]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/process.c
[POWERPC] Fix backwards ? : when printing machine type
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / process.c
1 /*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/smp_lock.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/slab.h>
27 #include <linux/user.h>
28 #include <linux/elf.h>
29 #include <linux/init.h>
30 #include <linux/prctl.h>
31 #include <linux/init_task.h>
32 #include <linux/module.h>
33 #include <linux/kallsyms.h>
34 #include <linux/mqueue.h>
35 #include <linux/hardirq.h>
36 #include <linux/utsname.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/mmu.h>
44 #include <asm/prom.h>
45 #include <asm/machdep.h>
46 #include <asm/time.h>
47 #include <asm/syscalls.h>
48 #ifdef CONFIG_PPC64
49 #include <asm/firmware.h>
50 #endif
51
52 extern unsigned long _get_SP(void);
53
54 #ifndef CONFIG_SMP
55 struct task_struct *last_task_used_math = NULL;
56 struct task_struct *last_task_used_altivec = NULL;
57 struct task_struct *last_task_used_spe = NULL;
58 #endif
59
60 /*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64 void flush_fp_to_thread(struct task_struct *tsk)
65 {
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77 #ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86 #endif
87 giveup_fpu(current);
88 }
89 preempt_enable();
90 }
91 }
92
93 void enable_kernel_fp(void)
94 {
95 WARN_ON(preemptible());
96
97 #ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102 #else
103 giveup_fpu(last_task_used_math);
104 #endif /* CONFIG_SMP */
105 }
106 EXPORT_SYMBOL(enable_kernel_fp);
107
108 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109 {
110 if (!tsk->thread.regs)
111 return 0;
112 flush_fp_to_thread(current);
113
114 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
115
116 return 1;
117 }
118
119 #ifdef CONFIG_ALTIVEC
120 void enable_kernel_altivec(void)
121 {
122 WARN_ON(preemptible());
123
124 #ifdef CONFIG_SMP
125 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
126 giveup_altivec(current);
127 else
128 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
129 #else
130 giveup_altivec(last_task_used_altivec);
131 #endif /* CONFIG_SMP */
132 }
133 EXPORT_SYMBOL(enable_kernel_altivec);
134
135 /*
136 * Make sure the VMX/Altivec register state in the
137 * the thread_struct is up to date for task tsk.
138 */
139 void flush_altivec_to_thread(struct task_struct *tsk)
140 {
141 if (tsk->thread.regs) {
142 preempt_disable();
143 if (tsk->thread.regs->msr & MSR_VEC) {
144 #ifdef CONFIG_SMP
145 BUG_ON(tsk != current);
146 #endif
147 giveup_altivec(current);
148 }
149 preempt_enable();
150 }
151 }
152
153 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
154 {
155 flush_altivec_to_thread(current);
156 memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
157 return 1;
158 }
159 #endif /* CONFIG_ALTIVEC */
160
161 #ifdef CONFIG_SPE
162
163 void enable_kernel_spe(void)
164 {
165 WARN_ON(preemptible());
166
167 #ifdef CONFIG_SMP
168 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
169 giveup_spe(current);
170 else
171 giveup_spe(NULL); /* just enable SPE for kernel - force */
172 #else
173 giveup_spe(last_task_used_spe);
174 #endif /* __SMP __ */
175 }
176 EXPORT_SYMBOL(enable_kernel_spe);
177
178 void flush_spe_to_thread(struct task_struct *tsk)
179 {
180 if (tsk->thread.regs) {
181 preempt_disable();
182 if (tsk->thread.regs->msr & MSR_SPE) {
183 #ifdef CONFIG_SMP
184 BUG_ON(tsk != current);
185 #endif
186 giveup_spe(current);
187 }
188 preempt_enable();
189 }
190 }
191
192 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
193 {
194 flush_spe_to_thread(current);
195 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
196 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
197 return 1;
198 }
199 #endif /* CONFIG_SPE */
200
201 #ifndef CONFIG_SMP
202 /*
203 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
204 * and the current task has some state, discard it.
