG_VSX
459 if (cpu_has_feature(CPU_FTR_VSX))
460 msr_all_available |= MSR_VSX;
461 #endif
462 #ifdef CONFIG_SPE
463 if (cpu_has_feature(CPU_FTR_SPE))
464 msr_all_available |= MSR_SPE;
465 #endif
466
467 return 0;
468 }
469 early_initcall(init_msr_all_available);
470
471 void giveup_all(struct task_struct *tsk)
472 {
473 unsigned long usermsr;
474
475 if (!tsk->thread.regs)
476 return;
477
478 usermsr = tsk->thread.regs->msr;
479
480 if ((usermsr & msr_all_available) == 0)
481 return;
482
483 msr_check_and_set(msr_all_available);
484 check_if_tm_restore_required(tsk);
485
486 #ifdef CONFIG_PPC_FPU
487 if (usermsr & MSR_FP)
488 __giveup_fpu(tsk);
489 #endif
490 #ifdef CONFIG_ALTIVEC
491 if (usermsr & MSR_VEC)
492 __giveup_altivec(tsk);
493 #endif
494 #ifdef CONFIG_VSX
495 if (usermsr & MSR_VSX)
496 __giveup_vsx(tsk);
497 #endif
498 #ifdef CONFIG_SPE
499 if (usermsr & MSR_SPE)
500 __giveup_spe(tsk);
501 #endif
502
503 msr_check_and_clear(msr_all_available);
504 }
505 EXPORT_SYMBOL(giveup_all);
506
507 void restore_math(struct pt_regs *regs)
508 {
509 unsigned long msr;
510
511 if (!msr_tm_active(regs->msr) &&
512 !current->thread.load_fp && !loadvec(current->thread))
513 return;
514
515 msr = regs->msr;
516 msr_check_and_set(msr_all_available);
517
518 /*
519 * Only reload if the bit is not set in the user MSR, the bit BEING set
520 * indicates that the registers are hot
521 */
522 if ((!(msr & MSR_FP)) && restore_fp(current))
523 msr |= MSR_FP | current->thread.fpexc_mode;
524
525 if ((!(msr & MSR_VEC)) && restore_altivec(current))
526 msr |= MSR_VEC;
527
528 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
529 restore_vsx(current)) {
530 msr |= MSR_VSX;
531 }
532
533 msr_check_and_clear(msr_all_available);
534
535 regs->msr = msr;
536 }
537
538 void save_all(struct task_struct *tsk)
539 {
540 unsigned long usermsr;
541
542 if (!tsk->thread.regs)
543 return;
544
545 usermsr = tsk->thread.regs->msr;
546
547 if ((usermsr & msr_all_available) == 0)
548 return;
549
550 msr_check_and_set(msr_all_available);
551
552 /*
553 * Saving the way the register space is in hardware, save_vsx boils
554 * down to a save_fpu() and save_altivec()
555 */
556 if (usermsr & MSR_VSX) {
557 save_vsx(tsk);
558 } else {
559 if (usermsr & MSR_FP)
560 save_fpu(tsk);
561
562 if (usermsr & MSR_VEC)
563 save_altivec(tsk);
564 }
565
566 if (usermsr & MSR_SPE)
567 __giveup_spe(tsk);
568
569 msr_check_and_clear(msr_all_available);
570 }
571
572 void flush_all_to_thread(struct task_struct *tsk)
573 {
574 if (tsk->thread.regs) {
575 preempt_disable();
576 BUG_ON(tsk != current);
577 save_all(tsk);
578
579 #ifdef CONFIG_SPE
580 if (tsk->thread.regs->msr & MSR_SPE)
581 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
582 #endif
583
584 preempt_enable();
585 }
586 }
587 EXPORT_SYMBOL(flush_all_to_thread);
588
589 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
590 void do_send_trap(struct pt_regs *regs, unsigned long address,
591 unsigned long error_code, int signal_code, int breakpt)
592 {
593 siginfo_t info;
594
595 current->thread.trap_nr = signal_code;
596 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
597 11, SIGSEGV) == NOTIFY_STOP)
598 return;
599
600 /* Deliver the signal to userspace */
601 info.si_signo = SIGTRAP;
602 info.si_errno = breakpt; /* breakpoint or watchpoint id */
603 info.si_code = signal_code;
604 info.si_addr = (void __user *)address;
605 force_sig_info(SIGTRAP, &info, current);
606 }
607 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
608 void do_break (struct pt_regs *regs, unsigned long address,
609 unsigned long error_code)
610 {
611 siginfo_t info;
612
613 current->thread.trap_nr = TRAP_HWBKPT;
614 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
615 11, SIGSEGV) == NOTIFY_STOP)
616 return;
617
618 if (debugger_break_match(regs))
619 return;
620
621 /* Clear the breakpoint */
622 hw_breakpoint_disable();
623
624 /* Deliver the signal to userspace */
625 info.si_signo = SIGTRAP;
626 info.si_errno = 0;
627 info.si_code = TRAP_HWBKPT;
628 info.si_addr = (void __user *)address;
629 force_sig_info(SIGTRAP, &info, current);
630 }
631 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
632
633 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
634
635 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
636 /*
637 * Set the debug registers back to their default "safe" values.
638 */
639 static void set_debug_reg_defaults(struct thread_struct *thread)
640 {
641 thread->debug.iac1 = thread->debug.iac2 = 0;
642 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
643 thread->debug.iac3 = thread->debug.iac4 = 0;
644 #endif
645 thread->debug.dac1 = thread->debug.dac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
647 thread->debug.dvc1 = thread->debug.dvc2 = 0;
648 #endif
649 thread->debug.dbcr0 = 0;
650 #ifdef CONFIG_BOOKE
651 /*
652 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
653 */
654 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
655 DBCR1_IAC3US | DBCR1_IAC4US;
656 /*
657 * Force Data Address Compare User/Supervisor bits to be User-only
658 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
659 */
660 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
661 #else
662 thread->debug.dbcr1 = 0;
663 #endif
664 }
665
666 static void prime_debug_regs(struct debug_reg *debug)
667 {
668 /*
669 * We could have inherited MSR_DE from userspace, since
670 * it doesn't get cleared on exception entry. Make sure
671 * MSR_DE is clear before we enable any debug events.
