]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/prom.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / prom.c
1 /*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/stringify.h>
27 #include <linux/delay.h>
28 #include <linux/initrd.h>
29 #include <linux/bitops.h>
30 #include <linux/export.h>
31 #include <linux/kexec.h>
32 #include <linux/irq.h>
33 #include <linux/memblock.h>
34 #include <linux/of.h>
35 #include <linux/of_fdt.h>
36 #include <linux/libfdt.h>
37 #include <linux/cpu.h>
38
39 #include <asm/prom.h>
40 #include <asm/rtas.h>
41 #include <asm/page.h>
42 #include <asm/processor.h>
43 #include <asm/irq.h>
44 #include <asm/io.h>
45 #include <asm/kdump.h>
46 #include <asm/smp.h>
47 #include <asm/mmu.h>
48 #include <asm/paca.h>
49 #include <asm/pgtable.h>
50 #include <asm/iommu.h>
51 #include <asm/btext.h>
52 #include <asm/sections.h>
53 #include <asm/machdep.h>
54 #include <asm/pci-bridge.h>
55 #include <asm/kexec.h>
56 #include <asm/opal.h>
57 #include <asm/fadump.h>
58 #include <asm/epapr_hcalls.h>
59 #include <asm/firmware.h>
60 #include <asm/dt_cpu_ftrs.h>
61
62 #include <mm/mmu_decl.h>
63
64 #ifdef DEBUG
65 #define DBG(fmt...) printk(KERN_ERR fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef CONFIG_PPC64
71 int __initdata iommu_is_off;
72 int __initdata iommu_force_on;
73 unsigned long tce_alloc_start, tce_alloc_end;
74 u64 ppc64_rma_size;
75 #endif
76 static phys_addr_t first_memblock_size;
77 static int __initdata boot_cpu_count;
78
79 static int __init early_parse_mem(char *p)
80 {
81 if (!p)
82 return 1;
83
84 memory_limit = PAGE_ALIGN(memparse(p, &p));
85 DBG("memory limit = 0x%llx\n", memory_limit);
86
87 return 0;
88 }
89 early_param("mem", early_parse_mem);
90
91 /*
92 * overlaps_initrd - check for overlap with page aligned extension of
93 * initrd.
94 */
95 static inline int overlaps_initrd(unsigned long start, unsigned long size)
96 {
97 #ifdef CONFIG_BLK_DEV_INITRD
98 if (!initrd_start)
99 return 0;
100
101 return (start + size) > _ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
102 start <= _ALIGN_UP(initrd_end, PAGE_SIZE);
103 #else
104 return 0;
105 #endif
106 }
107
108 /**
109 * move_device_tree - move tree to an unused area, if needed.
110 *
111 * The device tree may be allocated beyond our memory limit, or inside the
112 * crash kernel region for kdump, or within the page aligned range of initrd.
113 * If so, move it out of the way.
114 */
115 static void __init move_device_tree(void)
116 {
117 unsigned long start, size;
118 void *p;
119
120 DBG("-> move_device_tree\n");
121
122 start = __pa(initial_boot_params);
123 size = fdt_totalsize(initial_boot_params);
124
125 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
126 overlaps_crashkernel(start, size) ||
127 overlaps_initrd(start, size)) {
128 p = __va(memblock_alloc(size, PAGE_SIZE));
129 memcpy(p, initial_boot_params, size);
130 initial_boot_params = p;
131 DBG("Moved device tree to 0x%p\n", p);
132 }
133
134 DBG("<- move_device_tree\n");
135 }
136
137 /*
138 * ibm,pa-features is a per-cpu property that contains a string of
139 * attribute descriptors, each of which has a 2 byte header plus up
140 * to 254 bytes worth of processor attribute bits. First header
141 * byte specifies the number of bytes following the header.
142 * Second header byte is an "attribute-specifier" type, of which
143 * zero is the only currently-defined value.