205 */
206 void discard_lazy_cpu_state(void)
207 {
208 preempt_disable();
209 if (last_task_used_math == current)
210 last_task_used_math = NULL;
211 #ifdef CONFIG_ALTIVEC
212 if (last_task_used_altivec == current)
213 last_task_used_altivec = NULL;
214 #endif /* CONFIG_ALTIVEC */
215 #ifdef CONFIG_SPE
216 if (last_task_used_spe == current)
217 last_task_used_spe = NULL;
218 #endif
219 preempt_enable();
220 }
221 #endif /* CONFIG_SMP */
222
223 #ifdef CONFIG_PPC_MERGE /* XXX for now */
224 int set_dabr(unsigned long dabr)
225 {
226 if (ppc_md.set_dabr)
227 return ppc_md.set_dabr(dabr);
228
229 mtspr(SPRN_DABR, dabr);
230 return 0;
231 }
232 #endif
233
234 #ifdef CONFIG_PPC64
235 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
236 static DEFINE_PER_CPU(unsigned long, current_dabr);
237 #endif
238
239 struct task_struct *__switch_to(struct task_struct *prev,
240 struct task_struct *new)
241 {
242 struct thread_struct *new_thread, *old_thread;
243 unsigned long flags;
244 struct task_struct *last;
245
246 #ifdef CONFIG_SMP
247 /* avoid complexity of lazy save/restore of fpu
248 * by just saving it every time we switch out if
249 * this task used the fpu during the last quantum.
250 *
251 * If it tries to use the fpu again, it'll trap and
252 * reload its fp regs. So we don't have to do a restore
253 * every switch, just a save.
254 * -- Cort
255 */
256 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
257 giveup_fpu(prev);
258 #ifdef CONFIG_ALTIVEC
259 /*
260 * If the previous thread used altivec in the last quantum
261 * (thus changing altivec regs) then save them.
262 * We used to check the VRSAVE register but not all apps
263 * set it, so we don't rely on it now (and in fact we need
264 * to save & restore VSCR even if VRSAVE == 0). -- paulus
265 *
266 * On SMP we always save/restore altivec regs just to avoid the
267 * complexity of changing processors.
268 * -- Cort
269 */
270 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
271 giveup_altivec(prev);
272 #endif /* CONFIG_ALTIVEC */
273 #ifdef CONFIG_SPE
274 /*
275 * If the previous thread used spe in the last quantum
276 * (thus changing spe regs) then save them.
277 *
278 * On SMP we always save/restore spe regs just to avoid the
279 * complexity of changing processors.
280 */
281 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
282 giveup_spe(prev);
283 #endif /* CONFIG_SPE */
284
285 #else /* CONFIG_SMP */
286 #ifdef CONFIG_ALTIVEC
287 /* Avoid the trap. On smp this this never happens since
288 * we don't set last_task_used_altivec -- Cort
289 */
290 if (new->thread.regs && last_task_used_altivec == new)
291 new->thread.regs->msr |= MSR_VEC;
292 #endif /* CONFIG_ALTIVEC */
293 #ifdef CONFIG_SPE
294 /* Avoid the trap. On smp this this never happens since
295 * we don't set last_task_used_spe
296 */
297 if (new->thread.regs && last_task_used_spe == new)
298 new->thread.regs->msr |= MSR_SPE;
299 #endif /* CONFIG_SPE */
300
301 #endif /* CONFIG_SMP */
302
303 #ifdef CONFIG_PPC64 /* for now */
304 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
305 set_dabr(new->thread.dabr);
306 __get_cpu_var(current_dabr) = new->thread.dabr;
307 }
308
309 flush_tlb_pending();
310 #endif
311
312 new_thread = &new->thread;
313 old_thread = &current->thread;
314
315 #ifdef CONFIG_PPC64
316 /*
317 * Collect processor utilization data per process
318 */
319 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
320 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
321 long unsigned start_tb, current_tb;
322 start_tb = old_thread->start_tb;
323 cu->current_tb = current_tb = mfspr(SPRN_PURR);
324 old_thread->accum_tb += (current_tb - start_tb);
325 new_thread->start_tb = current_tb;
326 }
327 #endif
328
329 local_irq_save(flags);
330
331 account_system_vtime(current);
332 account_process_vtime(current);
333 calculate_steal_time();
334
335 last = _switch(old_thread, new_thread);
336
337 local_irq_restore(flags);
338
339 return last;
340 }
341
342 static int instructions_to_print = 16;
343
344 static void show_instructions(struct pt_regs *regs)
345 {
346 int i;
347 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
348 sizeof(int));
349
350 printk("Instruction dump:");
351
352 for (i = 0; i < instructions_to_print; i++) {
353 int instr;
354
355 if (!(i % 8))
356 printk("\n");
357
358 /* We use __get_user here *only* to avoid an OOPS on a
359 * bad address because the pc *should* only be a
360 * kernel address.
