]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/kernel/ptrace.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / kernel / ptrace.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 /*
48 * The parameter save area on the stack is used to store arguments being passed
49 * to callee function and is located at fixed offset from stack pointer.
50 */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
55 #endif
56
57 struct pt_regs_offset {
58 const char *name;
59 int offset;
60 };
61
62 #define STR(s) #s /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num) \
65 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f) (offsetof(struct thread_struct, f))
72
73 static const struct pt_regs_offset regoffset_table[] = {
74 GPR_OFFSET_NAME(0),
75 GPR_OFFSET_NAME(1),
76 GPR_OFFSET_NAME(2),
77 GPR_OFFSET_NAME(3),
78 GPR_OFFSET_NAME(4),
79 GPR_OFFSET_NAME(5),
80 GPR_OFFSET_NAME(6),
81 GPR_OFFSET_NAME(7),
82 GPR_OFFSET_NAME(8),
83 GPR_OFFSET_NAME(9),
84 GPR_OFFSET_NAME(10),
85 GPR_OFFSET_NAME(11),
86 GPR_OFFSET_NAME(12),
87 GPR_OFFSET_NAME(13),
88 GPR_OFFSET_NAME(14),
89 GPR_OFFSET_NAME(15),
90 GPR_OFFSET_NAME(16),
91 GPR_OFFSET_NAME(17),
92 GPR_OFFSET_NAME(18),
93 GPR_OFFSET_NAME(19),
94 GPR_OFFSET_NAME(20),
95 GPR_OFFSET_NAME(21),
96 GPR_OFFSET_NAME(22),
97 GPR_OFFSET_NAME(23),
98 GPR_OFFSET_NAME(24),
99 GPR_OFFSET_NAME(25),
100 GPR_OFFSET_NAME(26),
101 GPR_OFFSET_NAME(27),
102 GPR_OFFSET_NAME(28),
103 GPR_OFFSET_NAME(29),
104 GPR_OFFSET_NAME(30),
105 GPR_OFFSET_NAME(31),
106 REG_OFFSET_NAME(nip),
107 REG_OFFSET_NAME(msr),
108 REG_OFFSET_NAME(ctr),
109 REG_OFFSET_NAME(link),
110 REG_OFFSET_NAME(xer),
111 REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113 REG_OFFSET_NAME(softe),
114 #else
115 REG_OFFSET_NAME(mq),
116 #endif
117 REG_OFFSET_NAME(trap),
118 REG_OFFSET_NAME(dar),
119 REG_OFFSET_NAME(dsisr),
120 REG_OFFSET_END,
121 };
122
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126 /*
127 * If task is not current, it will have been flushed already to
128 * it's thread_struct during __switch_to().
129 *
130 * A reclaim flushes ALL the state or if not in TM save TM SPRs
131 * in the appropriate thread structures from live.
132 */
133
134 if (tsk != current)
135 return;
136
137 if (MSR_TM_SUSPENDED(mfmsr())) {
138 tm_reclaim_current(TM_CAUSE_SIGNAL);
139 } else {
140 tm_enable();
141 tm_save_sprs(&(tsk->thread));
142 }
143 }
144 #else
145 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
146 #endif
147
148 /**
149 * regs_query_register_offset() - query register offset from its name
150 * @name: the name of a register
151 *
152 * regs_query_register_offset() returns the offset of a register in struct
153 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
154 */
155 int regs_query_register_offset(const char *name)
156 {
157 const struct pt_regs_offset *roff;
158 for (roff = regoffset_table; roff->name != NULL; roff++)
159 if (!strcmp(roff->name, name))
160 return roff->offset;
161 return -EINVAL;
162 }
163
164 /**
165 * regs_query_register_name() - query register name from its offset
166 * @offset: the offset of a register in struct pt_regs.
167 *
168 * regs_query_register_name() returns the name of a register from its
169 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
170 */
171 const char *regs_query_register_name(unsigned int offset)
172 {
173 const struct pt_regs_offset *roff;
174 for (roff = regoffset_table; roff->name != NULL; roff++)
175 if (roff->offset == offset)
176 return roff->name;
177 return NULL;
178 }
179
180 /*
181 * does not yet catch signals sent when the child dies.
182 * in exit.c or in signal.c.
183 */
184
185 /*
186 * Set of msr bits that gdb can change on behalf of a process.
187 */
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE 0
190 #else
191 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
192 #endif
193
194 /*
195 * Max register writeable via put_reg
196 */
197 #ifdef CONFIG_PPC32
198 #define PT_MAX_PUT_REG PT_MQ
199 #else
200 #define PT_MAX_PUT_REG PT_CCR
201 #endif
202
203 static unsigned long get_user_msr(struct task_struct *task)
204 {
205 return task->thread.regs->msr | task->thread.fpexc_mode;
206 }
207
208 static int set_user_msr(struct task_struct *task, unsigned long msr)
209 {
210 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
211 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
212 return 0;
213 }
214
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
216 static unsigned long get_user_ckpt_msr(struct task_struct *task)
217 {
218 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
219 }
220
221 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
222 {
223 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
224 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
225 return 0;
226 }
227
228 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
229 {
230 task->thread.ckpt_regs.trap = trap & 0xfff0;
231 return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 static int get_user_dscr(struct task_struct *task, unsigned long *data)
237 {
238 *data = task->thread.dscr;
239 return 0;
240 }
241
242 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
243 {
244 task->thread.dscr = dscr;
245 task->thread.dscr_inherit = 1;
246 return 0;
247 }
248 #else
249 static int get_user_dscr(struct task_struct *task, unsigned long *data)
250 {
251 return -EIO;
252 }
253
254 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
255 {
256 return -EIO;
257 }
258 #endif
259
260 /*
261 * We prevent mucking around with the reserved area of trap
262 * which are used internally by the kernel.
263 */
264 static int set_user_trap(struct task_struct *task, unsigned long trap)
265 {
266 task->thread.regs->trap = trap & 0xfff0;
267 return 0;
268 }
269
270 /*
271 * Get contents of register REGNO in task TASK.
272 */
273 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
274 {
275 if ((task->thread.regs == NULL) || !data)
276 return -EIO;
277
278 if (regno == PT_MSR) {
279 *data = get_user_msr(task);
280 return 0;
281 }
282
283 if (regno == PT_DSCR)
284 return get_user_dscr(task, data);
285
286 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
287 *data = ((unsigned long *)task->thread.regs)[regno];
288 return 0;
289 }
290
291 return -EIO;
292 }
293
294 /*
295 * Write contents of register REGNO in task TASK.