672 */
673 mtmsr(mfmsr() & ~MSR_DE);
674
675 mtspr(SPRN_IAC1, debug->iac1);
676 mtspr(SPRN_IAC2, debug->iac2);
677 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
678 mtspr(SPRN_IAC3, debug->iac3);
679 mtspr(SPRN_IAC4, debug->iac4);
680 #endif
681 mtspr(SPRN_DAC1, debug->dac1);
682 mtspr(SPRN_DAC2, debug->dac2);
683 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
684 mtspr(SPRN_DVC1, debug->dvc1);
685 mtspr(SPRN_DVC2, debug->dvc2);
686 #endif
687 mtspr(SPRN_DBCR0, debug->dbcr0);
688 mtspr(SPRN_DBCR1, debug->dbcr1);
689 #ifdef CONFIG_BOOKE
690 mtspr(SPRN_DBCR2, debug->dbcr2);
691 #endif
692 }
693 /*
694 * Unless neither the old or new thread are making use of the
695 * debug registers, set the debug registers from the values
696 * stored in the new thread.
697 */
698 void switch_booke_debug_regs(struct debug_reg *new_debug)
699 {
700 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
701 || (new_debug->dbcr0 & DBCR0_IDM))
702 prime_debug_regs(new_debug);
703 }
704 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
705 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
706 #ifndef CONFIG_HAVE_HW_BREAKPOINT
707 static void set_debug_reg_defaults(struct thread_struct *thread)
708 {
709 thread->hw_brk.address = 0;
710 thread->hw_brk.type = 0;
711 set_breakpoint(&thread->hw_brk);
712 }
713 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
714 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
715
716 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
717 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
718 {
719 mtspr(SPRN_DAC1, dabr);
720 #ifdef CONFIG_PPC_47x
721 isync();
722 #endif
723 return 0;
724 }
725 #elif defined(CONFIG_PPC_BOOK3S)
726 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
727 {
728 mtspr(SPRN_DABR, dabr);
729 if (cpu_has_feature(CPU_FTR_DABRX))
730 mtspr(SPRN_DABRX, dabrx);
731 return 0;
732 }
733 #else
734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
735 {
736 return -EINVAL;
737 }
738 #endif
739
740 static inline int set_dabr(struct arch_hw_breakpoint *brk)
741 {
742 unsigned long dabr, dabrx;
743
744 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
745 dabrx = ((brk->type >> 3) & 0x7);
746
747 if (ppc_md.set_dabr)
748 return ppc_md.set_dabr(dabr, dabrx);
749
750 return __set_dabr(dabr, dabrx);
751 }
752
753 static inline int set_dawr(struct arch_hw_breakpoint *brk)
754 {
755 unsigned long dawr, dawrx, mrd;
756
757 dawr = brk->address;
758
759 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
760 << (63 - 58); //* read/write bits */
761 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
762 << (63 - 59); //* translate */
763 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
764 >> 3; //* PRIM bits */
765 /* dawr length is stored in field MDR bits 48:53. Matches range in
766 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
767 0b111111=64DW.
768 brk->len is in bytes.
769 This aligns up to double word size, shifts and does the bias.
770 */
771 mrd = ((brk->len + 7) >> 3) - 1;
772 dawrx |= (mrd & 0x3f) << (63 - 53);
773
774 if (ppc_md.set_dawr)
775 return ppc_md.set_dawr(dawr, dawrx);
776 mtspr(SPRN_DAWR, dawr);
777 mtspr(SPRN_DAWRX, dawrx);
778 return 0;
779 }
780
781 void __set_breakpoint(struct arch_hw_breakpoint *brk)
782 {
783 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
784
785 if (cpu_has_feature(CPU_FTR_DAWR))
786 set_dawr(brk);
787 else
788 set_dabr(brk);
789 }
790
791 void set_breakpoint(struct arch_hw_breakpoint *brk)
792 {
793 preempt_disable();
794 __set_breakpoint(brk);
795 preempt_enable();
796 }
797
798 #ifdef CONFIG_PPC64
799 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
800 #endif
801
802 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
803 struct arch_hw_breakpoint *b)
804 {
805 if (a->address != b->address)
806 return false;
807 if (a->type != b->type)
808 return false;
809 if (a->len != b->len)
810 return false;
811 return true;
812 }
813
814 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
815
816 static inline bool tm_enabled(struct task_struct *tsk)
817 {
818 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
819 }
820
821 static void tm_reclaim_thread(struct thread_struct *thr,
822 struct thread_info *ti, uint8_t cause)
823 {
824 /*
825 * Use the current MSR TM suspended bit to track if we have
826 * checkpointed state outstanding.
827 * On signal delivery, we'd normally reclaim the checkpointed
828 * state to obtain stack pointer (see:get_tm_stackpointer()).
829 * This will then directly return to userspace without going
830 * through __switch_to(). However, if the stack frame is bad,
831 * we need to exit this thread which calls __switch_to() which
832 * will again attempt to reclaim the already saved tm state.
833 * Hence we need to check that we've not already reclaimed
834 * this state.
835 * We do this using the current MSR, rather tracking it in
836 * some specific thread_struct bit, as it has the additional
837 * benefit of checking for a potential TM bad thing exception.
838 */
839 if (!MSR_TM_SUSPENDED(mfmsr()))
840 return;
841
842 giveup_all(container_of(thr, struct task_struct, thread));
843
844 tm_reclaim(thr, thr->ckpt_regs.msr, cause);
845 }
846
847 void tm_reclaim_current(uint8_t cause)
848 {
849 tm_enable();
850 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
851 }
852
853 static inline void tm_reclaim_task(struct task_struct *tsk)
854 {
855 /* We have to work out if we're switching from/to a task that's in the
856 * middle of a transaction.