361 */
362 if (!__kernel_text_address(pc) ||
363 __get_user(instr, (unsigned int __user *)pc)) {
364 printk("XXXXXXXX ");
365 } else {
366 if (regs->nip == pc)
367 printk("<%08x> ", instr);
368 else
369 printk("%08x ", instr);
370 }
371
372 pc += sizeof(int);
373 }
374
375 printk("\n");
376 }
377
378 static struct regbit {
379 unsigned long bit;
380 const char *name;
381 } msr_bits[] = {
382 {MSR_EE, "EE"},
383 {MSR_PR, "PR"},
384 {MSR_FP, "FP"},
385 {MSR_ME, "ME"},
386 {MSR_IR, "IR"},
387 {MSR_DR, "DR"},
388 {0, NULL}
389 };
390
391 static void printbits(unsigned long val, struct regbit *bits)
392 {
393 const char *sep = "";
394
395 printk("<");
396 for (; bits->bit; ++bits)
397 if (val & bits->bit) {
398 printk("%s%s", sep, bits->name);
399 sep = ",";
400 }
401 printk(">");
402 }
403
404 #ifdef CONFIG_PPC64
405 #define REG "%016lX"
406 #define REGS_PER_LINE 4
407 #define LAST_VOLATILE 13
408 #else
409 #define REG "%08lX"
410 #define REGS_PER_LINE 8
411 #define LAST_VOLATILE 12
412 #endif
413
414 void show_regs(struct pt_regs * regs)
415 {
416 int i, trap;
417
418 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
419 regs->nip, regs->link, regs->ctr);
420 printk("REGS: %p TRAP: %04lx %s (%s)\n",
421 regs, regs->trap, print_tainted(), init_utsname()->release);
422 printk("MSR: "REG" ", regs->msr);
423 printbits(regs->msr, msr_bits);
424 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer);
425 trap = TRAP(regs);
426 if (trap == 0x300 || trap == 0x600)
427 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
428 printk("TASK = %p[%d] '%s' THREAD: %p",
429 current, current->pid, current->comm, task_thread_info(current));
430
431 #ifdef CONFIG_SMP
432 printk(" CPU: %d", smp_processor_id());
433 #endif /* CONFIG_SMP */
434
435 for (i = 0; i < 32; i++) {
436 if ((i % REGS_PER_LINE) == 0)
437 printk("\n" KERN_INFO "GPR%02d: ", i);
438 printk(REG " ", regs->gpr[i]);
439 if (i == LAST_VOLATILE && !FULL_REGS(regs))
440 break;
441 }
442 printk("\n");
443 #ifdef CONFIG_KALLSYMS
444 /*
445 * Lookup NIP late so we have the best change of getting the
446 * above info out without failing
447 */
448 printk("NIP ["REG"] ", regs->nip);
449 print_symbol("%s\n", regs->nip);
450 printk("LR ["REG"] ", regs->link);
451 print_symbol("%s\n", regs->link);
452 #endif
453 show_stack(current, (unsigned long *) regs->gpr[1]);
454 if (!user_mode(regs))
455 show_instructions(regs);
456 }
457
458 void exit_thread(void)
459 {
460 discard_lazy_cpu_state();
461 }
462
463 void flush_thread(void)
464 {
465 #ifdef CONFIG_PPC64
466 struct thread_info *t = current_thread_info();
467
468 if (t->flags & _TIF_ABI_PENDING)
469 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
470 #endif
471
472 discard_lazy_cpu_state();
473
474 #ifdef CONFIG_PPC64 /* for now */
475 if (current->thread.dabr) {
476 current->thread.dabr = 0;
477 set_dabr(0);
478 }
479 #endif
480 }
481
482 void
483 release_thread(struct task_struct *t)
484 {
485 }
486
487 /*
488 * This gets called before we allocate a new thread and copy
489 * the current task into it.