296 */
297 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
298 {
299 if (task->thread.regs == NULL)
300 return -EIO;
301
302 if (regno == PT_MSR)
303 return set_user_msr(task, data);
304 if (regno == PT_TRAP)
305 return set_user_trap(task, data);
306 if (regno == PT_DSCR)
307 return set_user_dscr(task, data);
308
309 if (regno <= PT_MAX_PUT_REG) {
310 ((unsigned long *)task->thread.regs)[regno] = data;
311 return 0;
312 }
313 return -EIO;
314 }
315
316 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
317 unsigned int pos, unsigned int count,
318 void *kbuf, void __user *ubuf)
319 {
320 int i, ret;
321
322 if (target->thread.regs == NULL)
323 return -EIO;
324
325 if (!FULL_REGS(target->thread.regs)) {
326 /* We have a partial register set. Fill 14-31 with bogus values */
327 for (i = 14; i < 32; i++)
328 target->thread.regs->gpr[i] = NV_REG_POISON;
329 }
330
331 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
332 target->thread.regs,
333 0, offsetof(struct pt_regs, msr));
334 if (!ret) {
335 unsigned long msr = get_user_msr(target);
336 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
337 offsetof(struct pt_regs, msr),
338 offsetof(struct pt_regs, msr) +
339 sizeof(msr));
340 }
341
342 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
343 offsetof(struct pt_regs, msr) + sizeof(long));
344
345 if (!ret)
346 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
347 &target->thread.regs->orig_gpr3,
348 offsetof(struct pt_regs, orig_gpr3),
349 sizeof(struct pt_regs));
350 if (!ret)
351 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
352 sizeof(struct pt_regs), -1);
353
354 return ret;
355 }
356
357 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
358 unsigned int pos, unsigned int count,
359 const void *kbuf, const void __user *ubuf)
360 {
361 unsigned long reg;
362 int ret;
363
364 if (target->thread.regs == NULL)
365 return -EIO;
366
367 CHECK_FULL_REGS(target->thread.regs);
368
369 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
370 target->thread.regs,
371 0, PT_MSR * sizeof(reg));
372
373 if (!ret && count > 0) {
374 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
375 PT_MSR * sizeof(reg),
376 (PT_MSR + 1) * sizeof(reg));
377 if (!ret)
378 ret = set_user_msr(target, reg);
379 }
380
381 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
382 offsetof(struct pt_regs, msr) + sizeof(long));
383
384 if (!ret)
385 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
386 &target->thread.regs->orig_gpr3,
387 PT_ORIG_R3 * sizeof(reg),
388 (PT_MAX_PUT_REG + 1) * sizeof(reg));
389
390 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
391 ret = user_regset_copyin_ignore(
392 &pos, &count, &kbuf, &ubuf,
393 (PT_MAX_PUT_REG + 1) * sizeof(reg),
394 PT_TRAP * sizeof(reg));
395
396 if (!ret && count > 0) {
397 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
398 PT_TRAP * sizeof(reg),
399 (PT_TRAP + 1) * sizeof(reg));
400 if (!ret)
401 ret = set_user_trap(target, reg);
402 }
403
404 if (!ret)
405 ret = user_regset_copyin_ignore(
406 &pos, &count, &kbuf, &ubuf,
407 (PT_TRAP + 1) * sizeof(reg), -1);
408
409 return ret;
410 }
411
412 /*
413 * Regardless of transactions, 'fp_state' holds the current running
414 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415 * value of all FPR registers for the current transaction.
416 *
417 * Userspace interface buffer layout:
418 *
419 * struct data {
420 * u64 fpr[32];
421 * u64 fpscr;
422 * };
423 */
424 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
425 unsigned int pos, unsigned int count,
426 void *kbuf, void __user *ubuf)
427 {
428 #ifdef CONFIG_VSX
429 u64 buf[33];
430 int i;
431
432 flush_fp_to_thread(target);
433
434 /* copy to local buffer then write that out */
435 for (i = 0; i < 32 ; i++)
436 buf[i] = target->thread.TS_FPR(i);
437 buf[32] = target->thread.fp_state.fpscr;
438 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
439 #else
440 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
441 offsetof(struct thread_fp_state, fpr[32]));
442
443 flush_fp_to_thread(target);
444
445 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
446 &target->thread.fp_state, 0, -1);
447 #endif
448 }
449
450 /*
451 * Regardless of transactions, 'fp_state' holds the current running
452 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453 * value of all FPR registers for the current transaction.
454 *
455 * Userspace interface buffer layout:
456 *
457 * struct data {
458 * u64 fpr[32];
459 * u64 fpscr;
460 * };
461 *
462 */
463 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
464 unsigned int pos, unsigned int count,
465 const void *kbuf, const void __user *ubuf)
466 {
467 #ifdef CONFIG_VSX
468 u64 buf[33];
469 int i;
470
471 flush_fp_to_thread(target);
472
473 for (i = 0; i < 32 ; i++)
474 buf[i] = target->thread.TS_FPR(i);
475 buf[32] = target->thread.fp_state.fpscr;
476
477 /* copy to local buffer then write that out */
478 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
479 if (i)
480 return i;
481
482 for (i = 0; i < 32 ; i++)
483 target->thread.TS_FPR(i) = buf[i];
484 target->thread.fp_state.fpscr = buf[32];
485 return 0;
486 #else
487 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
488 offsetof(struct thread_fp_state, fpr[32]));
489
490 flush_fp_to_thread(target);
491
492 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
493 &target->thread.fp_state, 0, -1);
494 #endif
495 }
496
497 #ifdef CONFIG_ALTIVEC
498 /*
499 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500 * The transfer totals 34 quadword. Quadwords 0-31 contain the
501 * corresponding vector registers. Quadword 32 contains the vscr as the
502 * last word (offset 12) within that quadword. Quadword 33 contains the
503 * vrsave as the first word (offset 0) within the quadword.
504 *
505 * This definition of the VMX state is compatible with the current PPC32
506 * ptrace interface. This allows signal handling and ptrace to use the
507 * same structures. This also simplifies the implementation of a bi-arch
508 * (combined (32- and 64-bit) gdb.
509 */
510
511 static int vr_active(struct task_struct *target,
512 const struct user_regset *regset)
513 {
514 flush_altivec_to_thread(target);
515 return target->thread.used_vr ? regset->n : 0;
516 }
517
518 /*
519 * Regardless of transactions, 'vr_state' holds the current running
520 * value of all the VMX registers and 'ckvr_state' holds the last
521 * checkpointed value of all the VMX registers for the current
522 * transaction to fall back on in case it aborts.
523 *
524 * Userspace interface buffer layout:
525 *
526 * struct data {
527 * vector128 vr[32];
528 * vector128 vscr;
529 * vector128 vrsave;
530 * };
531 */
532 static int vr_get(struct task_struct *target, const struct user_regset *regset,
533 unsigned int pos, unsigned int count,
534 void *kbuf, void __user *ubuf)
535 {
536 int ret;
537
538 flush_altivec_to_thread(target);
539
540 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
541 offsetof(struct thread_vr_state, vr[32]));
542
543 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
544 &target->thread.vr_state, 0,
545 33 * sizeof(vector128));
546 if (!ret) {
547 /*
548 * Copy out only the low-order word of vrsave.
