]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/prom.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / prom.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/export.h>
31 #include <linux/kexec.h>
32 #include <linux/irq.h>
33 #include <linux/memblock.h>
34 #include <linux/of.h>
35 #include <linux/of_fdt.h>
36 #include <linux/libfdt.h>
37 #include <linux/cpu.h>
38
39 #include <asm/prom.h>
40 #include <asm/rtas.h>
41 #include <asm/page.h>
42 #include <asm/processor.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/kdump.h>
46 #include <asm/smp.h>
47 #include <asm/mmu.h>
48 #include <asm/paca.h>
49 #include <asm/pgtable.h>
50 #include <asm/iommu.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/kexec.h>
56 #include <asm/opal.h>
57 #include <asm/fadump.h>
58 #include <asm/epapr_hcalls.h>
59 #include <asm/firmware.h>
60 #include <asm/dt_cpu_ftrs.h>
61
62 #include <mm/mmu_decl.h>
63
64 #ifdef DEBUG
65 #define DBG(fmt...) printk(KERN_ERR fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef CONFIG_PPC64
71 int __initdata iommu_is_off;
72 int __initdata iommu_force_on;
73 unsigned long tce_alloc_start, tce_alloc_end;
74 u64 ppc64_rma_size;
75 #endif
76 static phys_addr_t first_memblock_size;
77 static int __initdata boot_cpu_count;
78
79 static int __init early_parse_mem(char *p)
80 {
81 if (!p)
82 return 1;
83
84 memory_limit = PAGE_ALIGN(memparse(p, &p));
85 DBG("memory limit = 0x%llx\n", memory_limit);
86
87 return 0;
88 }
89 early_param("mem", early_parse_mem);
90
91 /*
92 * overlaps_initrd - check for overlap with page aligned extension of
93 * initrd.
94 */
95 static inline int overlaps_initrd(unsigned long start, unsigned long size)
96 {
97 #ifdef CONFIG_BLK_DEV_INITRD
98 if (!initrd_start)
99 return 0;
100
101 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
102 start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
103 #else
104 return 0;
105 #endif
106 }
107
108 /**
109 * move_device_tree - move tree to an unused area, if needed.
110 *
111 * The device tree may be allocated beyond our memory limit, or inside the
112 * crash kernel region for kdump, or within the page aligned range of initrd.
113 * If so, move it out of the way.
114 */
115 static void __init move_device_tree(void)
116 {
117 unsigned long start, size;
118 void *p;
119
120 DBG("-> move_device_tree\n");
121
122 start = __pa(initial_boot_params);
123 size = fdt_totalsize(initial_boot_params);
124
125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
126 overlaps_crashkernel(start, size) ||
127 overlaps_initrd(start, size)) {
128 p = __va(memblock_alloc(size, PAGE_SIZE));
129 memcpy(p, initial_boot_params, size);
130 initial_boot_params = p;
131 DBG("Moved device tree to 0x%p\n", p);
132 }
133
134 DBG("<- move_device_tree\n");
135 }
136
137 /*
138 * ibm,pa-features is a per-cpu property that contains a string of
139 * attribute descriptors, each of which has a 2 byte header plus up
140 * to 254 bytes worth of processor attribute bits. First header
141 * byte specifies the number of bytes following the header.
142 * Second header byte is an "attribute-specifier" type, of which
143 * zero is the only currently-defined value.
144 * Implementation: Pass in the byte and bit offset for the feature
145 * that we are interested in. The function will return -1 if the
146 * pa-features property is missing, or a 1/0 to indicate if the feature
147 * is supported/not supported. Note that the bit numbers are
148 * big-endian to match the definition in PAPR.
149 */
150 static struct ibm_pa_feature {
151 unsigned long cpu_features; /* CPU_FTR_xxx bit */
152 unsigned long mmu_features; /* MMU_FTR_xxx bit */
153 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
154 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
155 unsigned char pabyte; /* byte number in ibm,pa-features */
156 unsigned char pabit; /* bit number (big-endian) */
157 unsigned char invert; /* if 1, pa bit set => clear feature */
158 } ibm_pa_features[] __initdata = {
159 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
160 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
161 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
162 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
163 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
164 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX },
165 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
166 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
167 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
168 /*
169 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
170 * we don't want to turn on TM here, so we use the *_COMP versions
171 * which are 0 if the kernel doesn't support TM.