857 *
858 * In switching we need to maintain a 2nd register state as
859 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
860 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
861 * ckvr_state
862 *
863 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
864 */
865 struct thread_struct *thr = &tsk->thread;
866
867 if (!thr->regs)
868 return;
869
870 if (!MSR_TM_ACTIVE(thr->regs->msr))
871 goto out_and_saveregs;
872
873 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
874 "ccr=%lx, msr=%lx, trap=%lx)\n",
875 tsk->pid, thr->regs->nip,
876 thr->regs->ccr, thr->regs->msr,
877 thr->regs->trap);
878
879 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
880
881 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
882 tsk->pid);
883
884 out_and_saveregs:
885 /* Always save the regs here, even if a transaction's not active.
886 * This context-switches a thread's TM info SPRs. We do it here to
887 * be consistent with the restore path (in recheckpoint) which
888 * cannot happen later in _switch().
889 */
890 tm_save_sprs(thr);
891 }
892
893 extern void __tm_recheckpoint(struct thread_struct *thread,
894 unsigned long orig_msr);
895
896 void tm_recheckpoint(struct thread_struct *thread,
897 unsigned long orig_msr)
898 {
899 unsigned long flags;
900
901 if (!(thread->regs->msr & MSR_TM))
902 return;
903
904 /* We really can't be interrupted here as the TEXASR registers can't
905 * change and later in the trecheckpoint code, we have a userspace R1.
906 * So let's hard disable over this region.
907 */
908 local_irq_save(flags);
909 hard_irq_disable();
910
911 /* The TM SPRs are restored here, so that TEXASR.FS can be set
912 * before the trecheckpoint and no explosion occurs.
913 */
914 tm_restore_sprs(thread);
915
916 __tm_recheckpoint(thread, orig_msr);
917
918 local_irq_restore(flags);
919 }
920
921 static inline void tm_recheckpoint_new_task(struct task_struct *new)
922 {
923 unsigned long msr;
924
925 if (!cpu_has_feature(CPU_FTR_TM))
926 return;
927
928 /* Recheckpoint the registers of the thread we're about to switch to.
929 *
930 * If the task was using FP, we non-lazily reload both the original and
931 * the speculative FP register states. This is because the kernel
932 * doesn't see if/when a TM rollback occurs, so if we take an FP
933 * unavailable later, we are unable to determine which set of FP regs
934 * need to be restored.
935 */
936 if (!tm_enabled(new))
937 return;
938
939 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
940 tm_restore_sprs(&new->thread);
941 return;
942 }
943 msr = new->thread.ckpt_regs.msr;
944 /* Recheckpoint to restore original checkpointed register state. */
945 TM_DEBUG("*** tm_recheckpoint of pid %d "
946 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
947 new->pid, new->thread.regs->msr, msr);
948
949 tm_recheckpoint(&new->thread, msr);
950
951 /*
952 * The checkpointed state has been restored but the live state has
953 * not, ensure all the math functionality is turned off to trigger
954 * restore_math() to reload.
955 */
956 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
957
958 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
959 "(kernel msr 0x%lx)\n",
960 new->pid, mfmsr());
961 }
962
963 static inline void __switch_to_tm(struct task_struct *prev,
964 struct task_struct *new)
965 {
966 if (cpu_has_feature(CPU_FTR_TM)) {
967 if (tm_enabled(prev) || tm_enabled(new))
968 tm_enable();
969
970 if (tm_enabled(prev)) {
971 prev->thread.load_tm++;
972 tm_reclaim_task(prev);
973 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
974 prev->thread.regs->msr &= ~MSR_TM;
975 }
976
977 tm_recheckpoint_new_task(new);
978 }
979 }
980
981 /*
982 * This is called if we are on the way out to userspace and the
983 * TIF_RESTORE_TM flag is set. It checks if we need to reload
984 * FP and/or vector state and does so if necessary.
985 * If userspace is inside a transaction (whether active or
986 * suspended) and FP/VMX/VSX instructions have ever been enabled
987 * inside that transaction, then we have to keep them enabled
988 * and keep the FP/VMX/VSX state loaded while ever the transaction
989 * continues. The reason is that if we didn't, and subsequently
990 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
991 * we don't know whether it's the same transaction, and thus we
992 * don't know which of the checkpointed state and the transactional
993 * state to use.
994 */
995 void restore_tm_state(struct pt_regs *regs)
996 {
997 unsigned long msr_diff;
998
999 /*
1000 * This is the only moment we should clear TIF_RESTORE_TM as
1001 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1002 * again, anything else could lead to an incorrect ckpt_msr being
1003 * saved and therefore incorrect signal contexts.
1004 */
1005 clear_thread_flag(TIF_RESTORE_TM);
1006 if (!MSR_TM_ACTIVE(regs->msr))
1007 return;
1008
1009 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1010 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1011
1012 /* Ensure that restore_math() will restore */
1013 if (msr_diff & MSR_FP)
1014 current->thread.load_fp = 1;
1015 #ifdef CONFIG_ALTIVEC
1016 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1017 current->thread.load_vec = 1;
1018 #endif
1019 restore_math(regs);
1020
1021 regs->msr |= msr_diff;
1022 }
1023
1024 #else
1025 #define tm_recheckpoint_new_task(new)
1026 #define __switch_to_tm(prev, new)
1027 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1028
1029 static inline void save_sprs(struct thread_struct *t)
1030 {
1031 #ifdef CONFIG_ALTIVEC
1032 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1033 t->vrsave = mfspr(SPRN_VRSAVE);
1034 #endif
1035 #ifdef CONFIG_PPC_BOOK3S_64
1036 if (cpu_has_feature(CPU_FTR_DSCR))
1037 t->dscr = mfspr(SPRN_DSCR);
1038
1039 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1040 t->bescr = mfspr(SPRN_BESCR);
1041 t->ebbhr = mfspr(SPRN_EBBHR);
1042 t->ebbrr = mfspr(SPRN_EBBRR);
1043
1044 t->fscr = mfspr(SPRN_FSCR);
1045
1046 /*
1047 * Note that the TAR is not available for use in the kernel.