144 * Implementation: Pass in the byte and bit offset for the feature
145 * that we are interested in. The function will return -1 if the
146 * pa-features property is missing, or a 1/0 to indicate if the feature
147 * is supported/not supported. Note that the bit numbers are
148 * big-endian to match the definition in PAPR.
149 */
150 static struct ibm_pa_feature {
151 unsigned long cpu_features; /* CPU_FTR_xxx bit */
152 unsigned long mmu_features; /* MMU_FTR_xxx bit */
153 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
154 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
155 unsigned char pabyte; /* byte number in ibm,pa-features */
156 unsigned char pabit; /* bit number (big-endian) */
157 unsigned char invert; /* if 1, pa bit set => clear feature */
158 } ibm_pa_features[] __initdata = {
159 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
160 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
161 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
162 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
163 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
164 #ifdef CONFIG_PPC_RADIX_MMU
165 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX },
166 #endif
167 { .pabyte = 1, .pabit = 1, .invert = 1, .cpu_features = CPU_FTR_NODSISRALIGN },
168 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
169 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
170 /*
171 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
172 * we don't want to turn on TM here, so we use the *_COMP versions
173 * which are 0 if the kernel doesn't support TM.
174 */
175 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
176 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
177 };
178
179 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
180 unsigned long tablelen,
181 struct ibm_pa_feature *fp,
182 unsigned long ft_size)
183 {
184 unsigned long i, len, bit;
185
186 /* find descriptor with type == 0 */
187 for (;;) {
188 if (tablelen < 3)
189 return;
190 len = 2 + ftrs[0];
191 if (tablelen < len)
192 return; /* descriptor 0 not found */
193 if (ftrs[1] == 0)
194 break;
195 tablelen -= len;
196 ftrs += len;
197 }
198
199 /* loop over bits we know about */
200 for (i = 0; i < ft_size; ++i, ++fp) {
201 if (fp->pabyte >= ftrs[0])
202 continue;
203 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
204 if (bit ^ fp->invert) {
205 cur_cpu_spec->cpu_features |= fp->cpu_features;
206 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
207 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
208 cur_cpu_spec->mmu_features |= fp->mmu_features;
209 } else {
210 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
211 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
212 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
213 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
214 }
215 }
216 }
217
218 static void __init check_cpu_pa_features(unsigned long node)
219 {
220 const unsigned char *pa_ftrs;
221 int tablelen;
222
223 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
224 if (pa_ftrs == NULL)
225 return;
226
227 scan_features(node, pa_ftrs, tablelen,
228 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
229 }
230
231 #ifdef CONFIG_PPC_STD_MMU_64
232 static void __init init_mmu_slb_size(unsigned long node)
233 {
234 const __be32 *slb_size_ptr;
235
236 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
237 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
238
239 if (slb_size_ptr)
240 mmu_slb_size = be32_to_cpup(slb_size_ptr);
241 }
242 #else
243 #define init_mmu_slb_size(node) do { } while(0)
244 #endif
245
246 static struct feature_property {
247 const char *name;
248 u32 min_value;
249 unsigned long cpu_feature;
250 unsigned long cpu_user_ftr;
251 } feature_properties[] __initdata = {
252 #ifdef CONFIG_ALTIVEC
253 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
254 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
255 #endif /* CONFIG_ALTIVEC */
256 #ifdef CONFIG_VSX
257 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
258 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
259 #endif /* CONFIG_VSX */
260 #ifdef CONFIG_PPC64
261 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
262 {"ibm,purr", 1, CPU_FTR_PURR, 0},
263 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
264 #endif /* CONFIG_PPC64 */
265 };
266
267 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
268 static inline void identical_pvr_fixup(unsigned long node)
269 {
270 unsigned int pvr;
271 const char *model = of_get_flat_dt_prop(node, "model", NULL);
272
273 /*
274 * Since 440GR(x)/440EP(x) processors have the same pvr,
275 * we check the node path and set bit 28 in the cur_cpu_spec
276 * pvr for EP(x) processor version. This bit is always 0 in
277 * the "real" pvr. Then we call identify_cpu again with
278 * the new logical pvr to enable FPU support.