172 */
173 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
174 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
175 };
176
177 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
178 unsigned long tablelen,
179 struct ibm_pa_feature *fp,
180 unsigned long ft_size)
181 {
182 unsigned long i, len, bit;
183
184 /* find descriptor with type == 0 */
185 for (;;) {
186 if (tablelen < 3)
187 return;
188 len = 2 + ftrs[0];
189 if (tablelen < len)
190 return; /* descriptor 0 not found */
191 if (ftrs[1] == 0)
192 break;
193 tablelen -= len;
194 ftrs += len;
195 }
196
197 /* loop over bits we know about */
198 for (i = 0; i < ft_size; ++i, ++fp) {
199 if (fp->pabyte >= ftrs[0])
200 continue;
201 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
202 if (bit ^ fp->invert) {
203 cur_cpu_spec->cpu_features |= fp->cpu_features;
204 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
205 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
206 cur_cpu_spec->mmu_features |= fp->mmu_features;
207 } else {
208 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
209 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
210 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
211 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
212 }
213 }
214 }
215
216 static void __init check_cpu_pa_features(unsigned long node)
217 {
218 const unsigned char *pa_ftrs;
219 int tablelen;
220
221 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
222 if (pa_ftrs == NULL)
223 return;
224
225 scan_features(node, pa_ftrs, tablelen,
226 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
227 }
228
229 #ifdef CONFIG_PPC_STD_MMU_64
230 static void __init init_mmu_slb_size(unsigned long node)
231 {
232 const __be32 *slb_size_ptr;
233
234 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
235 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
236
237 if (slb_size_ptr)
238 mmu_slb_size = be32_to_cpup(slb_size_ptr);
239 }
240 #else
241 #define init_mmu_slb_size(node) do { } while(0)
242 #endif
243
244 static struct feature_property {
245 const char *name;
246 u32 min_value;
247 unsigned long cpu_feature;
248 unsigned long cpu_user_ftr;
249 } feature_properties[] __initdata = {
250 #ifdef CONFIG_ALTIVEC
251 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
252 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
253 #endif /* CONFIG_ALTIVEC */
254 #ifdef CONFIG_VSX
255 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
256 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
257 #endif /* CONFIG_VSX */
258 #ifdef CONFIG_PPC64
259 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
260 {"ibm,purr", 1, CPU_FTR_PURR, 0},
261 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
262 #endif /* CONFIG_PPC64 */
263 };
264
265 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
266 static inline void identical_pvr_fixup(unsigned long node)
267 {
268 unsigned int pvr;
269 const char *model = of_get_flat_dt_prop(node, "model", NULL);
270
271 /*
272 * Since 440GR(x)/440EP(x) processors have the same pvr,
273 * we check the node path and set bit 28 in the cur_cpu_spec
274 * pvr for EP(x) processor version. This bit is always 0 in
275 * the "real" pvr. Then we call identify_cpu again with
276 * the new logical pvr to enable FPU support.
277 */
278 if (model && strstr(model, "440EP")) {
279 pvr = cur_cpu_spec->pvr_value | 0x8;
280 identify_cpu(0, pvr);
281 DBG("Using logical pvr %x for %s\n", pvr, model);
282 }
283 }
284 #else
285 #define identical_pvr_fixup(node) do { } while(0)
286 #endif
287
288 static void __init check_cpu_feature_properties(unsigned long node)
289 {
290 unsigned long i;
291 struct feature_property *fp = feature_properties;
292 const __be32 *prop;
293
294 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
295 prop = of_get_flat_dt_prop(node, fp->name, NULL);
296 if (prop && be32_to_cpup(prop) >= fp->min_value) {
297 cur_cpu_spec->cpu_features |= fp->cpu_feature;
298 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
299 }
300 }
301 }
302
303 static int __init early_init_dt_scan_cpus(unsigned long node,
304 const char *uname, int depth,
305 void *data)
306 {
307 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
308 const __be32 *prop;
309 const __be32 *intserv;
310 int i, nthreads;
311 int len;
312 int found = -1;
313 int found_thread = 0;
314
315 /* We are scanning "cpu" nodes only */
316 if (type == NULL || strcmp(type, "cpu") != 0)
317 return 0;
318
319 /* Get physical cpuid */
320 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
321 if (!intserv)
322 intserv = of_get_flat_dt_prop(node, "reg", &len);
323
324 nthreads = len / sizeof(int);
325
326 /*
327 * Now see if any of these threads match our boot cpu.
