]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/prom.c
[PATCH] powerpc: Kill _machine and hard-coded platform numbers
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / prom.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32 #include <linux/kexec.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/lmb.h>
37 #include <asm/page.h>
38 #include <asm/processor.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/kdump.h>
42 #include <asm/smp.h>
43 #include <asm/system.h>
44 #include <asm/mmu.h>
45 #include <asm/pgtable.h>
46 #include <asm/pci.h>
47 #include <asm/iommu.h>
48 #include <asm/btext.h>
49 #include <asm/sections.h>
50 #include <asm/machdep.h>
51 #include <asm/pSeries_reconfig.h>
52 #include <asm/pci-bridge.h>
53
54 #ifdef DEBUG
55 #define DBG(fmt...) printk(KERN_ERR fmt)
56 #else
57 #define DBG(fmt...)
58 #endif
59
60
61 static int __initdata dt_root_addr_cells;
62 static int __initdata dt_root_size_cells;
63
64 #ifdef CONFIG_PPC64
65 static int __initdata iommu_is_off;
66 int __initdata iommu_force_on;
67 unsigned long tce_alloc_start, tce_alloc_end;
68 #endif
69
70 typedef u32 cell_t;
71
72 #if 0
73 static struct boot_param_header *initial_boot_params __initdata;
74 #else
75 struct boot_param_header *initial_boot_params;
76 #endif
77
78 static struct device_node *allnodes = NULL;
79
80 /* use when traversing tree through the allnext, child, sibling,
81 * or parent members of struct device_node.
82 */
83 static DEFINE_RWLOCK(devtree_lock);
84
85 /* export that to outside world */
86 struct device_node *of_chosen;
87
88 struct device_node *dflt_interrupt_controller;
89 int num_interrupt_controllers;
90
91 /*
92 * Wrapper for allocating memory for various data that needs to be
93 * attached to device nodes as they are processed at boot or when
94 * added to the device tree later (e.g. DLPAR). At boot there is
95 * already a region reserved so we just increment *mem_start by size;
96 * otherwise we call kmalloc.
97 */
98 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
99 {
100 unsigned long tmp;
101
102 if (!mem_start)
103 return kmalloc(size, GFP_KERNEL);
104
105 tmp = *mem_start;
106 *mem_start += size;
107 return (void *)tmp;
108 }
109
110 /*
111 * Find the device_node with a given phandle.
112 */
113 static struct device_node * find_phandle(phandle ph)
114 {
115 struct device_node *np;
116
117 for (np = allnodes; np != 0; np = np->allnext)
118 if (np->linux_phandle == ph)
119 return np;
120 return NULL;
121 }
122
123 /*
124 * Find the interrupt parent of a node.
125 */
126 static struct device_node * __devinit intr_parent(struct device_node *p)
127 {
128 phandle *parp;
129
130 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
131 if (parp == NULL)
132 return p->parent;
133 p = find_phandle(*parp);
134 if (p != NULL)
135 return p;
136 /*
137 * On a powermac booted with BootX, we don't get to know the
138 * phandles for any nodes, so find_phandle will return NULL.
139 * Fortunately these machines only have one interrupt controller
140 * so there isn't in fact any ambiguity. -- paulus
141 */
142 if (num_interrupt_controllers == 1)
143 p = dflt_interrupt_controller;
144 return p;
145 }
146
147 /*
148 * Find out the size of each entry of the interrupts property
149 * for a node.
150 */
151 int __devinit prom_n_intr_cells(struct device_node *np)
152 {
153 struct device_node *p;
154 unsigned int *icp;
155
156 for (p = np; (p = intr_parent(p)) != NULL; ) {
157 icp = (unsigned int *)
158 get_property(p, "#interrupt-cells", NULL);
159 if (icp != NULL)
160 return *icp;
161 if (get_property(p, "interrupt-controller", NULL) != NULL
162 || get_property(p, "interrupt-map", NULL) != NULL) {
163 printk("oops, node %s doesn't have #interrupt-cells\n",
164 p->full_name);
165 return 1;
166 }
167 }
168 #ifdef DEBUG_IRQ
169 printk("prom_n_intr_cells failed for %s\n", np->full_name);
170 #endif
171 return 1;
172 }
173
174 /*
175 * Map an interrupt from a device up to the platform interrupt
176 * descriptor.
177 */
178 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
179 struct device_node *np, unsigned int *ints,
180 int nintrc)
181 {
182 struct device_node *p, *ipar;
183 unsigned int *imap, *imask, *ip;
184 int i, imaplen, match;
185 int newintrc = 0, newaddrc = 0;
186 unsigned int *reg;
187 int naddrc;
188
189 reg = (unsigned int *) get_property(np, "reg", NULL);
190 naddrc = prom_n_addr_cells(np);
191 p = intr_parent(np);
192 while (p != NULL) {
193 if (get_property(p, "interrupt-controller", NULL) != NULL)
194 /* this node is an interrupt controller, stop here */
195 break;
196 imap = (unsigned int *)
197 get_property(p, "interrupt-map", &imaplen);
198 if (imap == NULL) {
199 p = intr_parent(p);
200 continue;
201 }
202 imask = (unsigned int *)
203 get_property(p, "interrupt-map-mask", NULL);
204 if (imask == NULL) {
205 printk("oops, %s has interrupt-map but no mask\n",
206 p->full_name);
207 return 0;
208 }
209 imaplen /= sizeof(unsigned int);
210 match = 0;
211 ipar = NULL;
212 while (imaplen > 0 && !match) {
213 /* check the child-interrupt field */
214 match = 1;
215 for (i = 0; i < naddrc && match; ++i)
216 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
217 for (; i < naddrc + nintrc && match; ++i)
218 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
219 imap += naddrc + nintrc;
220 imaplen -= naddrc + nintrc;
221 /* grab the interrupt parent */
222 ipar = find_phandle((phandle) *imap++);
223 --imaplen;
224 if (ipar == NULL && num_interrupt_controllers == 1)
225 /* cope with BootX not giving us phandles */
226 ipar = dflt_interrupt_controller;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253 #ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256 #endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266 #ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269 #endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275 }
276
277 static unsigned char map_isa_senses[4] = {
278 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
279 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
280 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
281 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
282 };
283
284 static unsigned char map_mpic_senses[4] = {
285 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
286 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
287 /* 2 seems to be used for the 8259 cascade... */
288 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
289 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
290 };
291
292 static int __devinit finish_node_interrupts(struct device_node *np,
293 unsigned long *mem_start,
294 int measure_only)
295 {
296 unsigned int *ints;
297 int intlen, intrcells, intrcount;
298 int i, j, n, sense;
299 unsigned int *irq, virq;
300 struct device_node *ic;
301 int trace = 0;
302
303 //#define TRACE(fmt...) do { if (trace) { printk(fmt); mdelay(1000); } } while(0)
304 #define TRACE(fmt...)
305
306 if (!strcmp(np->name, "smu-doorbell"))
307 trace = 1;
308
309 TRACE("Finishing SMU doorbell ! num_interrupt_controllers = %d\n",
310 num_interrupt_controllers);
311
312 if (num_interrupt_controllers == 0) {
313 /*
314 * Old machines just have a list of interrupt numbers
315 * and no interrupt-controller nodes.