490 */
491 void prepare_to_copy(struct task_struct *tsk)
492 {
493 flush_fp_to_thread(current);
494 flush_altivec_to_thread(current);
495 flush_spe_to_thread(current);
496 }
497
498 /*
499 * Copy a thread..
500 */
501 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
502 unsigned long unused, struct task_struct *p,
503 struct pt_regs *regs)
504 {
505 struct pt_regs *childregs, *kregs;
506 extern void ret_from_fork(void);
507 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
508
509 CHECK_FULL_REGS(regs);
510 /* Copy registers */
511 sp -= sizeof(struct pt_regs);
512 childregs = (struct pt_regs *) sp;
513 *childregs = *regs;
514 if ((childregs->msr & MSR_PR) == 0) {
515 /* for kernel thread, set `current' and stackptr in new task */
516 childregs->gpr[1] = sp + sizeof(struct pt_regs);
517 #ifdef CONFIG_PPC32
518 childregs->gpr[2] = (unsigned long) p;
519 #else
520 clear_tsk_thread_flag(p, TIF_32BIT);
521 #endif
522 p->thread.regs = NULL; /* no user register state */
523 } else {
524 childregs->gpr[1] = usp;
525 p->thread.regs = childregs;
526 if (clone_flags & CLONE_SETTLS) {
527 #ifdef CONFIG_PPC64
528 if (!test_thread_flag(TIF_32BIT))
529 childregs->gpr[13] = childregs->gpr[6];
530 else
531 #endif
532 childregs->gpr[2] = childregs->gpr[6];
533 }
534 }
535 childregs->gpr[3] = 0; /* Result from fork() */
536 sp -= STACK_FRAME_OVERHEAD;
537
538 /*
539 * The way this works is that at some point in the future
540 * some task will call _switch to switch to the new task.
541 * That will pop off the stack frame created below and start
542 * the new task running at ret_from_fork. The new task will
543 * do some house keeping and then return from the fork or clone
544 * system call, using the stack frame created above.
545 */
546 sp -= sizeof(struct pt_regs);
547 kregs = (struct pt_regs *) sp;
548 sp -= STACK_FRAME_OVERHEAD;
549 p->thread.ksp = sp;
550
551 #ifdef CONFIG_PPC64
552 if (cpu_has_feature(CPU_FTR_SLB)) {
553 unsigned long sp_vsid = get_kernel_vsid(sp);
554 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
555
556 sp_vsid <<= SLB_VSID_SHIFT;
557 sp_vsid |= SLB_VSID_KERNEL | llp;
558 p->thread.ksp_vsid = sp_vsid;
559 }
560
561 /*
562 * The PPC64 ABI makes use of a TOC to contain function
563 * pointers. The function (ret_from_except) is actually a pointer
564 * to the TOC entry. The first entry is a pointer to the actual
565 * function.
566 */
567 kregs->nip = *((unsigned long *)ret_from_fork);
568 #else
569 kregs->nip = (unsigned long)ret_from_fork;
570 #endif
571
572 return 0;
573 }
574
575 /*
576 * Set up a thread for executing a new program
577 */
578 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
579 {
580 #ifdef CONFIG_PPC64
581 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
582 #endif
583
584 set_fs(USER_DS);
585
586 /*
587 * If we exec out of a kernel thread then thread.regs will not be
588 * set. Do it now.