1048 * (To provide this, the TAR should be backed up/restored on
1049 * exception entry/exit instead, and be in pt_regs. FIXME,
1050 * this should be in pt_regs anyway (for debug).)
1051 */
1052 t->tar = mfspr(SPRN_TAR);
1053 }
1054 #endif
1055 }
1056
1057 static inline void restore_sprs(struct thread_struct *old_thread,
1058 struct thread_struct *new_thread)
1059 {
1060 #ifdef CONFIG_ALTIVEC
1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1062 old_thread->vrsave != new_thread->vrsave)
1063 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1064 #endif
1065 #ifdef CONFIG_PPC_BOOK3S_64
1066 if (cpu_has_feature(CPU_FTR_DSCR)) {
1067 u64 dscr = get_paca()->dscr_default;
1068 if (new_thread->dscr_inherit)
1069 dscr = new_thread->dscr;
1070
1071 if (old_thread->dscr != dscr)
1072 mtspr(SPRN_DSCR, dscr);
1073 }
1074
1075 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1076 if (old_thread->bescr != new_thread->bescr)
1077 mtspr(SPRN_BESCR, new_thread->bescr);
1078 if (old_thread->ebbhr != new_thread->ebbhr)
1079 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1080 if (old_thread->ebbrr != new_thread->ebbrr)
1081 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1082
1083 if (old_thread->fscr != new_thread->fscr)
1084 mtspr(SPRN_FSCR, new_thread->fscr);
1085
1086 if (old_thread->tar != new_thread->tar)
1087 mtspr(SPRN_TAR, new_thread->tar);
1088 }
1089 #endif
1090 }
1091
1092 struct task_struct *__switch_to(struct task_struct *prev,
1093 struct task_struct *new)
1094 {
1095 struct thread_struct *new_thread, *old_thread;
1096 struct task_struct *last;
1097 #ifdef CONFIG_PPC_BOOK3S_64
1098 struct ppc64_tlb_batch *batch;
1099 #endif
1100
1101 new_thread = &new->thread;
1102 old_thread = &current->thread;
1103
1104 WARN_ON(!irqs_disabled());
1105
1106 #ifdef CONFIG_PPC64
1107 /*
1108 * Collect processor utilization data per process
1109 */
1110 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1111 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1112 long unsigned start_tb, current_tb;
1113 start_tb = old_thread->start_tb;
1114 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1115 old_thread->accum_tb += (current_tb - start_tb);
1116 new_thread->start_tb = current_tb;
1117 }
1118 #endif /* CONFIG_PPC64 */
1119
1120 #ifdef CONFIG_PPC_STD_MMU_64
1121 batch = this_cpu_ptr(&ppc64_tlb_batch);
1122 if (batch->active) {
1123 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1124 if (batch->index)
1125 __flush_tlb_pending(batch);
1126 batch->active = 0;
1127 }
1128 #endif /* CONFIG_PPC_STD_MMU_64 */
1129
1130 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1131 switch_booke_debug_regs(&new->thread.debug);
1132 #else
1133 /*
1134 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1135 * schedule DABR
1136 */
1137 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1138 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1139 __set_breakpoint(&new->thread.hw_brk);
1140 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1141 #endif
1142
1143 /*
1144 * We need to save SPRs before treclaim/trecheckpoint as these will
1145 * change a number of them.
1146 */
1147 save_sprs(&prev->thread);
1148
1149 /* Save FPU, Altivec, VSX and SPE state */
1150 giveup_all(prev);
1151
1152 __switch_to_tm(prev, new);
1153
1154 /*
1155 * We can't take a PMU exception inside _switch() since there is a
1156 * window where the kernel stack SLB and the kernel stack are out
1157 * of sync. Hard disable here.
1158 */
1159 hard_irq_disable();
1160
1161 /*
1162 * Call restore_sprs() before calling _switch(). If we move it after
1163 * _switch() then we miss out on calling it for new tasks. The reason
1164 * for this is we manually create a stack frame for new tasks that
1165 * directly returns through ret_from_fork() or
1166 * ret_from_kernel_thread(). See copy_thread() for details.
1167 */
1168 restore_sprs(old_thread, new_thread);
1169
1170 last = _switch(old_thread, new_thread);
1171
1172 #ifdef CONFIG_PPC_STD_MMU_64
1173 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1174 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1175 batch = this_cpu_ptr(&ppc64_tlb_batch);
1176 batch->active = 1;
1177 }
1178
1179 if (current_thread_info()->task->thread.regs)
1180 restore_math(current_thread_info()->task->thread.regs);
1181 #endif /* CONFIG_PPC_STD_MMU_64 */
1182
1183 return last;
1184 }
1185
1186 static int instructions_to_print = 16;
1187
1188 static void show_instructions(struct pt_regs *regs)
1189 {
1190 int i;
1191 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1192 sizeof(int));
1193
1194 printk("Instruction dump:");
1195
1196 for (i = 0; i < instructions_to_print; i++) {
1197 int instr;
1198
1199 if (!(i % 8))
1200 pr_cont("\n");
1201
1202 #if !defined(CONFIG_BOOKE)
1203 /* If executing with the IMMU off, adjust pc rather
1204 * than print XXXXXXXX.