316 */
317 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
318 &intlen);
319 /* XXX old interpret_pci_props looked in parent too */
320 /* XXX old interpret_macio_props looked for interrupts
321 before AAPL,interrupts */
322 if (ints == NULL)
323 ints = (unsigned int *) get_property(np, "interrupts",
324 &intlen);
325 if (ints == NULL)
326 return 0;
327
328 np->n_intrs = intlen / sizeof(unsigned int);
329 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
330 mem_start);
331 if (!np->intrs)
332 return -ENOMEM;
333 if (measure_only)
334 return 0;
335
336 for (i = 0; i < np->n_intrs; ++i) {
337 np->intrs[i].line = *ints++;
338 np->intrs[i].sense = IRQ_SENSE_LEVEL
339 | IRQ_POLARITY_NEGATIVE;
340 }
341 return 0;
342 }
343
344 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
345 TRACE("ints=%p, intlen=%d\n", ints, intlen);
346 if (ints == NULL)
347 return 0;
348 intrcells = prom_n_intr_cells(np);
349 intlen /= intrcells * sizeof(unsigned int);
350 TRACE("intrcells=%d, new intlen=%d\n", intrcells, intlen);
351 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
352 if (!np->intrs)
353 return -ENOMEM;
354
355 if (measure_only)
356 return 0;
357
358 intrcount = 0;
359 for (i = 0; i < intlen; ++i, ints += intrcells) {
360 n = map_interrupt(&irq, &ic, np, ints, intrcells);
361 TRACE("map, irq=%d, ic=%p, n=%d\n", irq, ic, n);
362 if (n <= 0)
363 continue;
364
365 /* don't map IRQ numbers under a cascaded 8259 controller */
366 if (ic && device_is_compatible(ic, "chrp,iic")) {
367 np->intrs[intrcount].line = irq[0];
368 sense = (n > 1)? (irq[1] & 3): 3;
369 np->intrs[intrcount].sense = map_isa_senses[sense];
370 } else {
371 virq = virt_irq_create_mapping(irq[0]);
372 TRACE("virq=%d\n", virq);
373 #ifdef CONFIG_PPC64
374 if (virq == NO_IRQ) {
375 printk(KERN_CRIT "Could not allocate interrupt"
376 " number for %s\n", np->full_name);
377 continue;
378 }
379 #endif
380 np->intrs[intrcount].line = irq_offset_up(virq);
381 sense = (n > 1)? (irq[1] & 3): 1;
382
383 /* Apple uses bits in there in a different way, let's
384 * only keep the real sense bit on macs
385 */
386 if (machine_is(powermac))
387 sense &= 0x1;
388 np->intrs[intrcount].sense = map_mpic_senses[sense];
389 }
390
391 #ifdef CONFIG_PPC64
392 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
393 if (machine_is(powermac) && ic && ic->parent) {
394 char *name = get_property(ic->parent, "name", NULL);
395 if (name && !strcmp(name, "u3"))
396 np->intrs[intrcount].line += 128;
397 else if (!(name && (!strcmp(name, "mac-io") ||
398 !strcmp(name, "u4"))))
399 /* ignore other cascaded controllers, such as
400 the k2-sata-root */
401 break;
402 }
403 #endif /* CONFIG_PPC64 */
404 if (n > 2) {
405 printk("hmmm, got %d intr cells for %s:", n,
406 np->full_name);
407 for (j = 0; j < n; ++j)
408 printk(" %d", irq[j]);
409 printk("\n");
410 }
411 ++intrcount;
412 }
413 np->n_intrs = intrcount;
414
415 return 0;
416 }
417
418 static int __devinit finish_node(struct device_node *np,
419 unsigned long *mem_start,
420 int measure_only)
421 {
422 struct device_node *child;
423 int rc = 0;
424
425 rc = finish_node_interrupts(np, mem_start, measure_only);
426 if (rc)
427 goto out;
428
429 for (child = np->child; child != NULL; child = child->sibling) {
430 rc = finish_node(child, mem_start, measure_only);
431 if (rc)
432 goto out;
433 }
434 out:
435 return rc;
436 }
437
438 static void __init scan_interrupt_controllers(void)
439 {
440 struct device_node *np;
441 int n = 0;
442 char *name, *ic;
443 int iclen;
444
445 for (np = allnodes; np != NULL; np = np->allnext) {
446 ic = get_property(np, "interrupt-controller", &iclen);
447 name = get_property(np, "name", NULL);
448 /* checking iclen makes sure we don't get a false
449 match on /chosen.interrupt_controller */
450 if ((name != NULL
451 && strcmp(name, "interrupt-controller") == 0)
452 || (ic != NULL && iclen == 0
453 && strcmp(name, "AppleKiwi"))) {
454 if (n == 0)
455 dflt_interrupt_controller = np;
456 ++n;
457 }
458 }
459 num_interrupt_controllers = n;
460 }
461
462 /**
463 * finish_device_tree is called once things are running normally
464 * (i.e. with text and data mapped to the address they were linked at).
465 * It traverses the device tree and fills in some of the additional,
466 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
467 * mapping is also initialized at this point.
468 */
469 void __init finish_device_tree(void)
470 {
471 unsigned long start, end, size = 0;
472
473 DBG(" -> finish_device_tree\n");
474
475 #ifdef CONFIG_PPC64
476 /* Initialize virtual IRQ map */
477 virt_irq_init();
478 #endif
479 scan_interrupt_controllers();
480
481 /*
482 * Finish device-tree (pre-parsing some properties etc...)