328 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
329 */
330 for (i = 0; i < nthreads; i++) {
331 /*
332 * version 2 of the kexec param format adds the phys cpuid of
333 * booted proc.
334 */
335 if (fdt_version(initial_boot_params) >= 2) {
336 if (be32_to_cpu(intserv[i]) ==
337 fdt_boot_cpuid_phys(initial_boot_params)) {
338 found = boot_cpu_count;
339 found_thread = i;
340 }
341 } else {
342 /*
343 * Check if it's the boot-cpu, set it's hw index now,
344 * unfortunately this format did not support booting
345 * off secondary threads.
346 */
347 if (of_get_flat_dt_prop(node,
348 "linux,boot-cpu", NULL) != NULL)
349 found = boot_cpu_count;
350 }
351 #ifdef CONFIG_SMP
352 /* logical cpu id is always 0 on UP kernels */
353 boot_cpu_count++;
354 #endif
355 }
356
357 /* Not the boot CPU */
358 if (found < 0)
359 return 0;
360
361 DBG("boot cpu: logical %d physical %d\n", found,
362 be32_to_cpu(intserv[found_thread]));
363 boot_cpuid = found;
364 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
365
366 /*
367 * PAPR defines "logical" PVR values for cpus that
368 * meet various levels of the architecture:
369 * 0x0f000001 Architecture version 2.04
370 * 0x0f000002 Architecture version 2.05
371 * If the cpu-version property in the cpu node contains
372 * such a value, we call identify_cpu again with the
373 * logical PVR value in order to use the cpu feature
374 * bits appropriate for the architecture level.
375 *
376 * A POWER6 partition in "POWER6 architected" mode
377 * uses the 0x0f000002 PVR value; in POWER5+ mode
378 * it uses 0x0f000001.
379 *
380 * If we're using device tree CPU feature discovery then we don't
381 * support the cpu-version property, and it's the responsibility of the
382 * firmware/hypervisor to provide the correct feature set for the
383 * architecture level via the ibm,powerpc-cpu-features binding.
384 */
385 if (!dt_cpu_ftrs_in_use()) {
386 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
387 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
388 identify_cpu(0, be32_to_cpup(prop));
389
390 check_cpu_feature_properties(node);
391 check_cpu_pa_features(node);
392 }
393
394 identical_pvr_fixup(node);
395 init_mmu_slb_size(node);
396
397 #ifdef CONFIG_PPC64
398 if (nthreads == 1)
399 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
400 else if (!dt_cpu_ftrs_in_use())
401 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
402 #endif
403
404 return 0;
405 }
406
407 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
408 const char *uname,
409 int depth, void *data)
410 {
411 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
412
413 /* Use common scan routine to determine if this is the chosen node */
414 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
415 return 0;
416
417 #ifdef CONFIG_PPC64
418 /* check if iommu is forced on or off */
419 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
420 iommu_is_off = 1;
421 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
422 iommu_force_on = 1;
423 #endif
424
425 /* mem=x on the command line is the preferred mechanism */
426 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
427 if (lprop)
428 memory_limit = *lprop;
429
430 #ifdef CONFIG_PPC64
431 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
432 if (lprop)
433 tce_alloc_start = *lprop;
434 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
435 if (lprop)
436 tce_alloc_end = *lprop;
437 #endif
438
439 #ifdef CONFIG_KEXEC_CORE
440 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
441 if (lprop)
442 crashk_res.start = *lprop;
443
444 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
445 if (lprop)
446 crashk_res.end = crashk_res.start + *lprop - 1;
447 #endif
448
449 /* break now */
450 return 1;
451 }
452
453 #ifdef CONFIG_PPC_PSERIES
454 /*
455 * Interpret the ibm,dynamic-memory property in the
456 * /ibm,dynamic-reconfiguration-memory node.