1205 */
1206 if (!(regs->msr & MSR_IR))
1207 pc = (unsigned long)phys_to_virt(pc);
1208 #endif
1209
1210 if (!__kernel_text_address(pc) ||
1211 probe_kernel_address((unsigned int __user *)pc, instr)) {
1212 pr_cont("XXXXXXXX ");
1213 } else {
1214 if (regs->nip == pc)
1215 pr_cont("<%08x> ", instr);
1216 else
1217 pr_cont("%08x ", instr);
1218 }
1219
1220 pc += sizeof(int);
1221 }
1222
1223 pr_cont("\n");
1224 }
1225
1226 struct regbit {
1227 unsigned long bit;
1228 const char *name;
1229 };
1230
1231 static struct regbit msr_bits[] = {
1232 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1233 {MSR_SF, "SF"},
1234 {MSR_HV, "HV"},
1235 #endif
1236 {MSR_VEC, "VEC"},
1237 {MSR_VSX, "VSX"},
1238 #ifdef CONFIG_BOOKE
1239 {MSR_CE, "CE"},
1240 #endif
1241 {MSR_EE, "EE"},
1242 {MSR_PR, "PR"},
1243 {MSR_FP, "FP"},
1244 {MSR_ME, "ME"},
1245 #ifdef CONFIG_BOOKE
1246 {MSR_DE, "DE"},
1247 #else
1248 {MSR_SE, "SE"},
1249 {MSR_BE, "BE"},
1250 #endif
1251 {MSR_IR, "IR"},
1252 {MSR_DR, "DR"},
1253 {MSR_PMM, "PMM"},
1254 #ifndef CONFIG_BOOKE
1255 {MSR_RI, "RI"},
1256 {MSR_LE, "LE"},
1257 #endif
1258 {0, NULL}
1259 };
1260
1261 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1262 {
1263 const char *s = "";
1264
1265 for (; bits->bit; ++bits)
1266 if (val & bits->bit) {
1267 pr_cont("%s%s", s, bits->name);
1268 s = sep;
1269 }
1270 }
1271
1272 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1273 static struct regbit msr_tm_bits[] = {
1274 {MSR_TS_T, "T"},
1275 {MSR_TS_S, "S"},
1276 {MSR_TM, "E"},
1277 {0, NULL}
1278 };
1279
1280 static void print_tm_bits(unsigned long val)
1281 {
1282 /*
1283 * This only prints something if at least one of the TM bit is set.
1284 * Inside the TM[], the output means:
1285 * E: Enabled (bit 32)
1286 * S: Suspended (bit 33)
1287 * T: Transactional (bit 34)
1288 */
1289 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1290 pr_cont(",TM[");
1291 print_bits(val, msr_tm_bits, "");
1292 pr_cont("]");
1293 }
1294 }
1295 #else
1296 static void print_tm_bits(unsigned long val) {}
1297 #endif
1298
1299 static void print_msr_bits(unsigned long val)
1300 {
1301 pr_cont("<");
1302 print_bits(val, msr_bits, ",");
1303 print_tm_bits(val);
1304 pr_cont(">");
1305 }
1306
1307 #ifdef CONFIG_PPC64
1308 #define REG "%016lx"
1309 #define REGS_PER_LINE 4
1310 #define LAST_VOLATILE 13
1311 #else
1312 #define REG "%08lx"
1313 #define REGS_PER_LINE 8
1314 #define LAST_VOLATILE 12
1315 #endif
1316
1317 void show_regs(struct pt_regs * regs)
1318 {
1319 int i, trap;
1320
1321 show_regs_print_info(KERN_DEFAULT);
1322
1323 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1324 regs->nip, regs->link, regs->ctr);
1325 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1326 regs, regs->trap, print_tainted(), init_utsname()->release);
1327 printk("MSR: "REG" ", regs->msr);
1328 print_msr_bits(regs->msr);
1329 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1330 trap = TRAP(regs);
1331 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1332 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1333 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1334 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1335 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1336 #else
1337 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1338 #endif
1339 #ifdef CONFIG_PPC64
1340 pr_cont("SOFTE: %ld ", regs->softe);
1341 #endif
1342 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1343 if (MSR_TM_ACTIVE(regs->msr))
1344 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1345 #endif
1346
1347 for (i = 0; i < 32; i++) {
1348 if ((i % REGS_PER_LINE) == 0)
1349 pr_cont("\nGPR%02d: ", i);
1350 pr_cont(REG " ", regs->gpr[i]);
1351 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1352 break;
1353 }
1354 pr_cont("\n");
1355 #ifdef CONFIG_KALLSYMS
1356 /*
1357 * Lookup NIP late so we have the best change of getting the
1358 * above info out without failing
1359 */
1360 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1361 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1362 #endif
1363 show_stack(current, (unsigned long *) regs->gpr[1]);
1364 if (!user_mode(regs))
1365 show_instructions(regs);
1366 }
1367
1368 void flush_thread(void)
1369 {
1370 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1371 flush_ptrace_hw_breakpoint(current);
1372 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1373 set_debug_reg_defaults(&current->thread);
1374 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1375 }
1376
1377 void
1378 release_thread(struct task_struct *t)
1379 {
1380 }
1381
1382 /*
1383 * this gets called so that we can store coprocessor state into memory and
1384 * copy the current task into the new thread.
1385 */
1386 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1387 {
1388 flush_all_to_thread(src);
1389 /*
1390 * Flush TM state out so we can copy it. __switch_to_tm() does this
1391 * flush but it removes the checkpointed state from the current CPU and
1392 * transitions the CPU out of TM mode. Hence we need to call
1393 * tm_recheckpoint_new_task() (on the same task) to restore the
1394 * checkpointed state back and the TM mode.
1395 *
1396 * Can't pass dst because it isn't ready. Doesn't matter, passing
1397 * dst is only important for __switch_to()
1398 */
1399 __switch_to_tm(src, src);
1400
1401 *dst = *src;
1402
1403 clear_task_ebb(dst);
1404
1405 return 0;
1406 }
1407
1408 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1409 {
1410 #ifdef CONFIG_PPC_STD_MMU_64
1411 unsigned long sp_vsid;
1412 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1413
1414 if (radix_enabled())
1415 return;
1416
1417 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1418 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1419 << SLB_VSID_SHIFT_1T;
1420 else
1421 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1422 << SLB_VSID_SHIFT;
1423 sp_vsid |= SLB_VSID_KERNEL | llp;
1424 p->thread.ksp_vsid = sp_vsid;
1425 #endif
1426 }
1427
1428 /*
1429 * Copy a thread..