279 */
280 if (model && strstr(model, "440EP")) {
281 pvr = cur_cpu_spec->pvr_value | 0x8;
282 identify_cpu(0, pvr);
283 DBG("Using logical pvr %x for %s\n", pvr, model);
284 }
285 }
286 #else
287 #define identical_pvr_fixup(node) do { } while(0)
288 #endif
289
290 static void __init check_cpu_feature_properties(unsigned long node)
291 {
292 unsigned long i;
293 struct feature_property *fp = feature_properties;
294 const __be32 *prop;
295
296 for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
297 prop = of_get_flat_dt_prop(node, fp->name, NULL);
298 if (prop && be32_to_cpup(prop) >= fp->min_value) {
299 cur_cpu_spec->cpu_features |= fp->cpu_feature;
300 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
301 }
302 }
303 }
304
305 /*
306 * Adjust the logical id of a boot cpu to fall under nr_cpu_ids. Map it to
307 * last core slot in the allocated paca array.
308 *
309 * e.g. on SMT=8 system, kernel booted with nr_cpus=1 and boot cpu = 33,
310 * align nr_cpu_ids to MAX_SMT value 8. Allocate paca array to hold up-to
311 * MAX_SMT=8 cpus. Since boot cpu 33 is greater than nr_cpus (8), adjust
312 * its logical id so that new id becomes less than nr_cpu_ids. Make sure
313 * that boot cpu's new logical id is aligned to its thread id and falls
314 * under last nthreads slots available in paca array. In this case the
315 * boot cpu 33 is adjusted to new boot cpu id 1.
316 *
317 */
318 static inline void adjust_boot_cpuid(int nthreads, int phys_id)
319 {
320 boot_hw_cpuid = phys_id;
321 if (boot_cpuid >= nr_cpu_ids) {
322 boot_cpuid = (boot_cpuid % nthreads) + (nr_cpu_ids - nthreads);
323 pr_info("Adjusted logical boot cpu id: logical %d physical %d\n",
324 boot_cpuid, phys_id);
325 }
326 }
327
328 static int __init early_init_dt_scan_cpus(unsigned long node,
329 const char *uname, int depth,
330 void *data)
331 {
332 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
333 const __be32 *prop;
334 const __be32 *intserv;
335 int i, nthreads;
336 int len;
337 int found = -1;
338 int found_thread = 0;
339
340 /* We are scanning "cpu" nodes only */
341 if (type == NULL || strcmp(type, "cpu") != 0)
342 return 0;
343
344 /* Get physical cpuid */
345 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
346 if (!intserv)
347 intserv = of_get_flat_dt_prop(node, "reg", &len);
348
349 nthreads = len / sizeof(int);
350
351 #ifdef CONFIG_SMP
352 /*
353 * Now that we know threads per core lets align nr_cpu_ids to
354 * correct SMT value.
355 */
356 if (nr_cpu_ids % nthreads) {
357 nr_cpu_ids = _ALIGN_UP(nr_cpu_ids, nthreads);
358 pr_info("Aligned nr_cpus to SMT=%d, nr_cpu_ids = %d\n",
359 nthreads, nr_cpu_ids);
360 }
361 #endif
362
363 /*
364 * Now see if any of these threads match our boot cpu.
365 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
366 */
367 for (i = 0; i < nthreads; i++) {
368 /*
369 * version 2 of the kexec param format adds the phys cpuid of
370 * booted proc.
371 */
372 if (fdt_version(initial_boot_params) >= 2) {
373 if (be32_to_cpu(intserv[i]) ==
374 fdt_boot_cpuid_phys(initial_boot_params)) {
375 found = boot_cpu_count;
376 found_thread = i;
377 }
378 } else {
379 /*
380 * Check if it's the boot-cpu, set it's hw index now,
381 * unfortunately this format did not support booting
382 * off secondary threads.