457 * This contains a list of memory blocks along with NUMA affinity
458 * information.
459 */
460 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
461 {
462 const __be32 *dm, *ls, *usm;
463 int l;
464 unsigned long n, flags;
465 u64 base, size, memblock_size;
466 unsigned int is_kexec_kdump = 0, rngs;
467
468 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
469 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
470 return 0;
471 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
472
473 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
474 if (dm == NULL || l < sizeof(__be32))
475 return 0;
476
477 n = of_read_number(dm++, 1); /* number of entries */
478 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
479 return 0;
480
481 /* check if this is a kexec/kdump kernel. */
482 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
483 &l);
484 if (usm != NULL)
485 is_kexec_kdump = 1;
486
487 for (; n != 0; --n) {
488 base = dt_mem_next_cell(dt_root_addr_cells, &dm);
489 flags = of_read_number(&dm[3], 1);
490 /* skip DRC index, pad, assoc. list index, flags */
491 dm += 4;
492 /* skip this block if the reserved bit is set in flags
493 or if the block is not assigned to this partition */
494 if ((flags & DRCONF_MEM_RESERVED) ||
495 !(flags & DRCONF_MEM_ASSIGNED))
496 continue;
497 size = memblock_size;
498 rngs = 1;
499 if (is_kexec_kdump) {
500 /*
501 * For each memblock in ibm,dynamic-memory, a corresponding
502 * entry in linux,drconf-usable-memory property contains
503 * a counter 'p' followed by 'p' (base, size) duple.
504 * Now read the counter from
505 * linux,drconf-usable-memory property
506 */
507 rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
508 if (!rngs) /* there are no (base, size) duple */
509 continue;
510 }
511 do {
512 if (is_kexec_kdump) {
513 base = dt_mem_next_cell(dt_root_addr_cells,
514 &usm);
515 size = dt_mem_next_cell(dt_root_size_cells,
516 &usm);
517 }
518 if (iommu_is_off) {
519 if (base >= 0x80000000ul)
520 continue;
521 if ((base + size) > 0x80000000ul)
522 size = 0x80000000ul - base;
523 }
524 memblock_add(base, size);
525 } while (--rngs);
526 }
527 memblock_dump_all();
528 return 0;
529 }
530 #else
531 #define early_init_dt_scan_drconf_memory(node) 0
532 #endif /* CONFIG_PPC_PSERIES */
533
534 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
535 const char *uname,
536 int depth, void *data)
537 {
538 if (depth == 1 &&
539 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
540 return early_init_dt_scan_drconf_memory(node);
541
542 return early_init_dt_scan_memory(node, uname, depth, data);
543 }
544
545 /*
546 * For a relocatable kernel, we need to get the memstart_addr first,
547 * then use it to calculate the virtual kernel start address. This has
548 * to happen at a very early stage (before machine_init). In this case,
549 * we just want to get the memstart_address and would not like to mess the
550 * memblock at this stage. So introduce a variable to skip the memblock_add()
551 * for this reason.