549 */
550 union {
551 elf_vrreg_t reg;
552 u32 word;
553 } vrsave;
554 memset(&vrsave, 0, sizeof(vrsave));
555
556 vrsave.word = target->thread.vrsave;
557
558 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
559 33 * sizeof(vector128), -1);
560 }
561
562 return ret;
563 }
564
565 /*
566 * Regardless of transactions, 'vr_state' holds the current running
567 * value of all the VMX registers and 'ckvr_state' holds the last
568 * checkpointed value of all the VMX registers for the current
569 * transaction to fall back on in case it aborts.
570 *
571 * Userspace interface buffer layout:
572 *
573 * struct data {
574 * vector128 vr[32];
575 * vector128 vscr;
576 * vector128 vrsave;
577 * };
578 */
579 static int vr_set(struct task_struct *target, const struct user_regset *regset,
580 unsigned int pos, unsigned int count,
581 const void *kbuf, const void __user *ubuf)
582 {
583 int ret;
584
585 flush_altivec_to_thread(target);
586
587 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
588 offsetof(struct thread_vr_state, vr[32]));
589
590 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591 &target->thread.vr_state, 0,
592 33 * sizeof(vector128));
593 if (!ret && count > 0) {
594 /*
595 * We use only the first word of vrsave.
596 */
597 union {
598 elf_vrreg_t reg;
599 u32 word;
600 } vrsave;
601 memset(&vrsave, 0, sizeof(vrsave));
602
603 vrsave.word = target->thread.vrsave;
604
605 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
606 33 * sizeof(vector128), -1);
607 if (!ret)
608 target->thread.vrsave = vrsave.word;
609 }
610
611 return ret;
612 }
613 #endif /* CONFIG_ALTIVEC */
614
615 #ifdef CONFIG_VSX
616 /*
617 * Currently to set and and get all the vsx state, you need to call
618 * the fp and VMX calls as well. This only get/sets the lower 32
619 * 128bit VSX registers.
620 */
621
622 static int vsr_active(struct task_struct *target,
623 const struct user_regset *regset)
624 {
625 flush_vsx_to_thread(target);
626 return target->thread.used_vsr ? regset->n : 0;
627 }
628
629 /*
630 * Regardless of transactions, 'fp_state' holds the current running
631 * value of all FPR registers and 'ckfp_state' holds the last
632 * checkpointed value of all FPR registers for the current
633 * transaction.
634 *
635 * Userspace interface buffer layout:
636 *
637 * struct data {
638 * u64 vsx[32];
639 * };
640 */
641 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
642 unsigned int pos, unsigned int count,
643 void *kbuf, void __user *ubuf)
644 {
645 u64 buf[32];
646 int ret, i;
647
648 flush_tmregs_to_thread(target);
649 flush_fp_to_thread(target);
650 flush_altivec_to_thread(target);
651 flush_vsx_to_thread(target);
652
653 for (i = 0; i < 32 ; i++)
654 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
655
656 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
657 buf, 0, 32 * sizeof(double));
658
659 return ret;
660 }
661
662 /*
663 * Regardless of transactions, 'fp_state' holds the current running
664 * value of all FPR registers and 'ckfp_state' holds the last
665 * checkpointed value of all FPR registers for the current
666 * transaction.
667 *
668 * Userspace interface buffer layout:
669 *
670 * struct data {
671 * u64 vsx[32];
672 * };
673 */
674 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
675 unsigned int pos, unsigned int count,
676 const void *kbuf, const void __user *ubuf)
677 {
678 u64 buf[32];
679 int ret,i;
680
681 flush_tmregs_to_thread(target);
682 flush_fp_to_thread(target);
683 flush_altivec_to_thread(target);
684 flush_vsx_to_thread(target);
685
686 for (i = 0; i < 32 ; i++)
687 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
690 buf, 0, 32 * sizeof(double));
691 if (!ret)
692 for (i = 0; i < 32 ; i++)
693 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
694
695 return ret;
696 }
697 #endif /* CONFIG_VSX */
698
699 #ifdef CONFIG_SPE
700
701 /*
702 * For get_evrregs/set_evrregs functions 'data' has the following layout:
703 *
704 * struct {
705 * u32 evr[32];
706 * u64 acc;
707 * u32 spefscr;
708 * }
709 */
710
711 static int evr_active(struct task_struct *target,
712 const struct user_regset *regset)
713 {
714 flush_spe_to_thread(target);
715 return target->thread.used_spe ? regset->n : 0;
716 }
717
718 static int evr_get(struct task_struct *target, const struct user_regset *regset,
719 unsigned int pos, unsigned int count,
720 void *kbuf, void __user *ubuf)
721 {
722 int ret;
723
724 flush_spe_to_thread(target);
725
726 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
727 &target->thread.evr,
728 0, sizeof(target->thread.evr));
729
730 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
731 offsetof(struct thread_struct, spefscr));
732
733 if (!ret)
734 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735 &target->thread.acc,
736 sizeof(target->thread.evr), -1);
737
738 return ret;
739 }
740
741 static int evr_set(struct task_struct *target, const struct user_regset *regset,
742 unsigned int pos, unsigned int count,
743 const void *kbuf, const void __user *ubuf)
744 {
745 int ret;
746
747 flush_spe_to_thread(target);
748
749 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
750 &target->thread.evr,
751 0, sizeof(target->thread.evr));
752
753 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
754 offsetof(struct thread_struct, spefscr));
755
756 if (!ret)
757 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
758 &target->thread.acc,
759 sizeof(target->thread.evr), -1);
760
761 return ret;
762 }
763 #endif /* CONFIG_SPE */
764
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
766 /**
767 * tm_cgpr_active - get active number of registers in CGPR
768 * @target: The target task.
769 * @regset: The user regset structure.
770 *
771 * This function checks for the active number of available
772 * regisers in transaction checkpointed GPR category.
773 */
774 static int tm_cgpr_active(struct task_struct *target,
775 const struct user_regset *regset)
776 {
777 if (!cpu_has_feature(CPU_FTR_TM))
778 return -ENODEV;
779
780 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
781 return 0;
782
783 return regset->n;
784 }
785
786 /**
787 * tm_cgpr_get - get CGPR registers
788 * @target: The target task.
789 * @regset: The user regset structure.
790 * @pos: The buffer position.
791 * @count: Number of bytes to copy.
792 * @kbuf: Kernel buffer to copy from.
793 * @ubuf: User buffer to copy into.
794 *
795 * This function gets transaction checkpointed GPR registers.
796 *
797 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798 * GPR register values for the current transaction to fall back on if it
799 * aborts in between. This function gets those checkpointed GPR registers.