483 * We do this in 2 passes. One with "measure_only" set, which
484 * will only measure the amount of memory needed, then we can
485 * allocate that memory, and call finish_node again. However,
486 * we must be careful as most routines will fail nowadays when
487 * prom_alloc() returns 0, so we must make sure our first pass
488 * doesn't start at 0. We pre-initialize size to 16 for that
489 * reason and then remove those additional 16 bytes
490 */
491 size = 16;
492 finish_node(allnodes, &size, 1);
493 size -= 16;
494
495 if (0 == size)
496 end = start = 0;
497 else
498 end = start = (unsigned long)__va(lmb_alloc(size, 128));
499
500 finish_node(allnodes, &end, 0);
501 BUG_ON(end != start + size);
502
503 DBG(" <- finish_device_tree\n");
504 }
505
506 static inline char *find_flat_dt_string(u32 offset)
507 {
508 return ((char *)initial_boot_params) +
509 initial_boot_params->off_dt_strings + offset;
510 }
511
512 /**
513 * This function is used to scan the flattened device-tree, it is
514 * used to extract the memory informations at boot before we can
515 * unflatten the tree
516 */
517 int __init of_scan_flat_dt(int (*it)(unsigned long node,
518 const char *uname, int depth,
519 void *data),
520 void *data)
521 {
522 unsigned long p = ((unsigned long)initial_boot_params) +
523 initial_boot_params->off_dt_struct;
524 int rc = 0;
525 int depth = -1;
526
527 do {
528 u32 tag = *((u32 *)p);
529 char *pathp;
530
531 p += 4;
532 if (tag == OF_DT_END_NODE) {
533 depth --;
534 continue;
535 }
536 if (tag == OF_DT_NOP)
537 continue;
538 if (tag == OF_DT_END)
539 break;
540 if (tag == OF_DT_PROP) {
541 u32 sz = *((u32 *)p);
542 p += 8;
543 if (initial_boot_params->version < 0x10)
544 p = _ALIGN(p, sz >= 8 ? 8 : 4);
545 p += sz;
546 p = _ALIGN(p, 4);
547 continue;
548 }
549 if (tag != OF_DT_BEGIN_NODE) {
550 printk(KERN_WARNING "Invalid tag %x scanning flattened"
551 " device tree !\n", tag);
552 return -EINVAL;
553 }
554 depth++;
555 pathp = (char *)p;
556 p = _ALIGN(p + strlen(pathp) + 1, 4);
557 if ((*pathp) == '/') {
558 char *lp, *np;
559 for (lp = NULL, np = pathp; *np; np++)
560 if ((*np) == '/')
561 lp = np+1;
562 if (lp != NULL)
563 pathp = lp;
564 }
565 rc = it(p, pathp, depth, data);
566 if (rc != 0)
567 break;
568 } while(1);
569
570 return rc;
571 }
572
573 unsigned long __init of_get_flat_dt_root(void)
574 {
575 unsigned long p = ((unsigned long)initial_boot_params) +
576 initial_boot_params->off_dt_struct;
577
578 while(*((u32 *)p) == OF_DT_NOP)
579 p += 4;
580 BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
581 p += 4;
582 return _ALIGN(p + strlen((char *)p) + 1, 4);
583 }
584
585 /**
586 * This function can be used within scan_flattened_dt callback to get
587 * access to properties
588 */
589 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
590 unsigned long *size)
591 {
592 unsigned long p = node;
593
594 do {
595 u32 tag = *((u32 *)p);
596 u32 sz, noff;
597 const char *nstr;
598
599 p += 4;
600 if (tag == OF_DT_NOP)
601 continue;
602 if (tag != OF_DT_PROP)
603 return NULL;
604
605 sz = *((u32 *)p);
606 noff = *((u32 *)(p + 4));
607 p += 8;
608 if (initial_boot_params->version < 0x10)
609 p = _ALIGN(p, sz >= 8 ? 8 : 4);
610
611 nstr = find_flat_dt_string(noff);
612 if (nstr == NULL) {
613 printk(KERN_WARNING "Can't find property index"
614 " name !\n");
615 return NULL;
616 }
617 if (strcmp(name, nstr) == 0) {
618 if (size)
619 *size = sz;
620 return (void *)p;
621 }
622 p += sz;
623 p = _ALIGN(p, 4);
624 } while(1);
625 }
626
627 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
628 {
629 const char* cp;
630 unsigned long cplen, l;
631
632 cp = of_get_flat_dt_prop(node, "compatible", &cplen);
633 if (cp == NULL)
634 return 0;
635 while (cplen > 0) {
636 if (strncasecmp(cp, compat, strlen(compat)) == 0)
637 return 1;
638 l = strlen(cp) + 1;
639 cp += l;
640 cplen -= l;
641 }
642
643 return 0;
644 }
645
646 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
647 unsigned long align)
648 {
649 void *res;
650
651 *mem = _ALIGN(*mem, align);
652 res = (void *)*mem;
653 *mem += size;
654
655 return res;
656 }
657
658 static unsigned long __init unflatten_dt_node(unsigned long mem,
659 unsigned long *p,
660 struct device_node *dad,
661 struct device_node ***allnextpp,
662 unsigned long fpsize)
663 {
664 struct device_node *np;
665 struct property *pp, **prev_pp = NULL;
666 char *pathp;
667 u32 tag;
668 unsigned int l, allocl;
669 int has_name = 0;
670 int new_format = 0;
671
672 tag = *((u32 *)(*p));
673 if (tag != OF_DT_BEGIN_NODE) {
674 printk("Weird tag at start of node: %x\n", tag);
675 return mem;
676 }
677 *p += 4;
678 pathp = (char *)*p;
679 l = allocl = strlen(pathp) + 1;
680 *p = _ALIGN(*p + l, 4);
681
682 /* version 0x10 has a more compact unit name here instead of the full
683 * path. we accumulate the full path size using "fpsize", we'll rebuild
684 * it later. We detect this because the first character of the name is
685 * not '/'.
686 */
687 if ((*pathp) != '/') {
688 new_format = 1;
689 if (fpsize == 0) {
690 /* root node: special case. fpsize accounts for path
691 * plus terminating zero. root node only has '/', so
692 * fpsize should be 2, but we want to avoid the first
693 * level nodes to have two '/' so we use fpsize 1 here
694 */
695 fpsize = 1;
696 allocl = 2;
697 } else {
698 /* account for '/' and path size minus terminal 0
699 * already in 'l'
700 */
701 fpsize += l;
702 allocl = fpsize;
703 }
704 }
705
706
707 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
708 __alignof__(struct device_node));
709 if (allnextpp) {
710 memset(np, 0, sizeof(*np));
711 np->full_name = ((char*)np) + sizeof(struct device_node);
712 if (new_format) {
713 char *p = np->full_name;
714 /* rebuild full path for new format */
715 if (dad && dad->parent) {
716 strcpy(p, dad->full_name);
717 #ifdef DEBUG
718 if ((strlen(p) + l + 1) != allocl) {
719 DBG("%s: p: %d, l: %d, a: %d\n",
720 pathp, (int)strlen(p), l, allocl);
721 }
722 #endif
723 p += strlen(p);
724 }
725 *(p++) = '/';
726 memcpy(p, pathp, l);
727 } else
728 memcpy(np->full_name, pathp, l);
729 prev_pp = &np->properties;
730 **allnextpp = np;
731 *allnextpp = &np->allnext;
732 if (dad != NULL) {
733 np->parent = dad;
734 /* we temporarily use the next field as `last_child'*/
735 if (dad->next == 0)
736 dad->child = np;
737 else
738 dad->next->sibling = np;
739 dad->next = np;
740 }
741 kref_init(&np->kref);
742 }
743 while(1) {
744 u32 sz, noff;
745 char *pname;
746
747 tag = *((u32 *)(*p));
748 if (tag == OF_DT_NOP) {
749 *p += 4;
750 continue;
751 }
752 if (tag != OF_DT_PROP)
753 break;
754 *p += 4;
755 sz = *((u32 *)(*p));
756 noff = *((u32 *)((*p) + 4));
757 *p += 8;
758 if (initial_boot_params->version < 0x10)
759 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
760
761 pname = find_flat_dt_string(noff);
762 if (pname == NULL) {
763 printk("Can't find property name in list !\n");
764 break;
765 }
766 if (strcmp(pname, "name") == 0)
767 has_name = 1;
768 l = strlen(pname) + 1;
769 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
770 __alignof__(struct property));
771 if (allnextpp) {
772 if (strcmp(pname, "linux,phandle") == 0) {
773 np->node = *((u32 *)*p);
774 if (np->linux_phandle == 0)