552 */
553 #ifdef CONFIG_RELOCATABLE
554 static int add_mem_to_memblock = 1;
555 #else
556 #define add_mem_to_memblock 1
557 #endif
558
559 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
560 {
561 #ifdef CONFIG_PPC64
562 if (iommu_is_off) {
563 if (base >= 0x80000000ul)
564 return;
565 if ((base + size) > 0x80000000ul)
566 size = 0x80000000ul - base;
567 }
568 #endif
569 /* Keep track of the beginning of memory -and- the size of
570 * the very first block in the device-tree as it represents
571 * the RMA on ppc64 server
572 */
573 if (base < memstart_addr) {
574 memstart_addr = base;
575 first_memblock_size = size;
576 }
577
578 /* Add the chunk to the MEMBLOCK list */
579 if (add_mem_to_memblock)
580 memblock_add(base, size);
581 }
582
583 static void __init early_reserve_mem_dt(void)
584 {
585 unsigned long i, dt_root;
586 int len;
587 const __be32 *prop;
588
589 early_init_fdt_reserve_self();
590 early_init_fdt_scan_reserved_mem();
591
592 dt_root = of_get_flat_dt_root();
593
594 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
595
596 if (!prop)
597 return;
598
599 DBG("Found new-style reserved-ranges\n");
600
601 /* Each reserved range is an (address,size) pair, 2 cells each,
602 * totalling 4 cells per range. */
603 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
604 u64 base, size;
605
606 base = of_read_number(prop + (i * 4) + 0, 2);
607 size = of_read_number(prop + (i * 4) + 2, 2);
608
609 if (size) {
610 DBG("reserving: %llx -> %llx\n", base, size);
611 memblock_reserve(base, size);
612 }
613 }
614 }
615
616 static void __init early_reserve_mem(void)
617 {
618 __be64 *reserve_map;
619
620 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
621 fdt_off_mem_rsvmap(initial_boot_params));
622
623 /* Look for the new "reserved-regions" property in the DT */
624 early_reserve_mem_dt();
625
626 #ifdef CONFIG_BLK_DEV_INITRD
627 /* Then reserve the initrd, if any */
628 if (initrd_start && (initrd_end > initrd_start)) {
629 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
630 _ALIGN_UP(initrd_end, PAGE_SIZE) -
631 _ALIGN_DOWN(initrd_start, PAGE_SIZE));
632 }
633 #endif /* CONFIG_BLK_DEV_INITRD */
634
635 #ifdef CONFIG_PPC32
636 /*
637 * Handle the case where we might be booting from an old kexec
638 * image that setup the mem_rsvmap as pairs of 32-bit values
639 */
640 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
641 u32 base_32, size_32;
642 __be32 *reserve_map_32 = (__be32 *)reserve_map;
643
644 DBG("Found old 32-bit reserve map\n");
645
646 while (1) {
647 base_32 = be32_to_cpup(reserve_map_32++);
648 size_32 = be32_to_cpup(reserve_map_32++);
649 if (size_32 == 0)
650 break;
651 DBG("reserving: %x -> %x\n", base_32, size_32);
652 memblock_reserve(base_32, size_32);
653 }
654 return;
655 }
656 #endif
657 }
658
659 void __init early_init_devtree(void *params)
660 {
661 phys_addr_t limit;
662
663 DBG(" -> early_init_devtree(%p)\n", params);
664
665 /* Too early to BUG_ON(), do it by hand */
666 if (!early_init_dt_verify(params))
667 panic("BUG: Failed verifying flat device tree, bad version?");
668
669 #ifdef CONFIG_PPC_RTAS
670 /* Some machines might need RTAS info for debugging, grab it now. */
671 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
672 #endif
673
674 #ifdef CONFIG_PPC_POWERNV
675 /* Some machines might need OPAL info for debugging, grab it now. */
676 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
677 #endif
678
679 #ifdef CONFIG_FA_DUMP
680 /* scan tree to see if dump is active during last boot */
681 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
682 #endif
683
684 /* Retrieve various informations from the /chosen node of the
685 * device-tree, including the platform type, initrd location and
686 * size, TCE reserve, and more ...
687 */
688 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
689
690 /* Scan memory nodes and rebuild MEMBLOCKs */
691 of_scan_flat_dt(early_init_dt_scan_root, NULL);
692 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
693
694 parse_early_param();
695
696 /* make sure we've parsed cmdline for mem= before this */
697 if (memory_limit)
698 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
699 setup_initial_memory_limit(memstart_addr, first_memblock_size);
700 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
701 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
702 /* If relocatable, reserve first 32k for interrupt vectors etc. */
703 if (PHYSICAL_START > MEMORY_START)
704 memblock_reserve(MEMORY_START, 0x8000);
705 reserve_kdump_trampoline();
706 #ifdef CONFIG_FA_DUMP
707 /*
708 * If we fail to reserve memory for firmware-assisted dump then
709 * fallback to kexec based kdump.