800 * The userspace interface buffer layout is as follows.
801 *
802 * struct data {
803 * struct pt_regs ckpt_regs;
804 * };
805 */
806 static int tm_cgpr_get(struct task_struct *target,
807 const struct user_regset *regset,
808 unsigned int pos, unsigned int count,
809 void *kbuf, void __user *ubuf)
810 {
811 int ret;
812
813 if (!cpu_has_feature(CPU_FTR_TM))
814 return -ENODEV;
815
816 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
817 return -ENODATA;
818
819 flush_tmregs_to_thread(target);
820 flush_fp_to_thread(target);
821 flush_altivec_to_thread(target);
822
823 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
824 &target->thread.ckpt_regs,
825 0, offsetof(struct pt_regs, msr));
826 if (!ret) {
827 unsigned long msr = get_user_ckpt_msr(target);
828
829 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
830 offsetof(struct pt_regs, msr),
831 offsetof(struct pt_regs, msr) +
832 sizeof(msr));
833 }
834
835 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
836 offsetof(struct pt_regs, msr) + sizeof(long));
837
838 if (!ret)
839 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 &target->thread.ckpt_regs.orig_gpr3,
841 offsetof(struct pt_regs, orig_gpr3),
842 sizeof(struct pt_regs));
843 if (!ret)
844 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
845 sizeof(struct pt_regs), -1);
846
847 return ret;
848 }
849
850 /*
851 * tm_cgpr_set - set the CGPR registers
852 * @target: The target task.
853 * @regset: The user regset structure.
854 * @pos: The buffer position.
855 * @count: Number of bytes to copy.
856 * @kbuf: Kernel buffer to copy into.
857 * @ubuf: User buffer to copy from.
858 *
859 * This function sets in transaction checkpointed GPR registers.
860 *
861 * When the transaction is active, 'ckpt_regs' holds the checkpointed
862 * GPR register values for the current transaction to fall back on if it
863 * aborts in between. This function sets those checkpointed GPR registers.
864 * The userspace interface buffer layout is as follows.
865 *
866 * struct data {
867 * struct pt_regs ckpt_regs;
868 * };
869 */
870 static int tm_cgpr_set(struct task_struct *target,
871 const struct user_regset *regset,
872 unsigned int pos, unsigned int count,
873 const void *kbuf, const void __user *ubuf)
874 {
875 unsigned long reg;
876 int ret;
877
878 if (!cpu_has_feature(CPU_FTR_TM))
879 return -ENODEV;
880
881 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
882 return -ENODATA;
883
884 flush_tmregs_to_thread(target);
885 flush_fp_to_thread(target);
886 flush_altivec_to_thread(target);
887
888 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
889 &target->thread.ckpt_regs,
890 0, PT_MSR * sizeof(reg));
891
892 if (!ret && count > 0) {
893 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
894 PT_MSR * sizeof(reg),
895 (PT_MSR + 1) * sizeof(reg));
896 if (!ret)
897 ret = set_user_ckpt_msr(target, reg);
898 }
899
900 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
901 offsetof(struct pt_regs, msr) + sizeof(long));
902
903 if (!ret)
904 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
905 &target->thread.ckpt_regs.orig_gpr3,
906 PT_ORIG_R3 * sizeof(reg),
907 (PT_MAX_PUT_REG + 1) * sizeof(reg));
908
909 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
910 ret = user_regset_copyin_ignore(
911 &pos, &count, &kbuf, &ubuf,
912 (PT_MAX_PUT_REG + 1) * sizeof(reg),
913 PT_TRAP * sizeof(reg));
914
915 if (!ret && count > 0) {
916 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
917 PT_TRAP * sizeof(reg),
918 (PT_TRAP + 1) * sizeof(reg));
919 if (!ret)
920 ret = set_user_ckpt_trap(target, reg);
921 }
922
923 if (!ret)
924 ret = user_regset_copyin_ignore(
925 &pos, &count, &kbuf, &ubuf,
926 (PT_TRAP + 1) * sizeof(reg), -1);
927
928 return ret;
929 }
930
931 /**
932 * tm_cfpr_active - get active number of registers in CFPR
933 * @target: The target task.
934 * @regset: The user regset structure.
935 *
936 * This function checks for the active number of available
937 * regisers in transaction checkpointed FPR category.
938 */
939 static int tm_cfpr_active(struct task_struct *target,
940 const struct user_regset *regset)
941 {
942 if (!cpu_has_feature(CPU_FTR_TM))
943 return -ENODEV;
944
945 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
946 return 0;
947
948 return regset->n;
949 }
950
951 /**
952 * tm_cfpr_get - get CFPR registers
953 * @target: The target task.
954 * @regset: The user regset structure.
955 * @pos: The buffer position.
956 * @count: Number of bytes to copy.
957 * @kbuf: Kernel buffer to copy from.
958 * @ubuf: User buffer to copy into.
959 *
960 * This function gets in transaction checkpointed FPR registers.
961 *
962 * When the transaction is active 'ckfp_state' holds the checkpointed
963 * values for the current transaction to fall back on if it aborts
964 * in between. This function gets those checkpointed FPR registers.
965 * The userspace interface buffer layout is as follows.
966 *
967 * struct data {
968 * u64 fpr[32];
969 * u64 fpscr;
970 *};
971 */
972 static int tm_cfpr_get(struct task_struct *target,
973 const struct user_regset *regset,
974 unsigned int pos, unsigned int count,
975 void *kbuf, void __user *ubuf)
976 {
977 u64 buf[33];
978 int i;
979
980 if (!cpu_has_feature(CPU_FTR_TM))
981 return -ENODEV;
982
983 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
984 return -ENODATA;
985
986 flush_tmregs_to_thread(target);
987 flush_fp_to_thread(target);
988 flush_altivec_to_thread(target);
989
990 /* copy to local buffer then write that out */
991 for (i = 0; i < 32 ; i++)
992 buf[i] = target->thread.TS_CKFPR(i);
993 buf[32] = target->thread.ckfp_state.fpscr;
994 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
995 }
996
997 /**
998 * tm_cfpr_set - set CFPR registers
999 * @target: The target task.
1000 * @regset: The user regset structure.
1001 * @pos: The buffer position.
1002 * @count: Number of bytes to copy.
1003 * @kbuf: Kernel buffer to copy into.
1004 * @ubuf: User buffer to copy from.
1005 *
1006 * This function sets in transaction checkpointed FPR registers.
1007 *
1008 * When the transaction is active 'ckfp_state' holds the checkpointed
1009 * FPR register values for the current transaction to fall back on
1010 * if it aborts in between. This function sets these checkpointed
1011 * FPR registers. The userspace interface buffer layout is as follows.