775 np->linux_phandle = np->node;
776 }
777 if (strcmp(pname, "ibm,phandle") == 0)
778 np->linux_phandle = *((u32 *)*p);
779 pp->name = pname;
780 pp->length = sz;
781 pp->value = (void *)*p;
782 *prev_pp = pp;
783 prev_pp = &pp->next;
784 }
785 *p = _ALIGN((*p) + sz, 4);
786 }
787 /* with version 0x10 we may not have the name property, recreate
788 * it here from the unit name if absent
789 */
790 if (!has_name) {
791 char *p = pathp, *ps = pathp, *pa = NULL;
792 int sz;
793
794 while (*p) {
795 if ((*p) == '@')
796 pa = p;
797 if ((*p) == '/')
798 ps = p + 1;
799 p++;
800 }
801 if (pa < ps)
802 pa = p;
803 sz = (pa - ps) + 1;
804 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
805 __alignof__(struct property));
806 if (allnextpp) {
807 pp->name = "name";
808 pp->length = sz;
809 pp->value = (unsigned char *)(pp + 1);
810 *prev_pp = pp;
811 prev_pp = &pp->next;
812 memcpy(pp->value, ps, sz - 1);
813 ((char *)pp->value)[sz - 1] = 0;
814 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
815 }
816 }
817 if (allnextpp) {
818 *prev_pp = NULL;
819 np->name = get_property(np, "name", NULL);
820 np->type = get_property(np, "device_type", NULL);
821
822 if (!np->name)
823 np->name = "<NULL>";
824 if (!np->type)
825 np->type = "<NULL>";
826 }
827 while (tag == OF_DT_BEGIN_NODE) {
828 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
829 tag = *((u32 *)(*p));
830 }
831 if (tag != OF_DT_END_NODE) {
832 printk("Weird tag at end of node: %x\n", tag);
833 return mem;
834 }
835 *p += 4;
836 return mem;
837 }
838
839
840 /**
841 * unflattens the device-tree passed by the firmware, creating the
842 * tree of struct device_node. It also fills the "name" and "type"
843 * pointers of the nodes so the normal device-tree walking functions
844 * can be used (this used to be done by finish_device_tree)
845 */
846 void __init unflatten_device_tree(void)
847 {
848 unsigned long start, mem, size;
849 struct device_node **allnextp = &allnodes;
850
851 DBG(" -> unflatten_device_tree()\n");
852
853 /* First pass, scan for size */
854 start = ((unsigned long)initial_boot_params) +
855 initial_boot_params->off_dt_struct;
856 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
857 size = (size | 3) + 1;
858
859 DBG(" size is %lx, allocating...\n", size);
860
861 /* Allocate memory for the expanded device tree */
862 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
863 mem = (unsigned long) __va(mem);
864
865 ((u32 *)mem)[size / 4] = 0xdeadbeef;
866
867 DBG(" unflattening %lx...\n", mem);
868
869 /* Second pass, do actual unflattening */
870 start = ((unsigned long)initial_boot_params) +
871 initial_boot_params->off_dt_struct;
872 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
873 if (*((u32 *)start) != OF_DT_END)
874 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
875 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
876 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
877 ((u32 *)mem)[size / 4] );
878 *allnextp = NULL;
879
880 /* Get pointer to OF "/chosen" node for use everywhere */
881 of_chosen = of_find_node_by_path("/chosen");
882 if (of_chosen == NULL)
883 of_chosen = of_find_node_by_path("/chosen@0");
884
885 DBG(" <- unflatten_device_tree()\n");
886 }
887
888 static int __init early_init_dt_scan_cpus(unsigned long node,
889 const char *uname, int depth,
890 void *data)
891 {
892 static int logical_cpuid = 0;
893 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
894 #ifdef CONFIG_ALTIVEC
895 u32 *prop;
896 #endif
897 u32 *intserv;
898 int i, nthreads;
899 unsigned long len;
900 int found = 0;
901
902 /* We are scanning "cpu" nodes only */
903 if (type == NULL || strcmp(type, "cpu") != 0)
904 return 0;
905
906 /* Get physical cpuid */
907 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
908 if (intserv) {
909 nthreads = len / sizeof(int);
910 } else {
911 intserv = of_get_flat_dt_prop(node, "reg", NULL);
912 nthreads = 1;
913 }
914
915 /*
916 * Now see if any of these threads match our boot cpu.
917 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
918 */
919 for (i = 0; i < nthreads; i++) {
920 /*
921 * version 2 of the kexec param format adds the phys cpuid of
922 * booted proc.
923 */
924 if (initial_boot_params && initial_boot_params->version >= 2) {
925 if (intserv[i] ==
926 initial_boot_params->boot_cpuid_phys) {
927 found = 1;
928 break;
929 }
930 } else {
931 /*
932 * Check if it's the boot-cpu, set it's hw index now,
933 * unfortunately this format did not support booting
934 * off secondary threads.
935 */
936 if (of_get_flat_dt_prop(node,
937 "linux,boot-cpu", NULL) != NULL) {
938 found = 1;
939 break;
940 }
941 }
942
943 #ifdef CONFIG_SMP
944 /* logical cpu id is always 0 on UP kernels */
945 logical_cpuid++;
946 #endif
947 }
948
949 if (found) {
950 DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
951 intserv[i]);
952 boot_cpuid = logical_cpuid;
953 set_hard_smp_processor_id(boot_cpuid, intserv[i]);
954 }
955
956 #ifdef CONFIG_ALTIVEC
957 /* Check if we have a VMX and eventually update CPU features */
958 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
959 if (prop && (*prop) > 0) {
960 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
961 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
962 }
963
964 /* Same goes for Apple's "altivec" property */
965 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
966 if (prop) {
967 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
968 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
969 }
970 #endif /* CONFIG_ALTIVEC */
971
972 #ifdef CONFIG_PPC_PSERIES
973 if (nthreads > 1)
974 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
975 else
976 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
977 #endif
978
979 return 0;
980 }
981
982 static int __init early_init_dt_scan_chosen(unsigned long node,
983 const char *uname, int depth, void *data)
984 {
985 unsigned long *lprop;
986 unsigned long l;
987 char *p;
988
989 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
990
991 if (depth != 1 ||
992 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
993 return 0;
994
995 #ifdef CONFIG_PPC64
996 /* check if iommu is forced on or off */
997 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
998 iommu_is_off = 1;
999 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1000 iommu_force_on = 1;
1001 #endif
1002
1003 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1004 if (lprop)
1005 memory_limit = *lprop;
1006
1007 #ifdef CONFIG_PPC64
1008 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1009 if (lprop)
1010 tce_alloc_start = *lprop;
1011 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1012 if (lprop)
1013 tce_alloc_end = *lprop;
1014 #endif
1015
1016 #ifdef CONFIG_PPC_RTAS
1017 /* To help early debugging via the front panel, we retrieve a minimal
1018 * set of RTAS infos now if available
1019 */
1020 {
1021 u64 *basep, *entryp, *sizep;
1022
1023 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1024 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1025 sizep = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1026 if (basep && entryp && sizep) {
1027 rtas.base = *basep;
1028 rtas.entry = *entryp;
1029 rtas.size = *sizep;