1430 */
1431
1432 /*
1433 * Copy architecture-specific thread state
1434 */
1435 int copy_thread(unsigned long clone_flags, unsigned long usp,
1436 unsigned long kthread_arg, struct task_struct *p)
1437 {
1438 struct pt_regs *childregs, *kregs;
1439 extern void ret_from_fork(void);
1440 extern void ret_from_kernel_thread(void);
1441 void (*f)(void);
1442 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1443 struct thread_info *ti = task_thread_info(p);
1444
1445 klp_init_thread_info(ti);
1446
1447 /* Copy registers */
1448 sp -= sizeof(struct pt_regs);
1449 childregs = (struct pt_regs *) sp;
1450 if (unlikely(p->flags & PF_KTHREAD)) {
1451 /* kernel thread */
1452 memset(childregs, 0, sizeof(struct pt_regs));
1453 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1454 /* function */
1455 if (usp)
1456 childregs->gpr[14] = ppc_function_entry((void *)usp);
1457 #ifdef CONFIG_PPC64
1458 clear_tsk_thread_flag(p, TIF_32BIT);
1459 childregs->softe = 1;
1460 #endif
1461 childregs->gpr[15] = kthread_arg;
1462 p->thread.regs = NULL; /* no user register state */
1463 ti->flags |= _TIF_RESTOREALL;
1464 f = ret_from_kernel_thread;
1465 } else {
1466 /* user thread */
1467 struct pt_regs *regs = current_pt_regs();
1468 CHECK_FULL_REGS(regs);
1469 *childregs = *regs;
1470 if (usp)
1471 childregs->gpr[1] = usp;
1472 p->thread.regs = childregs;
1473 childregs->gpr[3] = 0; /* Result from fork() */
1474 if (clone_flags & CLONE_SETTLS) {
1475 #ifdef CONFIG_PPC64
1476 if (!is_32bit_task())
1477 childregs->gpr[13] = childregs->gpr[6];
1478 else
1479 #endif
1480 childregs->gpr[2] = childregs->gpr[6];
1481 }
1482
1483 f = ret_from_fork;
1484 }
1485 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1486 sp -= STACK_FRAME_OVERHEAD;
1487
1488 /*
1489 * The way this works is that at some point in the future
1490 * some task will call _switch to switch to the new task.
1491 * That will pop off the stack frame created below and start
1492 * the new task running at ret_from_fork. The new task will
1493 * do some house keeping and then return from the fork or clone
1494 * system call, using the stack frame created above.
1495 */
1496 ((unsigned long *)sp)[0] = 0;
1497 sp -= sizeof(struct pt_regs);
1498 kregs = (struct pt_regs *) sp;
1499 sp -= STACK_FRAME_OVERHEAD;
1500 p->thread.ksp = sp;
1501 #ifdef CONFIG_PPC32
1502 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1503 _ALIGN_UP(sizeof(struct thread_info), 16);
1504 #endif
1505 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1506 p->thread.ptrace_bps[0] = NULL;
1507 #endif
1508
1509 p->thread.fp_save_area = NULL;
1510 #ifdef CONFIG_ALTIVEC
1511 p->thread.vr_save_area = NULL;
1512 #endif
1513
1514 setup_ksp_vsid(p, sp);
1515
1516 #ifdef CONFIG_PPC64
1517 if (cpu_has_feature(CPU_FTR_DSCR)) {
1518 p->thread.dscr_inherit = current->thread.dscr_inherit;
1519 p->thread.dscr = mfspr(SPRN_DSCR);
1520 }
1521 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1522 p->thread.ppr = INIT_PPR;
1523 #endif
1524 kregs->nip = ppc_function_entry(f);
1525 return 0;
1526 }
1527
1528 /*
1529 * Set up a thread for executing a new program
1530 */
1531 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1532 {
1533 #ifdef CONFIG_PPC64
1534 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1535 #endif
1536
1537 /*
1538 * If we exec out of a kernel thread then thread.regs will not be
1539 * set. Do it now.
1540 */
1541 if (!current->thread.regs) {
1542 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1543 current->thread.regs = regs - 1;
1544 }
1545
1546 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1547 /*
1548 * Clear any transactional state, we're exec()ing. The cause is
1549 * not important as there will never be a recheckpoint so it's not
1550 * user visible.
1551 */
1552 if (MSR_TM_SUSPENDED(mfmsr()))
1553 tm_reclaim_current(0);
1554 #endif
1555
1556 memset(regs->gpr, 0, sizeof(regs->gpr));
1557 regs->ctr = 0;
1558 regs->link = 0;
1559 regs->xer = 0;
1560 regs->ccr = 0;
1561 regs->gpr[1] = sp;
1562
1563 /*
1564 * We have just cleared all the nonvolatile GPRs, so make
1565 * FULL_REGS(regs) return true. This is necessary to allow
1566 * ptrace to examine the thread immediately after exec.
1567 */
1568 regs->trap &= ~1UL;
1569
1570 #ifdef CONFIG_PPC32
1571 regs->mq = 0;
1572 regs->nip = start;
1573 regs->msr = MSR_USER;
1574 #else
1575 if (!is_32bit_task()) {
1576 unsigned long entry;
1577
1578 if (is_elf2_task()) {
1579 /* Look ma, no function descriptors! */
1580 entry = start;
1581
1582 /*
1583 * Ulrich says:
1584 * The latest iteration of the ABI requires that when
1585 * calling a function (at its global entry point),
1586 * the caller must ensure r12 holds the entry point
1587 * address (so that the function can quickly
1588 * establish addressability).
1589 */
1590 regs->gpr[12] = start;
1591 /* Make sure that's restored on entry to userspace. */
1592 set_thread_flag(TIF_RESTOREALL);
1593 } else {
1594 unsigned long toc;
1595
1596 /* start is a relocated pointer to the function
1597 * descriptor for the elf _start routine. The first
1598 * entry in the function descriptor is the entry
1599 * address of _start and the second entry is the TOC
1600 * value we need to use.