1012 *
1013 * struct data {
1014 * u64 fpr[32];
1015 * u64 fpscr;
1016 *};
1017 */
1018 static int tm_cfpr_set(struct task_struct *target,
1019 const struct user_regset *regset,
1020 unsigned int pos, unsigned int count,
1021 const void *kbuf, const void __user *ubuf)
1022 {
1023 u64 buf[33];
1024 int i;
1025
1026 if (!cpu_has_feature(CPU_FTR_TM))
1027 return -ENODEV;
1028
1029 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1030 return -ENODATA;
1031
1032 flush_tmregs_to_thread(target);
1033 flush_fp_to_thread(target);
1034 flush_altivec_to_thread(target);
1035
1036 for (i = 0; i < 32; i++)
1037 buf[i] = target->thread.TS_CKFPR(i);
1038 buf[32] = target->thread.ckfp_state.fpscr;
1039
1040 /* copy to local buffer then write that out */
1041 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1042 if (i)
1043 return i;
1044 for (i = 0; i < 32 ; i++)
1045 target->thread.TS_CKFPR(i) = buf[i];
1046 target->thread.ckfp_state.fpscr = buf[32];
1047 return 0;
1048 }
1049
1050 /**
1051 * tm_cvmx_active - get active number of registers in CVMX
1052 * @target: The target task.
1053 * @regset: The user regset structure.
1054 *
1055 * This function checks for the active number of available
1056 * regisers in checkpointed VMX category.
1057 */
1058 static int tm_cvmx_active(struct task_struct *target,
1059 const struct user_regset *regset)
1060 {
1061 if (!cpu_has_feature(CPU_FTR_TM))
1062 return -ENODEV;
1063
1064 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1065 return 0;
1066
1067 return regset->n;
1068 }
1069
1070 /**
1071 * tm_cvmx_get - get CMVX registers
1072 * @target: The target task.
1073 * @regset: The user regset structure.
1074 * @pos: The buffer position.
1075 * @count: Number of bytes to copy.
1076 * @kbuf: Kernel buffer to copy from.
1077 * @ubuf: User buffer to copy into.
1078 *
1079 * This function gets in transaction checkpointed VMX registers.
1080 *
1081 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082 * the checkpointed values for the current transaction to fall
1083 * back on if it aborts in between. The userspace interface buffer
1084 * layout is as follows.
1085 *
1086 * struct data {
1087 * vector128 vr[32];
1088 * vector128 vscr;
1089 * vector128 vrsave;
1090 *};
1091 */
1092 static int tm_cvmx_get(struct task_struct *target,
1093 const struct user_regset *regset,
1094 unsigned int pos, unsigned int count,
1095 void *kbuf, void __user *ubuf)
1096 {
1097 int ret;
1098
1099 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1100
1101 if (!cpu_has_feature(CPU_FTR_TM))
1102 return -ENODEV;
1103
1104 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1105 return -ENODATA;
1106
1107 /* Flush the state */
1108 flush_tmregs_to_thread(target);
1109 flush_fp_to_thread(target);
1110 flush_altivec_to_thread(target);
1111
1112 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113 &target->thread.ckvr_state, 0,
1114 33 * sizeof(vector128));
1115 if (!ret) {
1116 /*
1117 * Copy out only the low-order word of vrsave.
1118 */
1119 union {
1120 elf_vrreg_t reg;
1121 u32 word;
1122 } vrsave;
1123 memset(&vrsave, 0, sizeof(vrsave));
1124 vrsave.word = target->thread.ckvrsave;
1125 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1126 33 * sizeof(vector128), -1);
1127 }
1128
1129 return ret;
1130 }
1131
1132 /**
1133 * tm_cvmx_set - set CMVX registers
1134 * @target: The target task.
1135 * @regset: The user regset structure.
1136 * @pos: The buffer position.
1137 * @count: Number of bytes to copy.
1138 * @kbuf: Kernel buffer to copy into.
1139 * @ubuf: User buffer to copy from.
1140 *
1141 * This function sets in transaction checkpointed VMX registers.
1142 *
1143 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144 * the checkpointed values for the current transaction to fall
1145 * back on if it aborts in between. The userspace interface buffer
1146 * layout is as follows.
1147 *
1148 * struct data {
1149 * vector128 vr[32];
1150 * vector128 vscr;
1151 * vector128 vrsave;
1152 *};
1153 */
1154 static int tm_cvmx_set(struct task_struct *target,
1155 const struct user_regset *regset,
1156 unsigned int pos, unsigned int count,
1157 const void *kbuf, const void __user *ubuf)
1158 {
1159 int ret;
1160
1161 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1162
1163 if (!cpu_has_feature(CPU_FTR_TM))
1164 return -ENODEV;
1165
1166 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1167 return -ENODATA;
1168
1169 flush_tmregs_to_thread(target);
1170 flush_fp_to_thread(target);
1171 flush_altivec_to_thread(target);
1172
1173 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1174 &target->thread.ckvr_state, 0,
1175 33 * sizeof(vector128));
1176 if (!ret && count > 0) {
1177 /*
1178 * We use only the low-order word of vrsave.
1179 */
1180 union {
1181 elf_vrreg_t reg;
1182 u32 word;
1183 } vrsave;
1184 memset(&vrsave, 0, sizeof(vrsave));
1185 vrsave.word = target->thread.ckvrsave;
1186 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1187 33 * sizeof(vector128), -1);
1188 if (!ret)
1189 target->thread.ckvrsave = vrsave.word;
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * tm_cvsx_active - get active number of registers in CVSX
1197 * @target: The target task.
1198 * @regset: The user regset structure.
1199 *
1200 * This function checks for the active number of available
1201 * regisers in transaction checkpointed VSX category.
1202 */
1203 static int tm_cvsx_active(struct task_struct *target,
1204 const struct user_regset *regset)
1205 {
1206 if (!cpu_has_feature(CPU_FTR_TM))
1207 return -ENODEV;
1208
1209 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210 return 0;
1211
1212 flush_vsx_to_thread(target);
1213 return target->thread.used_vsr ? regset->n : 0;
1214 }
1215
1216 /**
1217 * tm_cvsx_get - get CVSX registers
1218 * @target: The target task.
1219 * @regset: The user regset structure.
1220 * @pos: The buffer position.
1221 * @count: Number of bytes to copy.
1222 * @kbuf: Kernel buffer to copy from.
1223 * @ubuf: User buffer to copy into.
1224 *
1225 * This function gets in transaction checkpointed VSX registers.
1226 *
1227 * When the transaction is active 'ckfp_state' holds the checkpointed
1228 * values for the current transaction to fall back on if it aborts
1229 * in between. This function gets those checkpointed VSX registers.
1230 * The userspace interface buffer layout is as follows.