1030 }
1031 }
1032 #endif /* CONFIG_PPC_RTAS */
1033
1034 #ifdef CONFIG_KEXEC
1035 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1036 if (lprop)
1037 crashk_res.start = *lprop;
1038
1039 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1040 if (lprop)
1041 crashk_res.end = crashk_res.start + *lprop - 1;
1042 #endif
1043
1044 /* Retreive command line */
1045 p = of_get_flat_dt_prop(node, "bootargs", &l);
1046 if (p != NULL && l > 0)
1047 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
1048
1049 #ifdef CONFIG_CMDLINE
1050 if (l == 0 || (l == 1 && (*p) == 0))
1051 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1052 #endif /* CONFIG_CMDLINE */
1053
1054 DBG("Command line is: %s\n", cmd_line);
1055
1056 if (strstr(cmd_line, "mem=")) {
1057 char *p, *q;
1058
1059 for (q = cmd_line; (p = strstr(q, "mem=")) != 0; ) {
1060 q = p + 4;
1061 if (p > cmd_line && p[-1] != ' ')
1062 continue;
1063 memory_limit = memparse(q, &q);
1064 }
1065 }
1066
1067 /* break now */
1068 return 1;
1069 }
1070
1071 static int __init early_init_dt_scan_root(unsigned long node,
1072 const char *uname, int depth, void *data)
1073 {
1074 u32 *prop;
1075
1076 if (depth != 0)
1077 return 0;
1078
1079 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1080 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1081 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1082
1083 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1084 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1085 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1086
1087 /* break now */
1088 return 1;
1089 }
1090
1091 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1092 {
1093 cell_t *p = *cellp;
1094 unsigned long r;
1095
1096 /* Ignore more than 2 cells */
1097 while (s > sizeof(unsigned long) / 4) {
1098 p++;
1099 s--;
1100 }
1101 r = *p++;
1102 #ifdef CONFIG_PPC64
1103 if (s > 1) {
1104 r <<= 32;
1105 r |= *(p++);
1106 s--;
1107 }
1108 #endif
1109
1110 *cellp = p;
1111 return r;
1112 }
1113
1114
1115 static int __init early_init_dt_scan_memory(unsigned long node,
1116 const char *uname, int depth, void *data)
1117 {
1118 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1119 cell_t *reg, *endp;
1120 unsigned long l;
1121
1122 /* We are scanning "memory" nodes only */
1123 if (type == NULL) {
1124 /*
1125 * The longtrail doesn't have a device_type on the
1126 * /memory node, so look for the node called /memory@0.
1127 */
1128 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1129 return 0;
1130 } else if (strcmp(type, "memory") != 0)
1131 return 0;
1132
1133 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
1134 if (reg == NULL)
1135 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1136 if (reg == NULL)
1137 return 0;
1138
1139 endp = reg + (l / sizeof(cell_t));
1140
1141 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1142 uname, l, reg[0], reg[1], reg[2], reg[3]);
1143
1144 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1145 unsigned long base, size;
1146
1147 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1148 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1149
1150 if (size == 0)
1151 continue;
1152 DBG(" - %lx , %lx\n", base, size);
1153 #ifdef CONFIG_PPC64
1154 if (iommu_is_off) {
1155 if (base >= 0x80000000ul)
1156 continue;
1157 if ((base + size) > 0x80000000ul)
1158 size = 0x80000000ul - base;
1159 }
1160 #endif
1161 lmb_add(base, size);
1162 }
1163 return 0;
1164 }
1165
1166 static void __init early_reserve_mem(void)
1167 {
1168 u64 base, size;
1169 u64 *reserve_map;
1170
1171 reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1172 initial_boot_params->off_mem_rsvmap);
1173 #ifdef CONFIG_PPC32
1174 /*
1175 * Handle the case where we might be booting from an old kexec
1176 * image that setup the mem_rsvmap as pairs of 32-bit values
1177 */
1178 if (*reserve_map > 0xffffffffull) {
1179 u32 base_32, size_32;
1180 u32 *reserve_map_32 = (u32 *)reserve_map;
1181
1182 while (1) {
1183 base_32 = *(reserve_map_32++);
1184 size_32 = *(reserve_map_32++);
1185 if (size_32 == 0)
1186 break;
1187 DBG("reserving: %x -> %x\n", base_32, size_32);
1188 lmb_reserve(base_32, size_32);
1189 }
1190 return;
1191 }
1192 #endif
1193 while (1) {
1194 base = *(reserve_map++);
1195 size = *(reserve_map++);
1196 if (size == 0)
1197 break;
1198 DBG("reserving: %llx -> %llx\n", base, size);
1199 lmb_reserve(base, size);
1200 }
1201
1202 #if 0
1203 DBG("memory reserved, lmbs :\n");
1204 lmb_dump_all();
1205 #endif
1206 }
1207
1208 void __init early_init_devtree(void *params)
1209 {
1210 DBG(" -> early_init_devtree()\n");
1211
1212 /* Setup flat device-tree pointer */
1213 initial_boot_params = params;
1214
1215 /* Retrieve various informations from the /chosen node of the
1216 * device-tree, including the platform type, initrd location and
1217 * size, TCE reserve, and more ...
1218 */
1219 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1220
1221 /* Scan memory nodes and rebuild LMBs */
1222 lmb_init();
1223 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1224 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1225 lmb_enforce_memory_limit(memory_limit);
1226 lmb_analyze();
1227
1228 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1229
1230 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1231 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1232 #ifdef CONFIG_CRASH_DUMP
1233 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1234 #endif
1235 early_reserve_mem();
1236
1237 DBG("Scanning CPUs ...\n");
1238
1239 /* Retreive CPU related informations from the flat tree
1240 * (altivec support, boot CPU ID, ...)
1241 */
1242 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1243
1244 DBG(" <- early_init_devtree()\n");
1245 }
1246
1247 #undef printk
1248
1249 int
1250 prom_n_addr_cells(struct device_node* np)
1251 {
1252 int* ip;
1253 do {
1254 if (np->parent)
1255 np = np->parent;
1256 ip = (int *) get_property(np, "#address-cells", NULL);
1257 if (ip != NULL)
1258 return *ip;
1259 } while (np->parent);
1260 /* No #address-cells property for the root node, default to 1 */
1261 return 1;
1262 }
1263 EXPORT_SYMBOL(prom_n_addr_cells);
1264
1265 int
1266 prom_n_size_cells(struct device_node* np)
1267 {
1268 int* ip;
1269 do {
1270 if (np->parent)
1271 np = np->parent;
1272 ip = (int *) get_property(np, "#size-cells", NULL);
1273 if (ip != NULL)
1274 return *ip;
1275 } while (np->parent);
1276 /* No #size-cells property for the root node, default to 1 */
1277 return 1;
1278 }
1279 EXPORT_SYMBOL(prom_n_size_cells);
1280
1281 /**
1282 * Work out the sense (active-low level / active-high edge)
1283 * of each interrupt from the device tree.
1284 */
1285 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1286 {
1287 struct device_node *np;
1288 int i, j;
1289
1290 /* default to level-triggered */
1291 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1292
1293 for (np = allnodes; np != 0; np = np->allnext) {
1294 for (j = 0; j < np->n_intrs; j++) {
1295 i = np->intrs[j].line;
1296 if (i >= off && i < max)
1297 senses[i-off] = np->intrs[j].sense;
1298 }
1299 }
1300 }
1301
1302 /**
1303 * Construct and return a list of the device_nodes with a given name.