589 */
590 if (!current->thread.regs) {
591 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
592 current->thread.regs = regs - 1;
593 }
594
595 memset(regs->gpr, 0, sizeof(regs->gpr));
596 regs->ctr = 0;
597 regs->link = 0;
598 regs->xer = 0;
599 regs->ccr = 0;
600 regs->gpr[1] = sp;
601
602 #ifdef CONFIG_PPC32
603 regs->mq = 0;
604 regs->nip = start;
605 regs->msr = MSR_USER;
606 #else
607 if (!test_thread_flag(TIF_32BIT)) {
608 unsigned long entry, toc;
609
610 /* start is a relocated pointer to the function descriptor for
611 * the elf _start routine. The first entry in the function
612 * descriptor is the entry address of _start and the second
613 * entry is the TOC value we need to use.
614 */
615 __get_user(entry, (unsigned long __user *)start);
616 __get_user(toc, (unsigned long __user *)start+1);
617
618 /* Check whether the e_entry function descriptor entries
619 * need to be relocated before we can use them.
620 */
621 if (load_addr != 0) {
622 entry += load_addr;
623 toc += load_addr;
624 }
625 regs->nip = entry;
626 regs->gpr[2] = toc;
627 regs->msr = MSR_USER64;
628 } else {
629 regs->nip = start;
630 regs->gpr[2] = 0;
631 regs->msr = MSR_USER32;
632 }
633 #endif
634
635 discard_lazy_cpu_state();
636 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
637 current->thread.fpscr.val = 0;
638 #ifdef CONFIG_ALTIVEC
639 memset(current->thread.vr, 0, sizeof(current->thread.vr));
640 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
641 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
642 current->thread.vrsave = 0;
643 current->thread.used_vr = 0;
644 #endif /* CONFIG_ALTIVEC */
645 #ifdef CONFIG_SPE
646 memset(current->thread.evr, 0, sizeof(current->thread.evr));
647 current->thread.acc = 0;
648 current->thread.spefscr = 0;
649 current->thread.used_spe = 0;
650 #endif /* CONFIG_SPE */
651 }
652
653 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
654 | PR_FP_EXC_RES | PR_FP_EXC_INV)
655
656 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
657 {
658 struct pt_regs *regs = tsk->thread.regs;
659
660 /* This is a bit hairy. If we are an SPE enabled processor
661 * (have embedded fp) we store the IEEE exception enable flags in
662 * fpexc_mode. fpexc_mode is also used for setting FP exception
663 * mode (asyn, precise, disabled) for 'Classic' FP. */
664 if (val & PR_FP_EXC_SW_ENABLE) {
665 #ifdef CONFIG_SPE
666 tsk->thread.fpexc_mode = val &
667 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
668 return 0;
669 #else
670 return -EINVAL;
671 #endif
672 }
673
674 /* on a CONFIG_SPE this does not hurt us. The bits that
675 * __pack_fe01 use do not overlap with bits used for
676 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
677 * on CONFIG_SPE implementations are reserved so writing to
678 * them does not change anything */
679 if (val > PR_FP_EXC_PRECISE)
680 return -EINVAL;
681 tsk->thread.fpexc_mode = __pack_fe01(val);
682 if (regs != NULL && (regs->msr & MSR_FP) != 0)
683 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
684 | tsk->thread.fpexc_mode;
685 return 0;
686 }
687
688 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
689 {
690 unsigned int val;
691
692 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
693 #ifdef CONFIG_SPE
694 val = tsk->thread.fpexc_mode;
695 #else
696 return -EINVAL;
697 #endif
698 else
699 val = __unpack_fe01(tsk->thread.fpexc_mode);
700 return put_user(val, (unsigned int __user *) adr);