1231 *
1232 * struct data {
1233 * u64 vsx[32];
1234 *};
1235 */
1236 static int tm_cvsx_get(struct task_struct *target,
1237 const struct user_regset *regset,
1238 unsigned int pos, unsigned int count,
1239 void *kbuf, void __user *ubuf)
1240 {
1241 u64 buf[32];
1242 int ret, i;
1243
1244 if (!cpu_has_feature(CPU_FTR_TM))
1245 return -ENODEV;
1246
1247 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1248 return -ENODATA;
1249
1250 /* Flush the state */
1251 flush_tmregs_to_thread(target);
1252 flush_fp_to_thread(target);
1253 flush_altivec_to_thread(target);
1254 flush_vsx_to_thread(target);
1255
1256 for (i = 0; i < 32 ; i++)
1257 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1258 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1259 buf, 0, 32 * sizeof(double));
1260
1261 return ret;
1262 }
1263
1264 /**
1265 * tm_cvsx_set - set CFPR registers
1266 * @target: The target task.
1267 * @regset: The user regset structure.
1268 * @pos: The buffer position.
1269 * @count: Number of bytes to copy.
1270 * @kbuf: Kernel buffer to copy into.
1271 * @ubuf: User buffer to copy from.
1272 *
1273 * This function sets in transaction checkpointed VSX registers.
1274 *
1275 * When the transaction is active 'ckfp_state' holds the checkpointed
1276 * VSX register values for the current transaction to fall back on
1277 * if it aborts in between. This function sets these checkpointed
1278 * FPR registers. The userspace interface buffer layout is as follows.
1279 *
1280 * struct data {
1281 * u64 vsx[32];
1282 *};
1283 */
1284 static int tm_cvsx_set(struct task_struct *target,
1285 const struct user_regset *regset,
1286 unsigned int pos, unsigned int count,
1287 const void *kbuf, const void __user *ubuf)
1288 {
1289 u64 buf[32];
1290 int ret, i;
1291
1292 if (!cpu_has_feature(CPU_FTR_TM))
1293 return -ENODEV;
1294
1295 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1296 return -ENODATA;
1297
1298 /* Flush the state */
1299 flush_tmregs_to_thread(target);
1300 flush_fp_to_thread(target);
1301 flush_altivec_to_thread(target);
1302 flush_vsx_to_thread(target);
1303
1304 for (i = 0; i < 32 ; i++)
1305 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1306
1307 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1308 buf, 0, 32 * sizeof(double));
1309 if (!ret)
1310 for (i = 0; i < 32 ; i++)
1311 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1312
1313 return ret;
1314 }
1315
1316 /**
1317 * tm_spr_active - get active number of registers in TM SPR
1318 * @target: The target task.
1319 * @regset: The user regset structure.
1320 *
1321 * This function checks the active number of available
1322 * regisers in the transactional memory SPR category.
1323 */
1324 static int tm_spr_active(struct task_struct *target,
1325 const struct user_regset *regset)
1326 {
1327 if (!cpu_has_feature(CPU_FTR_TM))
1328 return -ENODEV;
1329
1330 return regset->n;
1331 }
1332
1333 /**
1334 * tm_spr_get - get the TM related SPR registers
1335 * @target: The target task.
1336 * @regset: The user regset structure.
1337 * @pos: The buffer position.
1338 * @count: Number of bytes to copy.
1339 * @kbuf: Kernel buffer to copy from.
1340 * @ubuf: User buffer to copy into.
1341 *
1342 * This function gets transactional memory related SPR registers.
1343 * The userspace interface buffer layout is as follows.
1344 *
1345 * struct {
1346 * u64 tm_tfhar;
1347 * u64 tm_texasr;
1348 * u64 tm_tfiar;
1349 * };
1350 */
1351 static int tm_spr_get(struct task_struct *target,
1352 const struct user_regset *regset,
1353 unsigned int pos, unsigned int count,
1354 void *kbuf, void __user *ubuf)
1355 {
1356 int ret;
1357
1358 /* Build tests */
1359 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1360 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1361 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1362
1363 if (!cpu_has_feature(CPU_FTR_TM))
1364 return -ENODEV;
1365
1366 /* Flush the states */
1367 flush_tmregs_to_thread(target);
1368 flush_fp_to_thread(target);
1369 flush_altivec_to_thread(target);
1370
1371 /* TFHAR register */
1372 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1373 &target->thread.tm_tfhar, 0, sizeof(u64));
1374
1375 /* TEXASR register */
1376 if (!ret)
1377 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1378 &target->thread.tm_texasr, sizeof(u64),
1379 2 * sizeof(u64));
1380
1381 /* TFIAR register */
1382 if (!ret)
1383 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1384 &target->thread.tm_tfiar,
1385 2 * sizeof(u64), 3 * sizeof(u64));
1386 return ret;
1387 }
1388
1389 /**
1390 * tm_spr_set - set the TM related SPR registers
1391 * @target: The target task.
1392 * @regset: The user regset structure.
1393 * @pos: The buffer position.
1394 * @count: Number of bytes to copy.
1395 * @kbuf: Kernel buffer to copy into.
1396 * @ubuf: User buffer to copy from.
1397 *
1398 * This function sets transactional memory related SPR registers.
1399 * The userspace interface buffer layout is as follows.