383 */
384 if (of_get_flat_dt_prop(node,
385 "linux,boot-cpu", NULL) != NULL)
386 found = boot_cpu_count;
387 }
388 #ifdef CONFIG_SMP
389 /* logical cpu id is always 0 on UP kernels */
390 boot_cpu_count++;
391 #endif
392 }
393
394 /* Not the boot CPU */
395 if (found < 0)
396 return 0;
397
398 DBG("boot cpu: logical %d physical %d\n", found,
399 be32_to_cpu(intserv[found_thread]));
400 boot_cpuid = found;
401 adjust_boot_cpuid(nthreads, be32_to_cpu(intserv[found_thread]));
402 set_hard_smp_processor_id(boot_cpuid,
403 be32_to_cpu(intserv[found_thread]));
404
405 /*
406 * PAPR defines "logical" PVR values for cpus that
407 * meet various levels of the architecture:
408 * 0x0f000001 Architecture version 2.04
409 * 0x0f000002 Architecture version 2.05
410 * If the cpu-version property in the cpu node contains
411 * such a value, we call identify_cpu again with the
412 * logical PVR value in order to use the cpu feature
413 * bits appropriate for the architecture level.
414 *
415 * A POWER6 partition in "POWER6 architected" mode
416 * uses the 0x0f000002 PVR value; in POWER5+ mode
417 * it uses 0x0f000001.
418 *
419 * If we're using device tree CPU feature discovery then we don't
420 * support the cpu-version property, and it's the responsibility of the
421 * firmware/hypervisor to provide the correct feature set for the
422 * architecture level via the ibm,powerpc-cpu-features binding.
423 */
424 if (!dt_cpu_ftrs_in_use()) {
425 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
426 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
427 identify_cpu(0, be32_to_cpup(prop));
428
429 check_cpu_feature_properties(node);
430 check_cpu_pa_features(node);
431 }
432
433 identical_pvr_fixup(node);
434 init_mmu_slb_size(node);
435
436 #ifdef CONFIG_PPC64
437 if (nthreads == 1)
438 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
439 else if (!dt_cpu_ftrs_in_use())
440 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
441 #endif
442
443 return 0;
444 }
445
446 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
447 const char *uname,
448 int depth, void *data)
449 {
450 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
451
452 /* Use common scan routine to determine if this is the chosen node */
453 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
454 return 0;
455
456 #ifdef CONFIG_PPC64
457 /* check if iommu is forced on or off */
458 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
459 iommu_is_off = 1;
460 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
461 iommu_force_on = 1;
462 #endif
463
464 /* mem=x on the command line is the preferred mechanism */
465 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
466 if (lprop)
467 memory_limit = *lprop;
468
469 #ifdef CONFIG_PPC64
470 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
471 if (lprop)
472 tce_alloc_start = *lprop;
473 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
474 if (lprop)
475 tce_alloc_end = *lprop;
476 #endif
477
478 #ifdef CONFIG_KEXEC_CORE
479 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
480 if (lprop)
481 crashk_res.start = *lprop;
482
483 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
484 if (lprop)
485 crashk_res.end = crashk_res.start + *lprop - 1;
486 #endif
487
488 /* break now */
489 return 1;
490 }
491
492 #ifdef CONFIG_PPC_PSERIES
493 /*
494 * Interpret the ibm,dynamic-memory property in the
495 * /ibm,dynamic-reconfiguration-memory node.
496 * This contains a list of memory blocks along with NUMA affinity
497 * information.