1304 */
1305 struct device_node *find_devices(const char *name)
1306 {
1307 struct device_node *head, **prevp, *np;
1308
1309 prevp = &head;
1310 for (np = allnodes; np != 0; np = np->allnext) {
1311 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1312 *prevp = np;
1313 prevp = &np->next;
1314 }
1315 }
1316 *prevp = NULL;
1317 return head;
1318 }
1319 EXPORT_SYMBOL(find_devices);
1320
1321 /**
1322 * Construct and return a list of the device_nodes with a given type.
1323 */
1324 struct device_node *find_type_devices(const char *type)
1325 {
1326 struct device_node *head, **prevp, *np;
1327
1328 prevp = &head;
1329 for (np = allnodes; np != 0; np = np->allnext) {
1330 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1331 *prevp = np;
1332 prevp = &np->next;
1333 }
1334 }
1335 *prevp = NULL;
1336 return head;
1337 }
1338 EXPORT_SYMBOL(find_type_devices);
1339
1340 /**
1341 * Returns all nodes linked together
1342 */
1343 struct device_node *find_all_nodes(void)
1344 {
1345 struct device_node *head, **prevp, *np;
1346
1347 prevp = &head;
1348 for (np = allnodes; np != 0; np = np->allnext) {
1349 *prevp = np;
1350 prevp = &np->next;
1351 }
1352 *prevp = NULL;
1353 return head;
1354 }
1355 EXPORT_SYMBOL(find_all_nodes);
1356
1357 /** Checks if the given "compat" string matches one of the strings in
1358 * the device's "compatible" property
1359 */
1360 int device_is_compatible(struct device_node *device, const char *compat)
1361 {
1362 const char* cp;
1363 int cplen, l;
1364
1365 cp = (char *) get_property(device, "compatible", &cplen);
1366 if (cp == NULL)
1367 return 0;
1368 while (cplen > 0) {
1369 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1370 return 1;
1371 l = strlen(cp) + 1;
1372 cp += l;
1373 cplen -= l;
1374 }
1375
1376 return 0;
1377 }
1378 EXPORT_SYMBOL(device_is_compatible);
1379
1380
1381 /**
1382 * Indicates whether the root node has a given value in its
1383 * compatible property.
1384 */
1385 int machine_is_compatible(const char *compat)
1386 {
1387 struct device_node *root;
1388 int rc = 0;
1389
1390 root = of_find_node_by_path("/");
1391 if (root) {
1392 rc = device_is_compatible(root, compat);
1393 of_node_put(root);
1394 }
1395 return rc;
1396 }
1397 EXPORT_SYMBOL(machine_is_compatible);
1398
1399 /**
1400 * Construct and return a list of the device_nodes with a given type
1401 * and compatible property.
1402 */
1403 struct device_node *find_compatible_devices(const char *type,
1404 const char *compat)
1405 {
1406 struct device_node *head, **prevp, *np;
1407
1408 prevp = &head;
1409 for (np = allnodes; np != 0; np = np->allnext) {
1410 if (type != NULL
1411 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1412 continue;
1413 if (device_is_compatible(np, compat)) {
1414 *prevp = np;
1415 prevp = &np->next;
1416 }
1417 }
1418 *prevp = NULL;
1419 return head;
1420 }
1421 EXPORT_SYMBOL(find_compatible_devices);
1422
1423 /**
1424 * Find the device_node with a given full_name.
1425 */
1426 struct device_node *find_path_device(const char *path)
1427 {
1428 struct device_node *np;
1429
1430 for (np = allnodes; np != 0; np = np->allnext)
1431 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1432 return np;
1433 return NULL;
1434 }
1435 EXPORT_SYMBOL(find_path_device);
1436
1437 /*******
1438 *
1439 * New implementation of the OF "find" APIs, return a refcounted
1440 * object, call of_node_put() when done. The device tree and list
1441 * are protected by a rw_lock.
1442 *
1443 * Note that property management will need some locking as well,
1444 * this isn't dealt with yet.
1445 *
1446 *******/
1447
1448 /**
1449 * of_find_node_by_name - Find a node by its "name" property
1450 * @from: The node to start searching from or NULL, the node
1451 * you pass will not be searched, only the next one
1452 * will; typically, you pass what the previous call
1453 * returned. of_node_put() will be called on it
1454 * @name: The name string to match against
1455 *
1456 * Returns a node pointer with refcount incremented, use
1457 * of_node_put() on it when done.
1458 */
1459 struct device_node *of_find_node_by_name(struct device_node *from,
1460 const char *name)
1461 {
1462 struct device_node *np;
1463
1464 read_lock(&devtree_lock);
1465 np = from ? from->allnext : allnodes;
1466 for (; np != NULL; np = np->allnext)
1467 if (np->name != NULL && strcasecmp(np->name, name) == 0
1468 && of_node_get(np))
1469 break;
1470 if (from)
1471 of_node_put(from);
1472 read_unlock(&devtree_lock);
1473 return np;
1474 }
1475 EXPORT_SYMBOL(of_find_node_by_name);
1476
1477 /**
1478 * of_find_node_by_type - Find a node by its "device_type" property
1479 * @from: The node to start searching from or NULL, the node
1480 * you pass will not be searched, only the next one
1481 * will; typically, you pass what the previous call
1482 * returned. of_node_put() will be called on it
1483 * @name: The type string to match against
1484 *
1485 * Returns a node pointer with refcount incremented, use
1486 * of_node_put() on it when done.
1487 */
1488 struct device_node *of_find_node_by_type(struct device_node *from,
1489 const char *type)
1490 {
1491 struct device_node *np;
1492
1493 read_lock(&devtree_lock);
1494 np = from ? from->allnext : allnodes;
1495 for (; np != 0; np = np->allnext)
1496 if (np->type != 0 && strcasecmp(np->type, type) == 0
1497 && of_node_get(np))
1498 break;
1499 if (from)
1500 of_node_put(from);
1501 read_unlock(&devtree_lock);
1502 return np;
1503 }
1504 EXPORT_SYMBOL(of_find_node_by_type);
1505
1506 /**
1507 * of_find_compatible_node - Find a node based on type and one of the
1508 * tokens in its "compatible" property
1509 * @from: The node to start searching from or NULL, the node
1510 * you pass will not be searched, only the next one
1511 * will; typically, you pass what the previous call
1512 * returned. of_node_put() will be called on it
1513 * @type: The type string to match "device_type" or NULL to ignore
1514 * @compatible: The string to match to one of the tokens in the device
1515 * "compatible" list.
1516 *
1517 * Returns a node pointer with refcount incremented, use
1518 * of_node_put() on it when done.
1519 */
1520 struct device_node *of_find_compatible_node(struct device_node *from,
1521 const char *type, const char *compatible)
1522 {
1523 struct device_node *np;
1524
1525 read_lock(&devtree_lock);
1526 np = from ? from->allnext : allnodes;
1527 for (; np != 0; np = np->allnext) {
1528 if (type != NULL
1529 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1530 continue;
1531 if (device_is_compatible(np, compatible) && of_node_get(np))
1532 break;
1533 }
1534 if (from)
1535 of_node_put(from);
1536 read_unlock(&devtree_lock);
1537 return np;
1538 }
1539 EXPORT_SYMBOL(of_find_compatible_node);
1540
1541 /**
1542 * of_find_node_by_path - Find a node matching a full OF path
1543 * @path: The full path to match
1544 *
1545 * Returns a node pointer with refcount incremented, use
1546 * of_node_put() on it when done.