1601 */
1602 __get_user(entry, (unsigned long __user *)start);
1603 __get_user(toc, (unsigned long __user *)start+1);
1604
1605 /* Check whether the e_entry function descriptor entries
1606 * need to be relocated before we can use them.
1607 */
1608 if (load_addr != 0) {
1609 entry += load_addr;
1610 toc += load_addr;
1611 }
1612 regs->gpr[2] = toc;
1613 }
1614 regs->nip = entry;
1615 regs->msr = MSR_USER64;
1616 } else {
1617 regs->nip = start;
1618 regs->gpr[2] = 0;
1619 regs->msr = MSR_USER32;
1620 }
1621 #endif
1622 #ifdef CONFIG_VSX
1623 current->thread.used_vsr = 0;
1624 #endif
1625 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1626 current->thread.fp_save_area = NULL;
1627 #ifdef CONFIG_ALTIVEC
1628 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1629 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1630 current->thread.vr_save_area = NULL;
1631 current->thread.vrsave = 0;
1632 current->thread.used_vr = 0;
1633 #endif /* CONFIG_ALTIVEC */
1634 #ifdef CONFIG_SPE
1635 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1636 current->thread.acc = 0;
1637 current->thread.spefscr = 0;
1638 current->thread.used_spe = 0;
1639 #endif /* CONFIG_SPE */
1640 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1641 current->thread.tm_tfhar = 0;
1642 current->thread.tm_texasr = 0;
1643 current->thread.tm_tfiar = 0;
1644 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1645 }
1646 EXPORT_SYMBOL(start_thread);
1647
1648 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1649 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1650
1651 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1652 {
1653 struct pt_regs *regs = tsk->thread.regs;
1654
1655 /* This is a bit hairy. If we are an SPE enabled processor
1656 * (have embedded fp) we store the IEEE exception enable flags in
1657 * fpexc_mode. fpexc_mode is also used for setting FP exception
1658 * mode (asyn, precise, disabled) for 'Classic' FP. */
1659 if (val & PR_FP_EXC_SW_ENABLE) {
1660 #ifdef CONFIG_SPE
1661 if (cpu_has_feature(CPU_FTR_SPE)) {
1662 /*
1663 * When the sticky exception bits are set
1664 * directly by userspace, it must call prctl
1665 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1666 * in the existing prctl settings) or
1667 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1668 * the bits being set). <fenv.h> functions
1669 * saving and restoring the whole
1670 * floating-point environment need to do so
1671 * anyway to restore the prctl settings from
1672 * the saved environment.
1673 */
1674 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1675 tsk->thread.fpexc_mode = val &
1676 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1677 return 0;
1678 } else {
1679 return -EINVAL;
1680 }
1681 #else
1682 return -EINVAL;
1683 #endif
1684 }
1685
1686 /* on a CONFIG_SPE this does not hurt us. The bits that
1687 * __pack_fe01 use do not overlap with bits used for
1688 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1689 * on CONFIG_SPE implementations are reserved so writing to
1690 * them does not change anything */
1691 if (val > PR_FP_EXC_PRECISE)
1692 return -EINVAL;
1693 tsk->thread.fpexc_mode = __pack_fe01(val);
1694 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1695 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1696 | tsk->thread.fpexc_mode;
1697 return 0;
1698 }
1699
1700 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1701 {
1702 unsigned int val;
1703
1704 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1705 #ifdef CONFIG_SPE
1706 if (cpu_has_feature(CPU_FTR_SPE)) {
1707 /*
1708 * When the sticky exception bits are set
1709 * directly by userspace, it must call prctl
1710 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1711 * in the existing prctl settings) or
1712 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1713 * the bits being set). <fenv.h> functions
1714 * saving and restoring the whole
1715 * floating-point environment need to do so
1716 * anyway to restore the prctl settings from
1717 * the saved environment.
1718 */
1719 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1720 val = tsk->thread.fpexc_mode;
1721 } else
1722 return -EINVAL;
1723 #else
1724 return -EINVAL;
1725 #endif
1726 else
1727 val = __unpack_fe01(tsk->thread.fpexc_mode);
1728 return put_user(val, (unsigned int __user *) adr);
1729 }
1730
1731 int set_endian(struct task_struct *tsk, unsigned int val)
1732 {
1733 struct pt_regs *regs = tsk->thread.regs;
1734
1735 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1736 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1737 return -EINVAL;
1738
1739 if (regs == NULL)
1740 return -EINVAL;
1741
1742 if (val == PR_ENDIAN_BIG)
1743 regs->msr &= ~MSR_LE;
1744 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1745 regs->msr |= MSR_LE;
1746 else
1747 return -EINVAL;
1748
1749 return 0;
1750 }
1751
1752 int get_endian(struct task_struct *tsk, unsigned long adr)
1753 {
1754 struct pt_regs *regs = tsk->thread.regs;
1755 unsigned int val;
1756
1757 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1758 !cpu_has_feature(CPU_FTR_REAL_LE))
1759 return -EINVAL;
1760
1761 if (regs == NULL)
1762 return -EINVAL;
1763
1764 if (regs->msr & MSR_LE) {
1765 if (cpu_has_feature(CPU_FTR_REAL_LE))
1766 val = PR_ENDIAN_LITTLE;
1767 else
1768 val = PR_ENDIAN_PPC_LITTLE;
1769 } else
1770 val = PR_ENDIAN_BIG;
1771
1772 return put_user(val, (unsigned int __user *)adr);
1773 }
1774
1775 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1776 {
1777 tsk->thread.align_ctl = val;
1778 return 0;
1779 }
1780
1781 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1782 {
1783 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1784 }
1785
1786 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1787 unsigned long nbytes)
1788 {
1789 unsigned long stack_page;
1790 unsigned long cpu = task_cpu(p);
1791
1792 /*
1793 * Avoid crashing if the stack has overflowed and corrupted
1794 * task_cpu(p), which is in the thread_info struct.