498 */
499 static int __init early_init_dt_scan_drconf_memory(unsigned long node)
500 {
501 const __be32 *dm, *ls, *usm;
502 int l;
503 unsigned long n, flags;
504 u64 base, size, memblock_size;
505 unsigned int is_kexec_kdump = 0, rngs;
506
507 ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
508 if (ls == NULL || l < dt_root_size_cells * sizeof(__be32))
509 return 0;
510 memblock_size = dt_mem_next_cell(dt_root_size_cells, &ls);
511
512 dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
513 if (dm == NULL || l < sizeof(__be32))
514 return 0;
515
516 n = of_read_number(dm++, 1); /* number of entries */
517 if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(__be32))
518 return 0;
519
520 /* check if this is a kexec/kdump kernel. */
521 usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
522 &l);
523 if (usm != NULL)
524 is_kexec_kdump = 1;
525
526 for (; n != 0; --n) {
527 base = dt_mem_next_cell(dt_root_addr_cells, &dm);
528 flags = of_read_number(&dm[3], 1);
529 /* skip DRC index, pad, assoc. list index, flags */
530 dm += 4;
531 /* skip this block if the reserved bit is set in flags
532 or if the block is not assigned to this partition */
533 if ((flags & DRCONF_MEM_RESERVED) ||
534 !(flags & DRCONF_MEM_ASSIGNED))
535 continue;
536 size = memblock_size;
537 rngs = 1;
538 if (is_kexec_kdump) {
539 /*
540 * For each memblock in ibm,dynamic-memory, a corresponding
541 * entry in linux,drconf-usable-memory property contains
542 * a counter 'p' followed by 'p' (base, size) duple.
543 * Now read the counter from
544 * linux,drconf-usable-memory property
545 */
546 rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
547 if (!rngs) /* there are no (base, size) duple */
548 continue;
549 }
550 do {
551 if (is_kexec_kdump) {
552 base = dt_mem_next_cell(dt_root_addr_cells,
553 &usm);
554 size = dt_mem_next_cell(dt_root_size_cells,
555 &usm);
556 }
557 if (iommu_is_off) {
558 if (base >= 0x80000000ul)
559 continue;
560 if ((base + size) > 0x80000000ul)
561 size = 0x80000000ul - base;
562 }
563 memblock_add(base, size);
564 } while (--rngs);
565 }
566 memblock_dump_all();
567 return 0;
568 }
569 #else
570 #define early_init_dt_scan_drconf_memory(node) 0
571 #endif /* CONFIG_PPC_PSERIES */
572
573 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
574 const char *uname,
575 int depth, void *data)
576 {
577 if (depth == 1 &&
578 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
579 return early_init_dt_scan_drconf_memory(node);
580
581 return early_init_dt_scan_memory(node, uname, depth, data);
582 }
583
584 /*
585 * For a relocatable kernel, we need to get the memstart_addr first,
586 * then use it to calculate the virtual kernel start address. This has
587 * to happen at a very early stage (before machine_init). In this case,
588 * we just want to get the memstart_address and would not like to mess the
589 * memblock at this stage. So introduce a variable to skip the memblock_add()
590 * for this reason.