1400 *
1401 * struct {
1402 * u64 tm_tfhar;
1403 * u64 tm_texasr;
1404 * u64 tm_tfiar;
1405 * };
1406 */
1407 static int tm_spr_set(struct task_struct *target,
1408 const struct user_regset *regset,
1409 unsigned int pos, unsigned int count,
1410 const void *kbuf, const void __user *ubuf)
1411 {
1412 int ret;
1413
1414 /* Build tests */
1415 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1416 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1417 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1418
1419 if (!cpu_has_feature(CPU_FTR_TM))
1420 return -ENODEV;
1421
1422 /* Flush the states */
1423 flush_tmregs_to_thread(target);
1424 flush_fp_to_thread(target);
1425 flush_altivec_to_thread(target);
1426
1427 /* TFHAR register */
1428 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429 &target->thread.tm_tfhar, 0, sizeof(u64));
1430
1431 /* TEXASR register */
1432 if (!ret)
1433 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1434 &target->thread.tm_texasr, sizeof(u64),
1435 2 * sizeof(u64));
1436
1437 /* TFIAR register */
1438 if (!ret)
1439 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1440 &target->thread.tm_tfiar,
1441 2 * sizeof(u64), 3 * sizeof(u64));
1442 return ret;
1443 }
1444
1445 static int tm_tar_active(struct task_struct *target,
1446 const struct user_regset *regset)
1447 {
1448 if (!cpu_has_feature(CPU_FTR_TM))
1449 return -ENODEV;
1450
1451 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1452 return regset->n;
1453
1454 return 0;
1455 }
1456
1457 static int tm_tar_get(struct task_struct *target,
1458 const struct user_regset *regset,
1459 unsigned int pos, unsigned int count,
1460 void *kbuf, void __user *ubuf)
1461 {
1462 int ret;
1463
1464 if (!cpu_has_feature(CPU_FTR_TM))
1465 return -ENODEV;
1466
1467 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1468 return -ENODATA;
1469
1470 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1471 &target->thread.tm_tar, 0, sizeof(u64));
1472 return ret;
1473 }
1474
1475 static int tm_tar_set(struct task_struct *target,
1476 const struct user_regset *regset,
1477 unsigned int pos, unsigned int count,
1478 const void *kbuf, const void __user *ubuf)
1479 {
1480 int ret;
1481
1482 if (!cpu_has_feature(CPU_FTR_TM))
1483 return -ENODEV;
1484
1485 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1486 return -ENODATA;
1487
1488 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1489 &target->thread.tm_tar, 0, sizeof(u64));
1490 return ret;
1491 }
1492
1493 static int tm_ppr_active(struct task_struct *target,
1494 const struct user_regset *regset)
1495 {
1496 if (!cpu_has_feature(CPU_FTR_TM))
1497 return -ENODEV;
1498
1499 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1500 return regset->n;
1501
1502 return 0;
1503 }
1504
1505
1506 static int tm_ppr_get(struct task_struct *target,
1507 const struct user_regset *regset,
1508 unsigned int pos, unsigned int count,
1509 void *kbuf, void __user *ubuf)
1510 {
1511 int ret;
1512
1513 if (!cpu_has_feature(CPU_FTR_TM))
1514 return -ENODEV;
1515
1516 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1517 return -ENODATA;
1518
1519 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1520 &target->thread.tm_ppr, 0, sizeof(u64));
1521 return ret;
1522 }
1523
1524 static int tm_ppr_set(struct task_struct *target,
1525 const struct user_regset *regset,
1526 unsigned int pos, unsigned int count,
1527 const void *kbuf, const void __user *ubuf)
1528 {
1529 int ret;
1530
1531 if (!cpu_has_feature(CPU_FTR_TM))
1532 return -ENODEV;
1533
1534 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1535 return -ENODATA;
1536
1537 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1538 &target->thread.tm_ppr, 0, sizeof(u64));
1539 return ret;
1540 }
1541
1542 static int tm_dscr_active(struct task_struct *target,
1543 const struct user_regset *regset)
1544 {
1545 if (!cpu_has_feature(CPU_FTR_TM))
1546 return -ENODEV;
1547
1548 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1549 return regset->n;
1550
1551 return 0;
1552 }
1553
1554 static int tm_dscr_get(struct task_struct *target,
1555 const struct user_regset *regset,
1556 unsigned int pos, unsigned int count,
1557 void *kbuf, void __user *ubuf)
1558 {
1559 int ret;
1560
1561 if (!cpu_has_feature(CPU_FTR_TM))
1562 return -ENODEV;
1563
1564 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1565 return -ENODATA;
1566
1567 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1568 &target->thread.tm_dscr, 0, sizeof(u64));
1569 return ret;
1570 }
1571
1572 static int tm_dscr_set(struct task_struct *target,
1573 const struct user_regset *regset,
1574 unsigned int pos, unsigned int count,
1575 const void *kbuf, const void __user *ubuf)
1576 {
1577 int ret;
1578
1579 if (!cpu_has_feature(CPU_FTR_TM))
1580 return -ENODEV;
1581
1582 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1583 return -ENODATA;
1584
1585 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1586 &target->thread.tm_dscr, 0, sizeof(u64));
1587 return ret;
1588 }
1589 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1590
1591 #ifdef CONFIG_PPC64
1592 static int ppr_get(struct task_struct *target,
1593 const struct user_regset *regset,
1594 unsigned int pos, unsigned int count,
1595 void *kbuf, void __user *ubuf)
1596 {
1597 int ret;
1598
1599 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1600 &target->thread.ppr, 0, sizeof(u64));
1601 return ret;
1602 }
1603
1604 static int ppr_set(struct task_struct *target,
1605 const struct user_regset *regset,
1606 unsigned int pos, unsigned int count,
1607 const void *kbuf, const void __user *ubuf)
1608 {
1609 int ret;
1610
1611 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1612 &target->thread.ppr, 0, sizeof(u64));
1613 return ret;
1614 }
1615
1616 static int dscr_get(struct task_struct *target,
1617 const struct user_regset *regset,
1618 unsigned int pos, unsigned int count,
1619 void *kbuf, void __user *ubuf)
1620 {
1621 int ret;
1622
1623 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1624 &target->thread.dscr, 0, sizeof(u64));
1625 return ret;
1626 }
1627 static int dscr_set(struct task_struct *target,
1628 const struct user_regset *regset,
1629 unsigned int pos, unsigned int count,
1630 const void *kbuf, const void __user *ubuf)
1631 {
1632 int ret;
1633
1634 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1635 &target->thread.dscr, 0, sizeof(u64));
1636 return ret;
1637 }
1638 #endif
1639 #ifdef CONFIG_PPC_BOOK3S_64
1640 static int tar_get(struct task_struct *target,
1641 const struct user_regset *regset,
1642 unsigned int pos, unsigned int count,
1643 void *kbuf, void __user *ubuf)
1644 {
1645 int ret;
1646
1647 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1648 &target->thread.tar, 0, sizeof(u64));
1649 return ret;
1650 }
1651 static int tar_set(struct task_struct *target,
1652 const struct user_regset *regset,
1653 unsigned int pos, unsigned int count,
1654 const void *kbuf, const void __user *ubuf)
1655 {
1656 int ret;
1657
1658 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1659 &target->thread.tar, 0, sizeof(u64));
1660 return ret;
1661 }
1662
1663 static int ebb_active(struct task_struct *target,
1664 const struct user_regset *regset)
1665 {
1666 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1667 return -ENODEV;
1668
1669 if (target->thread.used_ebb)
1670 return regset->n;
1671
1672 return 0;
1673 }
1674
1675 static int ebb_get(struct task_struct *target,
1676 const struct user_regset *regset,
1677 unsigned int pos, unsigned int count,
1678 void *kbuf, void __user *ubuf)
1679 {
1680 /* Build tests */
1681 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1682 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1683
1684 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1685 return -ENODEV;
1686
1687 if (!target->thread.used_ebb)
1688 return -ENODATA;
1689
1690 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1691 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1692 }
1693
1694 static int ebb_set(struct task_struct *target,
1695 const struct user_regset *regset,
1696 unsigned int pos, unsigned int count,
1697 const void *kbuf, const void __user *ubuf)
1698 {
1699 int ret = 0;
1700
1701 /* Build tests */
1702 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1703 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1704
1705 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1706 return -ENODEV;
1707
1708 if (target->thread.used_ebb)
1709 return -ENODATA;
1710
1711 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1712 &target->thread.ebbrr, 0, sizeof(unsigned long));
1713
1714 if (!ret)
1715 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1716 &target->thread.ebbhr, sizeof(unsigned long),
1717 2 * sizeof(unsigned long));
1718
1719 if (!ret)
1720 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1721 &target->thread.bescr,
1722 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1723
1724 return ret;
1725 }
1726 static int pmu_active(struct task_struct *target,
1727 const struct user_regset *regset)
1728 {
1729 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1730 return -ENODEV;
1731
1732 return regset->n;
1733 }
1734
1735 static int pmu_get(struct task_struct *target,
1736 const struct user_regset *regset,
1737 unsigned int pos, unsigned int count,
1738 void *kbuf, void __user *ubuf)
1739 {
1740 /* Build tests */
1741 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1742 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1743 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1744 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1745
1746 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1747 return -ENODEV;
1748
1749 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1750 &target->thread.siar, 0,
1751 5 * sizeof(unsigned long));
1752 }
1753
1754 static int pmu_set(struct task_struct *target,
1755 const struct user_regset *regset,
1756 unsigned int pos, unsigned int count,
1757 const void *kbuf, const void __user *ubuf)
1758 {
1759 int ret = 0;
1760
1761 /* Build tests */
1762 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1763 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1764 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1765 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1766
1767 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1768 return -ENODEV;
1769
1770 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1771 &target->thread.siar, 0,
1772 sizeof(unsigned long));
1773
1774 if (!ret)
1775 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1776 &target->thread.sdar, sizeof(unsigned long),
1777 2 * sizeof(unsigned long));
1778
1779 if (!ret)
1780 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1781 &target->thread.sier, 2 * sizeof(unsigned long),
1782 3 * sizeof(unsigned long));
1783
1784 if (!ret)
1785 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1786 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1787 4 * sizeof(unsigned long));
1788
1789 if (!ret)
1790 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1791 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1792 5 * sizeof(unsigned long));
1793 return ret;
1794 }
1795 #endif
1796 /*
1797 * These are our native regset flavors.