1547 */
1548 struct device_node *of_find_node_by_path(const char *path)
1549 {
1550 struct device_node *np = allnodes;
1551
1552 read_lock(&devtree_lock);
1553 for (; np != 0; np = np->allnext) {
1554 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1555 && of_node_get(np))
1556 break;
1557 }
1558 read_unlock(&devtree_lock);
1559 return np;
1560 }
1561 EXPORT_SYMBOL(of_find_node_by_path);
1562
1563 /**
1564 * of_find_node_by_phandle - Find a node given a phandle
1565 * @handle: phandle of the node to find
1566 *
1567 * Returns a node pointer with refcount incremented, use
1568 * of_node_put() on it when done.
1569 */
1570 struct device_node *of_find_node_by_phandle(phandle handle)
1571 {
1572 struct device_node *np;
1573
1574 read_lock(&devtree_lock);
1575 for (np = allnodes; np != 0; np = np->allnext)
1576 if (np->linux_phandle == handle)
1577 break;
1578 if (np)
1579 of_node_get(np);
1580 read_unlock(&devtree_lock);
1581 return np;
1582 }
1583 EXPORT_SYMBOL(of_find_node_by_phandle);
1584
1585 /**
1586 * of_find_all_nodes - Get next node in global list
1587 * @prev: Previous node or NULL to start iteration
1588 * of_node_put() will be called on it
1589 *
1590 * Returns a node pointer with refcount incremented, use
1591 * of_node_put() on it when done.
1592 */
1593 struct device_node *of_find_all_nodes(struct device_node *prev)
1594 {
1595 struct device_node *np;
1596
1597 read_lock(&devtree_lock);
1598 np = prev ? prev->allnext : allnodes;
1599 for (; np != 0; np = np->allnext)
1600 if (of_node_get(np))
1601 break;
1602 if (prev)
1603 of_node_put(prev);
1604 read_unlock(&devtree_lock);
1605 return np;
1606 }
1607 EXPORT_SYMBOL(of_find_all_nodes);
1608
1609 /**
1610 * of_get_parent - Get a node's parent if any
1611 * @node: Node to get parent
1612 *
1613 * Returns a node pointer with refcount incremented, use
1614 * of_node_put() on it when done.
1615 */
1616 struct device_node *of_get_parent(const struct device_node *node)
1617 {
1618 struct device_node *np;
1619
1620 if (!node)
1621 return NULL;
1622
1623 read_lock(&devtree_lock);
1624 np = of_node_get(node->parent);
1625 read_unlock(&devtree_lock);
1626 return np;
1627 }
1628 EXPORT_SYMBOL(of_get_parent);
1629
1630 /**
1631 * of_get_next_child - Iterate a node childs
1632 * @node: parent node
1633 * @prev: previous child of the parent node, or NULL to get first
1634 *
1635 * Returns a node pointer with refcount incremented, use
1636 * of_node_put() on it when done.
1637 */
1638 struct device_node *of_get_next_child(const struct device_node *node,
1639 struct device_node *prev)
1640 {
1641 struct device_node *next;
1642
1643 read_lock(&devtree_lock);
1644 next = prev ? prev->sibling : node->child;
1645 for (; next != 0; next = next->sibling)
1646 if (of_node_get(next))
1647 break;
1648 if (prev)
1649 of_node_put(prev);
1650 read_unlock(&devtree_lock);
1651 return next;
1652 }
1653 EXPORT_SYMBOL(of_get_next_child);
1654
1655 /**
1656 * of_node_get - Increment refcount of a node
1657 * @node: Node to inc refcount, NULL is supported to
1658 * simplify writing of callers
1659 *
1660 * Returns node.
1661 */
1662 struct device_node *of_node_get(struct device_node *node)
1663 {
1664 if (node)
1665 kref_get(&node->kref);
1666 return node;
1667 }
1668 EXPORT_SYMBOL(of_node_get);
1669
1670 static inline struct device_node * kref_to_device_node(struct kref *kref)
1671 {
1672 return container_of(kref, struct device_node, kref);
1673 }
1674
1675 /**
1676 * of_node_release - release a dynamically allocated node
1677 * @kref: kref element of the node to be released
1678 *
1679 * In of_node_put() this function is passed to kref_put()
1680 * as the destructor.
1681 */
1682 static void of_node_release(struct kref *kref)
1683 {
1684 struct device_node *node = kref_to_device_node(kref);
1685 struct property *prop = node->properties;
1686
1687 if (!OF_IS_DYNAMIC(node))
1688 return;
1689 while (prop) {
1690 struct property *next = prop->next;
1691 kfree(prop->name);
1692 kfree(prop->value);
1693 kfree(prop);
1694 prop = next;
1695
1696 if (!prop) {
1697 prop = node->deadprops;
1698 node->deadprops = NULL;
1699 }
1700 }
1701 kfree(node->intrs);
1702 kfree(node->full_name);
1703 kfree(node->data);
1704 kfree(node);
1705 }
1706
1707 /**
1708 * of_node_put - Decrement refcount of a node
1709 * @node: Node to dec refcount, NULL is supported to
1710 * simplify writing of callers
1711 *
1712 */
1713 void of_node_put(struct device_node *node)
1714 {
1715 if (node)
1716 kref_put(&node->kref, of_node_release);
1717 }
1718 EXPORT_SYMBOL(of_node_put);
1719
1720 /*
1721 * Plug a device node into the tree and global list.
1722 */
1723 void of_attach_node(struct device_node *np)
1724 {
1725 write_lock(&devtree_lock);
1726 np->sibling = np->parent->child;
1727 np->allnext = allnodes;
1728 np->parent->child = np;
1729 allnodes = np;
1730 write_unlock(&devtree_lock);
1731 }
1732
1733 /*
1734 * "Unplug" a node from the device tree. The caller must hold
1735 * a reference to the node. The memory associated with the node
1736 * is not freed until its refcount goes to zero.
1737 */
1738 void of_detach_node(const struct device_node *np)
1739 {
1740 struct device_node *parent;
1741
1742 write_lock(&devtree_lock);
1743
1744 parent = np->parent;
1745
1746 if (allnodes == np)
1747 allnodes = np->allnext;
1748 else {
1749 struct device_node *prev;
1750 for (prev = allnodes;
1751 prev->allnext != np;
1752 prev = prev->allnext)
1753 ;
1754 prev->allnext = np->allnext;
1755 }
1756
1757 if (parent->child == np)
1758 parent->child = np->sibling;
1759 else {
1760 struct device_node *prevsib;
1761 for (prevsib = np->parent->child;
1762 prevsib->sibling != np;
1763 prevsib = prevsib->sibling)
1764 ;
1765 prevsib->sibling = np->sibling;
1766 }
1767
1768 write_unlock(&devtree_lock);
1769 }
1770
1771 #ifdef CONFIG_PPC_PSERIES
1772 /*
1773 * Fix up the uninitialized fields in a new device node:
1774 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1775 *
1776 * A lot of boot-time code is duplicated here, because functions such
1777 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1778 * slab allocator.