591 */
592 #ifdef CONFIG_RELOCATABLE
593 static int add_mem_to_memblock = 1;
594 #else
595 #define add_mem_to_memblock 1
596 #endif
597
598 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
599 {
600 #ifdef CONFIG_PPC64
601 if (iommu_is_off) {
602 if (base >= 0x80000000ul)
603 return;
604 if ((base + size) > 0x80000000ul)
605 size = 0x80000000ul - base;
606 }
607 #endif
608 /* Keep track of the beginning of memory -and- the size of
609 * the very first block in the device-tree as it represents
610 * the RMA on ppc64 server
611 */
612 if (base < memstart_addr) {
613 memstart_addr = base;
614 first_memblock_size = size;
615 }
616
617 /* Add the chunk to the MEMBLOCK list */
618 if (add_mem_to_memblock)
619 memblock_add(base, size);
620 }
621
622 static void __init early_reserve_mem_dt(void)
623 {
624 unsigned long i, dt_root;
625 int len;
626 const __be32 *prop;
627
628 early_init_fdt_reserve_self();
629 early_init_fdt_scan_reserved_mem();
630
631 dt_root = of_get_flat_dt_root();
632
633 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
634
635 if (!prop)
636 return;
637
638 DBG("Found new-style reserved-ranges\n");
639
640 /* Each reserved range is an (address,size) pair, 2 cells each,
641 * totalling 4 cells per range. */
642 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
643 u64 base, size;
644
645 base = of_read_number(prop + (i * 4) + 0, 2);
646 size = of_read_number(prop + (i * 4) + 2, 2);
647
648 if (size) {
649 DBG("reserving: %llx -> %llx\n", base, size);
650 memblock_reserve(base, size);
651 }
652 }
653 }
654
655 static void __init early_reserve_mem(void)
656 {
657 __be64 *reserve_map;
658
659 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
660 fdt_off_mem_rsvmap(initial_boot_params));
661
662 /* Look for the new "reserved-regions" property in the DT */
663 early_reserve_mem_dt();
664
665 #ifdef CONFIG_BLK_DEV_INITRD
666 /* Then reserve the initrd, if any */
667 if (initrd_start && (initrd_end > initrd_start)) {
668 memblock_reserve(_ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
669 _ALIGN_UP(initrd_end, PAGE_SIZE) -
670 _ALIGN_DOWN(initrd_start, PAGE_SIZE));
671 }
672 #endif /* CONFIG_BLK_DEV_INITRD */
673
674 #ifdef CONFIG_PPC32
675 /*
676 * Handle the case where we might be booting from an old kexec
677 * image that setup the mem_rsvmap as pairs of 32-bit values
678 */
679 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
680 u32 base_32, size_32;
681 __be32 *reserve_map_32 = (__be32 *)reserve_map;
682
683 DBG("Found old 32-bit reserve map\n");
684
685 while (1) {
686 base_32 = be32_to_cpup(reserve_map_32++);
687 size_32 = be32_to_cpup(reserve_map_32++);
688 if (size_32 == 0)
689 break;
690 DBG("reserving: %x -> %x\n", base_32, size_32);
691 memblock_reserve(base_32, size_32);
692 }
693 return;
694 }
695 #endif
696 }
697
698 void __init early_init_devtree(void *params)
699 {
700 phys_addr_t limit;
701
702 DBG(" -> early_init_devtree(%p)\n", params);
703
704 /* Too early to BUG_ON(), do it by hand */
705 if (!early_init_dt_verify(params))
706 panic("BUG: Failed verifying flat device tree, bad version?");
707
708 #ifdef CONFIG_PPC_RTAS
709 /* Some machines might need RTAS info for debugging, grab it now. */
710 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
711 #endif
712
713 #ifdef CONFIG_PPC_POWERNV
714 /* Some machines might need OPAL info for debugging, grab it now. */
715 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
716 #endif
717
718 #ifdef CONFIG_FA_DUMP
719 /* scan tree to see if dump is active during last boot */
720 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
721 #endif
722
723 /* Retrieve various informations from the /chosen node of the
724 * device-tree, including the platform type, initrd location and
725 * size, TCE reserve, and more ...
726 */
727 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
728
729 /* Scan memory nodes and rebuild MEMBLOCKs */
730 of_scan_flat_dt(early_init_dt_scan_root, NULL);
731 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
732
733 parse_early_param();
734
735 /* make sure we've parsed cmdline for mem= before this */
736 if (memory_limit)
737 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
738 setup_initial_memory_limit(memstart_addr, first_memblock_size);
739 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
740 memblock_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
741 /* If relocatable, reserve first 32k for interrupt vectors etc. */
742 if (PHYSICAL_START > MEMORY_START)
743 memblock_reserve(MEMORY_START, 0x8000);
744 reserve_kdump_trampoline();
745 #ifdef CONFIG_FA_DUMP
746 /*
747 * If we fail to reserve memory for firmware-assisted dump then
748 * fallback to kexec based kdump.