1795 */
1796 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1797 stack_page = (unsigned long) hardirq_ctx[cpu];
1798 if (sp >= stack_page + sizeof(struct thread_struct)
1799 && sp <= stack_page + THREAD_SIZE - nbytes)
1800 return 1;
1801
1802 stack_page = (unsigned long) softirq_ctx[cpu];
1803 if (sp >= stack_page + sizeof(struct thread_struct)
1804 && sp <= stack_page + THREAD_SIZE - nbytes)
1805 return 1;
1806 }
1807 return 0;
1808 }
1809
1810 int validate_sp(unsigned long sp, struct task_struct *p,
1811 unsigned long nbytes)
1812 {
1813 unsigned long stack_page = (unsigned long)task_stack_page(p);
1814
1815 if (sp >= stack_page + sizeof(struct thread_struct)
1816 && sp <= stack_page + THREAD_SIZE - nbytes)
1817 return 1;
1818
1819 return valid_irq_stack(sp, p, nbytes);
1820 }
1821
1822 EXPORT_SYMBOL(validate_sp);
1823
1824 unsigned long get_wchan(struct task_struct *p)
1825 {
1826 unsigned long ip, sp;
1827 int count = 0;
1828
1829 if (!p || p == current || p->state == TASK_RUNNING)
1830 return 0;
1831
1832 sp = p->thread.ksp;
1833 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1834 return 0;
1835
1836 do {
1837 sp = *(unsigned long *)sp;
1838 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1839 return 0;
1840 if (count > 0) {
1841 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1842 if (!in_sched_functions(ip))
1843 return ip;
1844 }
1845 } while (count++ < 16);
1846 return 0;
1847 }
1848
1849 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1850
1851 void show_stack(struct task_struct *tsk, unsigned long *stack)
1852 {
1853 unsigned long sp, ip, lr, newsp;
1854 int count = 0;
1855 int firstframe = 1;
1856 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1857 int curr_frame = current->curr_ret_stack;
1858 extern void return_to_handler(void);
1859 unsigned long rth = (unsigned long)return_to_handler;
1860 #endif
1861
1862 sp = (unsigned long) stack;
1863 if (tsk == NULL)
1864 tsk = current;
1865 if (sp == 0) {
1866 if (tsk == current)
1867 sp = current_stack_pointer();
1868 else
1869 sp = tsk->thread.ksp;
1870 }
1871
1872 lr = 0;
1873 printk("Call Trace:\n");
1874 do {
1875 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1876 return;
1877
1878 stack = (unsigned long *) sp;
1879 newsp = stack[0];
1880 ip = stack[STACK_FRAME_LR_SAVE];
1881 if (!firstframe || ip != lr) {
1882 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1883 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1884 if ((ip == rth) && curr_frame >= 0) {
1885 pr_cont(" (%pS)",
1886 (void *)current->ret_stack[curr_frame].ret);
1887 curr_frame--;
1888 }
1889 #endif
1890 if (firstframe)
1891 pr_cont(" (unreliable)");
1892 pr_cont("\n");
1893 }
1894 firstframe = 0;
1895
1896 /*
1897 * See if this is an exception frame.
1898 * We look for the "regshere" marker in the current frame.
1899 */
1900 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1901 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1902 struct pt_regs *regs = (struct pt_regs *)
1903 (sp + STACK_FRAME_OVERHEAD);
1904 lr = regs->link;
1905 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1906 regs->trap, (void *)regs->nip, (void *)lr);
1907 firstframe = 1;
1908 }
1909
1910 sp = newsp;
1911 } while (count++ < kstack_depth_to_print);
1912 }
1913
1914 #ifdef CONFIG_PPC64
1915 /* Called with hard IRQs off */
1916 void notrace __ppc64_runlatch_on(void)
1917 {
1918 struct thread_info *ti = current_thread_info();
1919 unsigned long ctrl;
1920
1921 ctrl = mfspr(SPRN_CTRLF);
1922 ctrl |= CTRL_RUNLATCH;
1923 mtspr(SPRN_CTRLT, ctrl);
1924
1925 ti->local_flags |= _TLF_RUNLATCH;
1926 }
1927
1928 /* Called with hard IRQs off */
1929 void notrace __ppc64_runlatch_off(void)
1930 {
1931 struct thread_info *ti = current_thread_info();
1932 unsigned long ctrl;
1933
1934 ti->local_flags &= ~_TLF_RUNLATCH;
1935
1936 ctrl = mfspr(SPRN_CTRLF);
1937 ctrl &= ~CTRL_RUNLATCH;
1938 mtspr(SPRN_CTRLT, ctrl);
1939 }
1940 #endif /* CONFIG_PPC64 */
1941
1942 unsigned long arch_align_stack(unsigned long sp)
1943 {
1944 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1945 sp -= get_random_int() & ~PAGE_MASK;
1946 return sp & ~0xf;
1947 }
1948
1949 static inline unsigned long brk_rnd(void)
1950 {
1951 unsigned long rnd = 0;
1952
1953 /* 8MB for 32bit, 1GB for 64bit */
1954 if (is_32bit_task())
1955 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1956 else
1957 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1958
1959 return rnd << PAGE_SHIFT;
1960 }
1961
1962 unsigned long arch_randomize_brk(struct mm_struct *mm)
1963 {
1964 unsigned long base = mm->brk;
1965 unsigned long ret;
1966
1967 #ifdef CONFIG_PPC_STD_MMU_64
1968 /*
1969 * If we are using 1TB segments and we are allowed to randomise
1970 * the heap, we can put it above 1TB so it is backed by a 1TB
1971 * segment. Otherwise the heap will be in the bottom 1TB
1972 * which always uses 256MB segments and this may result in a
1973 * performance penalty. We don't need to worry about radix. For
1974 * radix, mmu_highuser_ssize remains unchanged from 256MB.
1975 */
1976 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1977 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1978 #endif
1979
1980 ret = PAGE_ALIGN(base + brk_rnd());
1981
1982 if (ret < mm->brk)
1983 return mm->brk;
1984
1985 return ret;
1986 }
1987