701 }
702
703 int set_endian(struct task_struct *tsk, unsigned int val)
704 {
705 struct pt_regs *regs = tsk->thread.regs;
706
707 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
708 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
709 return -EINVAL;
710
711 if (regs == NULL)
712 return -EINVAL;
713
714 if (val == PR_ENDIAN_BIG)
715 regs->msr &= ~MSR_LE;
716 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
717 regs->msr |= MSR_LE;
718 else
719 return -EINVAL;
720
721 return 0;
722 }
723
724 int get_endian(struct task_struct *tsk, unsigned long adr)
725 {
726 struct pt_regs *regs = tsk->thread.regs;
727 unsigned int val;
728
729 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
730 !cpu_has_feature(CPU_FTR_REAL_LE))
731 return -EINVAL;
732
733 if (regs == NULL)
734 return -EINVAL;
735
736 if (regs->msr & MSR_LE) {
737 if (cpu_has_feature(CPU_FTR_REAL_LE))
738 val = PR_ENDIAN_LITTLE;
739 else
740 val = PR_ENDIAN_PPC_LITTLE;
741 } else
742 val = PR_ENDIAN_BIG;
743
744 return put_user(val, (unsigned int __user *)adr);
745 }
746
747 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
748 {
749 tsk->thread.align_ctl = val;
750 return 0;
751 }
752
753 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
754 {
755 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
756 }
757
758 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
759
760 int sys_clone(unsigned long clone_flags, unsigned long usp,
761 int __user *parent_tidp, void __user *child_threadptr,
762 int __user *child_tidp, int p6,
763 struct pt_regs *regs)
764 {
765 CHECK_FULL_REGS(regs);
766 if (usp == 0)
767 usp = regs->gpr[1]; /* stack pointer for child */
768 #ifdef CONFIG_PPC64
769 if (test_thread_flag(TIF_32BIT)) {
770 parent_tidp = TRUNC_PTR(parent_tidp);
771 child_tidp = TRUNC_PTR(child_tidp);
772 }
773 #endif
774 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
775 }
776
777 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
778 unsigned long p4, unsigned long p5, unsigned long p6,
779 struct pt_regs *regs)
780 {
781 CHECK_FULL_REGS(regs);
782 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
783 }
784
785 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
786 unsigned long p4, unsigned long p5, unsigned long p6,
787 struct pt_regs *regs)
788 {
789 CHECK_FULL_REGS(regs);
790 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
791 regs, 0, NULL, NULL);
792 }
793
794 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
795 unsigned long a3, unsigned long a4, unsigned long a5,
796 struct pt_regs *regs)
797 {
798 int error;
799 char *filename;
800
801 filename = getname((char __user *) a0);
802 error = PTR_ERR(filename);
803 if (IS_ERR(filename))
804 goto out;
805 flush_fp_to_thread(current);
806 flush_altivec_to_thread(current);
807 flush_spe_to_thread(current);
808 error = do_execve(filename, (char __user * __user *) a1,
809 (char __user * __user *) a2, regs);
810 if (error == 0) {
811 task_lock(current);
812 current->ptrace &= ~PT_DTRACE;
813 task_unlock(current);
814 }
815 putname(filename);
816 out:
817 return error;
818 }
819
820 #ifdef CONFIG_IRQSTACKS
821 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
822 unsigned long nbytes)
823 {
824 unsigned long stack_page;
825 unsigned long cpu = task_cpu(p);
826
827 /*
828 * Avoid crashing if the stack has overflowed and corrupted
829 * task_cpu(p), which is in the thread_info struct.