749 */
750 if (fadump_reserve_mem() == 0)
751 #endif
752 reserve_crashkernel();
753 early_reserve_mem();
754
755 /* Ensure that total memory size is page-aligned. */
756 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
757 memblock_enforce_memory_limit(limit);
758
759 memblock_allow_resize();
760 memblock_dump_all();
761
762 DBG("Phys. mem: %llx\n", memblock_phys_mem_size());
763
764 /* We may need to relocate the flat tree, do it now.
765 * FIXME .. and the initrd too? */
766 move_device_tree();
767
768 allocate_pacas();
769
770 DBG("Scanning CPUs ...\n");
771
772 dt_cpu_ftrs_scan();
773
774 /* Retrieve CPU related informations from the flat tree
775 * (altivec support, boot CPU ID, ...)
776 */
777 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
778 if (boot_cpuid < 0) {
779 printk("Failed to identify boot CPU !\n");
780 BUG();
781 }
782
783 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
784 /* We'll later wait for secondaries to check in; there are
785 * NCPUS-1 non-boot CPUs :-)
786 */
787 spinning_secondaries = boot_cpu_count - 1;
788 #endif
789
790 mmu_early_init_devtree();
791
792 #ifdef CONFIG_PPC_POWERNV
793 /* Scan and build the list of machine check recoverable ranges */
794 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
795 #endif
796 epapr_paravirt_early_init();
797
798 /* Now try to figure out if we are running on LPAR and so on */
799 pseries_probe_fw_features();
800
801 #ifdef CONFIG_PPC_PS3
802 /* Identify PS3 firmware */
803 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
804 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
805 #endif
806
807 DBG(" <- early_init_devtree()\n");
808 }
809
810 #ifdef CONFIG_RELOCATABLE
811 /*
812 * This function run before early_init_devtree, so we have to init
813 * initial_boot_params.
814 */
815 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
816 {
817 /* Setup flat device-tree pointer */
818 initial_boot_params = params;
819
820 /*
821 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
822 * mess the memblock.
823 */
824 add_mem_to_memblock = 0;
825 of_scan_flat_dt(early_init_dt_scan_root, NULL);
826 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
827 add_mem_to_memblock = 1;
828
829 if (size)
830 *size = first_memblock_size;
831 }
832 #endif
833
834 /*******
835 *
836 * New implementation of the OF "find" APIs, return a refcounted
837 * object, call of_node_put() when done. The device tree and list
838 * are protected by a rw_lock.
839 *
840 * Note that property management will need some locking as well,
841 * this isn't dealt with yet.
842 *
843 *******/
844
845 /**
846 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
847 * @np: device node of the device
848 *
849 * This looks for a property "ibm,chip-id" in the node or any
850 * of its parents and returns its content, or -1 if it cannot
851 * be found.
852 */
853 int of_get_ibm_chip_id(struct device_node *np)
854 {
855 of_node_get(np);
856 while (np) {
857 u32 chip_id;
858
859 /*
860 * Skiboot may produce memory nodes that contain more than one
861 * cell in chip-id, we only read the first one here.
862 */
863 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
864 of_node_put(np);
865 return chip_id;
866 }
867
868 np = of_get_next_parent(np);
869 }
870 return -1;
871 }
872 EXPORT_SYMBOL(of_get_ibm_chip_id);
873
874 /**
875 * cpu_to_chip_id - Return the cpus chip-id
876 * @cpu: The logical cpu number.
877 *
878 * Return the value of the ibm,chip-id property corresponding to the given
879 * logical cpu number. If the chip-id can not be found, returns -1.
880 */
881 int cpu_to_chip_id(int cpu)
882 {
883 struct device_node *np;
884
885 np = of_get_cpu_node(cpu, NULL);
886 if (!np)
887 return -1;
888
889 of_node_put(np);
890 return of_get_ibm_chip_id(np);
891 }
892 EXPORT_SYMBOL(cpu_to_chip_id);
893
894 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
895 {
896 return (int)phys_id == get_hard_smp_processor_id(cpu);
897 }