1779 *
1780 * This should probably be split up into smaller chunks.
1781 */
1782
1783 static int of_finish_dynamic_node(struct device_node *node)
1784 {
1785 struct device_node *parent = of_get_parent(node);
1786 int err = 0;
1787 phandle *ibm_phandle;
1788
1789 node->name = get_property(node, "name", NULL);
1790 node->type = get_property(node, "device_type", NULL);
1791
1792 if (!parent) {
1793 err = -ENODEV;
1794 goto out;
1795 }
1796
1797 /* We don't support that function on PowerMac, at least
1798 * not yet
1799 */
1800 if (machine_is(powermac))
1801 return -ENODEV;
1802
1803 /* fix up new node's linux_phandle field */
1804 if ((ibm_phandle = (unsigned int *)get_property(node,
1805 "ibm,phandle", NULL)))
1806 node->linux_phandle = *ibm_phandle;
1807
1808 out:
1809 of_node_put(parent);
1810 return err;
1811 }
1812
1813 static int prom_reconfig_notifier(struct notifier_block *nb,
1814 unsigned long action, void *node)
1815 {
1816 int err;
1817
1818 switch (action) {
1819 case PSERIES_RECONFIG_ADD:
1820 err = of_finish_dynamic_node(node);
1821 if (!err)
1822 finish_node(node, NULL, 0);
1823 if (err < 0) {
1824 printk(KERN_ERR "finish_node returned %d\n", err);
1825 err = NOTIFY_BAD;
1826 }
1827 break;
1828 default:
1829 err = NOTIFY_DONE;
1830 break;
1831 }
1832 return err;
1833 }
1834
1835 static struct notifier_block prom_reconfig_nb = {
1836 .notifier_call = prom_reconfig_notifier,
1837 .priority = 10, /* This one needs to run first */
1838 };
1839
1840 static int __init prom_reconfig_setup(void)
1841 {
1842 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1843 }
1844 __initcall(prom_reconfig_setup);
1845 #endif
1846
1847 struct property *of_find_property(struct device_node *np, const char *name,
1848 int *lenp)
1849 {
1850 struct property *pp;
1851
1852 read_lock(&devtree_lock);
1853 for (pp = np->properties; pp != 0; pp = pp->next)
1854 if (strcmp(pp->name, name) == 0) {
1855 if (lenp != 0)
1856 *lenp = pp->length;
1857 break;
1858 }
1859 read_unlock(&devtree_lock);
1860
1861 return pp;
1862 }
1863
1864 /*
1865 * Find a property with a given name for a given node
1866 * and return the value.
1867 */
1868 unsigned char *get_property(struct device_node *np, const char *name,
1869 int *lenp)
1870 {
1871 struct property *pp = of_find_property(np,name,lenp);
1872 return pp ? pp->value : NULL;
1873 }
1874 EXPORT_SYMBOL(get_property);
1875
1876 /*
1877 * Add a property to a node
1878 */
1879 int prom_add_property(struct device_node* np, struct property* prop)
1880 {
1881 struct property **next;
1882
1883 prop->next = NULL;
1884 write_lock(&devtree_lock);
1885 next = &np->properties;
1886 while (*next) {
1887 if (strcmp(prop->name, (*next)->name) == 0) {
1888 /* duplicate ! don't insert it */
1889 write_unlock(&devtree_lock);
1890 return -1;
1891 }
1892 next = &(*next)->next;
1893 }
1894 *next = prop;
1895 write_unlock(&devtree_lock);
1896
1897 #ifdef CONFIG_PROC_DEVICETREE
1898 /* try to add to proc as well if it was initialized */
1899 if (np->pde)
1900 proc_device_tree_add_prop(np->pde, prop);
1901 #endif /* CONFIG_PROC_DEVICETREE */
1902
1903 return 0;
1904 }
1905
1906 /*
1907 * Remove a property from a node. Note that we don't actually
1908 * remove it, since we have given out who-knows-how-many pointers
1909 * to the data using get-property. Instead we just move the property
1910 * to the "dead properties" list, so it won't be found any more.
1911 */
1912 int prom_remove_property(struct device_node *np, struct property *prop)
1913 {
1914 struct property **next;
1915 int found = 0;
1916
1917 write_lock(&devtree_lock);
1918 next = &np->properties;
1919 while (*next) {
1920 if (*next == prop) {
1921 /* found the node */
1922 *next = prop->next;
1923 prop->next = np->deadprops;
1924 np->deadprops = prop;
1925 found = 1;
1926 break;
1927 }
1928 next = &(*next)->next;
1929 }
1930 write_unlock(&devtree_lock);
1931
1932 if (!found)
1933 return -ENODEV;
1934
1935 #ifdef CONFIG_PROC_DEVICETREE
1936 /* try to remove the proc node as well */
1937 if (np->pde)
1938 proc_device_tree_remove_prop(np->pde, prop);
1939 #endif /* CONFIG_PROC_DEVICETREE */
1940
1941 return 0;
1942 }
1943
1944 /*
1945 * Update a property in a node. Note that we don't actually
1946 * remove it, since we have given out who-knows-how-many pointers
1947 * to the data using get-property. Instead we just move the property
1948 * to the "dead properties" list, and add the new property to the
1949 * property list
1950 */
1951 int prom_update_property(struct device_node *np,
1952 struct property *newprop,
1953 struct property *oldprop)
1954 {
1955 struct property **next;
1956 int found = 0;
1957
1958 write_lock(&devtree_lock);
1959 next = &np->properties;
1960 while (*next) {
1961 if (*next == oldprop) {
1962 /* found the node */
1963 newprop->next = oldprop->next;
1964 *next = newprop;
1965 oldprop->next = np->deadprops;
1966 np->deadprops = oldprop;
1967 found = 1;
1968 break;
1969 }
1970 next = &(*next)->next;
1971 }
1972 write_unlock(&devtree_lock);
1973
1974 if (!found)
1975 return -ENODEV;
1976
1977 #ifdef CONFIG_PROC_DEVICETREE
1978 /* try to add to proc as well if it was initialized */
1979 if (np->pde)
1980 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1981 #endif /* CONFIG_PROC_DEVICETREE */
1982
1983 return 0;
1984 }
1985
1986 #ifdef CONFIG_KEXEC
1987 /* We may have allocated the flat device tree inside the crash kernel region
1988 * in prom_init. If so we need to move it out into regular memory. */
1989 void kdump_move_device_tree(void)
1990 {
1991 unsigned long start, end;
1992 struct boot_param_header *new;
1993
1994 start = __pa((unsigned long)initial_boot_params);
1995 end = start + initial_boot_params->totalsize;
1996
1997 if (end < crashk_res.start || start > crashk_res.end)
1998 return;
1999
2000 new = (struct boot_param_header*)
2001 __va(lmb_alloc(initial_boot_params->totalsize, PAGE_SIZE));
2002
2003 memcpy(new, initial_boot_params, initial_boot_params->totalsize);
2004
2005 initial_boot_params = new;
2006
2007 DBG("Flat device tree blob moved to %p\n", initial_boot_params);
2008
2009 /* XXX should we unreserve the old DT? */
2010 }
2011 #endif /* CONFIG_KEXEC */