710 */
711 if (fadump_reserve_mem() == 0)
712 #endif
713 reserve_crashkernel();
714 early_reserve_mem();
715
716 /* Ensure that total memory size is page-aligned. */
717 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
718 memblock_enforce_memory_limit(limit);
719
720 memblock_allow_resize();
721 memblock_dump_all();
722
723 DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
724
725 /* We may need to relocate the flat tree, do it now.
726 * FIXME .. and the initrd too? */
727 move_device_tree();
728
729 allocate_pacas();
730
731 DBG("Scanning CPUs ...\n");
732
733 dt_cpu_ftrs_scan();
734
735 /* Retrieve CPU related informations from the flat tree
736 * (altivec support, boot CPU ID, ...)
737 */
738 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
739 if (boot_cpuid < 0) {
740 printk("Failed to identify boot CPU !\n");
741 BUG();
742 }
743
744 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
745 /* We'll later wait for secondaries to check in; there are
746 * NCPUS-1 non-boot CPUs :-)
747 */
748 spinning_secondaries = boot_cpu_count - 1;
749 #endif
750
751 mmu_early_init_devtree();
752
753 #ifdef CONFIG_PPC_POWERNV
754 /* Scan and build the list of machine check recoverable ranges */
755 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
756 #endif
757 epapr_paravirt_early_init();
758
759 /* Now try to figure out if we are running on LPAR and so on */
760 pseries_probe_fw_features();
761
762 #ifdef CONFIG_PPC_PS3
763 /* Identify PS3 firmware */
764 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
765 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
766 #endif
767
768 DBG(" <- early_init_devtree()\n");
769 }
770
771 #ifdef CONFIG_RELOCATABLE
772 /*
773 * This function run before early_init_devtree, so we have to init
774 * initial_boot_params.
775 */
776 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
777 {
778 /* Setup flat device-tree pointer */
779 initial_boot_params = params;
780
781 /*
782 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
783 * mess the memblock.
784 */
785 add_mem_to_memblock = 0;
786 of_scan_flat_dt(early_init_dt_scan_root, NULL);
787 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
788 add_mem_to_memblock = 1;
789
790 if (size)
791 *size = first_memblock_size;
792 }
793 #endif
794
795 /*******
796 *
797 * New implementation of the OF "find" APIs, return a refcounted
798 * object, call of_node_put() when done. The device tree and list
799 * are protected by a rw_lock.
800 *
801 * Note that property management will need some locking as well,
802 * this isn't dealt with yet.
803 *
804 *******/
805
806 /**
807 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
808 * @np: device node of the device
809 *
810 * This looks for a property "ibm,chip-id" in the node or any
811 * of its parents and returns its content, or -1 if it cannot
812 * be found.
813 */
814 int of_get_ibm_chip_id(struct device_node *np)
815 {
816 of_node_get(np);
817 while (np) {
818 u32 chip_id;
819
820 /*
821 * Skiboot may produce memory nodes that contain more than one
822 * cell in chip-id, we only read the first one here.
823 */
824 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
825 of_node_put(np);
826 return chip_id;
827 }
828
829 np = of_get_next_parent(np);
830 }
831 return -1;
832 }
833 EXPORT_SYMBOL(of_get_ibm_chip_id);
834
835 /**
836 * cpu_to_chip_id - Return the cpus chip-id
837 * @cpu: The logical cpu number.
838 *
839 * Return the value of the ibm,chip-id property corresponding to the given
840 * logical cpu number. If the chip-id can not be found, returns -1.
841 */
842 int cpu_to_chip_id(int cpu)
843 {
844 struct device_node *np;
845
846 np = of_get_cpu_node(cpu, NULL);
847 if (!np)
848 return -1;
849
850 of_node_put(np);
851 return of_get_ibm_chip_id(np);
852 }
853 EXPORT_SYMBOL(cpu_to_chip_id);
854
855 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
856 {
857 return (int)phys_id == get_hard_smp_processor_id(cpu);
858 }