830 */
831 if (cpu < NR_CPUS && cpu_possible(cpu)) {
832 stack_page = (unsigned long) hardirq_ctx[cpu];
833 if (sp >= stack_page + sizeof(struct thread_struct)
834 && sp <= stack_page + THREAD_SIZE - nbytes)
835 return 1;
836
837 stack_page = (unsigned long) softirq_ctx[cpu];
838 if (sp >= stack_page + sizeof(struct thread_struct)
839 && sp <= stack_page + THREAD_SIZE - nbytes)
840 return 1;
841 }
842 return 0;
843 }
844
845 #else
846 #define valid_irq_stack(sp, p, nb) 0
847 #endif /* CONFIG_IRQSTACKS */
848
849 int validate_sp(unsigned long sp, struct task_struct *p,
850 unsigned long nbytes)
851 {
852 unsigned long stack_page = (unsigned long)task_stack_page(p);
853
854 if (sp >= stack_page + sizeof(struct thread_struct)
855 && sp <= stack_page + THREAD_SIZE - nbytes)
856 return 1;
857
858 return valid_irq_stack(sp, p, nbytes);
859 }
860
861 #ifdef CONFIG_PPC64
862 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */
863 #define FRAME_LR_SAVE 2
864 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
865 #define REGS_MARKER 0x7265677368657265ul
866 #define FRAME_MARKER 12
867 #else
868 #define MIN_STACK_FRAME 16
869 #define FRAME_LR_SAVE 1
870 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
871 #define REGS_MARKER 0x72656773ul
872 #define FRAME_MARKER 2
873 #endif
874
875 EXPORT_SYMBOL(validate_sp);
876
877 unsigned long get_wchan(struct task_struct *p)
878 {
879 unsigned long ip, sp;
880 int count = 0;
881
882 if (!p || p == current || p->state == TASK_RUNNING)
883 return 0;
884
885 sp = p->thread.ksp;
886 if (!validate_sp(sp, p, MIN_STACK_FRAME))
887 return 0;
888
889 do {
890 sp = *(unsigned long *)sp;
891 if (!validate_sp(sp, p, MIN_STACK_FRAME))
892 return 0;
893 if (count > 0) {
894 ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
895 if (!in_sched_functions(ip))
896 return ip;
897 }
898 } while (count++ < 16);
899 return 0;
900 }
901
902 static int kstack_depth_to_print = 64;
903
904 void show_stack(struct task_struct *tsk, unsigned long *stack)
905 {
906 unsigned long sp, ip, lr, newsp;
907 int count = 0;
908 int firstframe = 1;
909
910 sp = (unsigned long) stack;
911 if (tsk == NULL)
912 tsk = current;
913 if (sp == 0) {
914 if (tsk == current)
915 asm("mr %0,1" : "=r" (sp));
916 else
917 sp = tsk->thread.ksp;
918 }
919
920 lr = 0;
921 printk("Call Trace:\n");
922 do {
923 if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
924 return;
925
926 stack = (unsigned long *) sp;
927 newsp = stack[0];
928 ip = stack[FRAME_LR_SAVE];
929 if (!firstframe || ip != lr) {
930 printk("["REG"] ["REG"] ", sp, ip);
931 print_symbol("%s", ip);
932 if (firstframe)
933 printk(" (unreliable)");
934 printk("\n");
935 }
936 firstframe = 0;
937
938 /*
939 * See if this is an exception frame.
940 * We look for the "regshere" marker in the current frame.
941 */
942 if (validate_sp(sp, tsk, INT_FRAME_SIZE)
943 && stack[FRAME_MARKER] == REGS_MARKER) {
944 struct pt_regs *regs = (struct pt_regs *)
945 (sp + STACK_FRAME_OVERHEAD);
946 printk("--- Exception: %lx", regs->trap);
947 print_symbol(" at %s\n", regs->nip);
948 lr = regs->link;
949 print_symbol(" LR = %s\n", lr);
950 firstframe = 1;
951 }
952
953 sp = newsp;
954 } while (count++ < kstack_depth_to_print);
955 }
956
957 void dump_stack(void)
958 {
959 show_stack(current, NULL);
960 }
961 EXPORT_SYMBOL(dump_stack);
962
963 #ifdef CONFIG_PPC64
964 void ppc64_runlatch_on(void)
965 {
966 unsigned long ctrl;
967
968 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
969 HMT_medium();
970
971 ctrl = mfspr(SPRN_CTRLF);
972 ctrl |= CTRL_RUNLATCH;
973 mtspr(SPRN_CTRLT, ctrl);
974
975 set_thread_flag(TIF_RUNLATCH);
976 }
977 }
978
979 void ppc64_runlatch_off(void)
980 {
981 unsigned long ctrl;
982
983 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
984 HMT_medium();
985
986 clear_thread_flag(TIF_RUNLATCH);
987
988 ctrl = mfspr(SPRN_CTRLF);
989 ctrl &= ~CTRL_RUNLATCH;
990 mtspr(SPRN_CTRLT, ctrl);
991 }
992 }
993 #endif