1798 */
1799 enum powerpc_regset {
1800 REGSET_GPR,
1801 REGSET_FPR,
1802 #ifdef CONFIG_ALTIVEC
1803 REGSET_VMX,
1804 #endif
1805 #ifdef CONFIG_VSX
1806 REGSET_VSX,
1807 #endif
1808 #ifdef CONFIG_SPE
1809 REGSET_SPE,
1810 #endif
1811 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1813 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1814 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1815 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1816 REGSET_TM_SPR, /* TM specific SPR registers */
1817 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1818 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1819 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1820 #endif
1821 #ifdef CONFIG_PPC64
1822 REGSET_PPR, /* PPR register */
1823 REGSET_DSCR, /* DSCR register */
1824 #endif
1825 #ifdef CONFIG_PPC_BOOK3S_64
1826 REGSET_TAR, /* TAR register */
1827 REGSET_EBB, /* EBB registers */
1828 REGSET_PMR, /* Performance Monitor Registers */
1829 #endif
1830 };
1831
1832 static const struct user_regset native_regsets[] = {
1833 [REGSET_GPR] = {
1834 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1835 .size = sizeof(long), .align = sizeof(long),
1836 .get = gpr_get, .set = gpr_set
1837 },
1838 [REGSET_FPR] = {
1839 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1840 .size = sizeof(double), .align = sizeof(double),
1841 .get = fpr_get, .set = fpr_set
1842 },
1843 #ifdef CONFIG_ALTIVEC
1844 [REGSET_VMX] = {
1845 .core_note_type = NT_PPC_VMX, .n = 34,
1846 .size = sizeof(vector128), .align = sizeof(vector128),
1847 .active = vr_active, .get = vr_get, .set = vr_set
1848 },
1849 #endif
1850 #ifdef CONFIG_VSX
1851 [REGSET_VSX] = {
1852 .core_note_type = NT_PPC_VSX, .n = 32,
1853 .size = sizeof(double), .align = sizeof(double),
1854 .active = vsr_active, .get = vsr_get, .set = vsr_set
1855 },
1856 #endif
1857 #ifdef CONFIG_SPE
1858 [REGSET_SPE] = {
1859 .core_note_type = NT_PPC_SPE, .n = 35,
1860 .size = sizeof(u32), .align = sizeof(u32),
1861 .active = evr_active, .get = evr_get, .set = evr_set
1862 },
1863 #endif
1864 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1865 [REGSET_TM_CGPR] = {
1866 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1867 .size = sizeof(long), .align = sizeof(long),
1868 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1869 },
1870 [REGSET_TM_CFPR] = {
1871 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1872 .size = sizeof(double), .align = sizeof(double),
1873 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1874 },
1875 [REGSET_TM_CVMX] = {
1876 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1877 .size = sizeof(vector128), .align = sizeof(vector128),
1878 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1879 },
1880 [REGSET_TM_CVSX] = {
1881 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1882 .size = sizeof(double), .align = sizeof(double),
1883 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1884 },
1885 [REGSET_TM_SPR] = {
1886 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1887 .size = sizeof(u64), .align = sizeof(u64),
1888 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1889 },
1890 [REGSET_TM_CTAR] = {
1891 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1892 .size = sizeof(u64), .align = sizeof(u64),
1893 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1894 },
1895 [REGSET_TM_CPPR] = {
1896 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1897 .size = sizeof(u64), .align = sizeof(u64),
1898 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1899 },
1900 [REGSET_TM_CDSCR] = {
1901 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1902 .size = sizeof(u64), .align = sizeof(u64),
1903 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1904 },
1905 #endif
1906 #ifdef CONFIG_PPC64
1907 [REGSET_PPR] = {
1908 .core_note_type = NT_PPC_PPR, .n = 1,
1909 .size = sizeof(u64), .align = sizeof(u64),
1910 .get = ppr_get, .set = ppr_set
1911 },
1912 [REGSET_DSCR] = {
1913 .core_note_type = NT_PPC_DSCR, .n = 1,
1914 .size = sizeof(u64), .align = sizeof(u64),
1915 .get = dscr_get, .set = dscr_set
1916 },
1917 #endif
1918 #ifdef CONFIG_PPC_BOOK3S_64
1919 [REGSET_TAR] = {
1920 .core_note_type = NT_PPC_TAR, .n = 1,
1921 .size = sizeof(u64), .align = sizeof(u64),
1922 .get = tar_get, .set = tar_set
1923 },
1924 [REGSET_EBB] = {
1925 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1926 .size = sizeof(u64), .align = sizeof(u64),
1927 .active = ebb_active, .get = ebb_get, .set = ebb_set
1928 },
1929 [REGSET_PMR] = {
1930 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1931 .size = sizeof(u64), .align = sizeof(u64),
1932 .active = pmu_active, .get = pmu_get, .set = pmu_set
1933 },
1934 #endif
1935 };
1936
1937 static const struct user_regset_view user_ppc_native_view = {
1938 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1939 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1940 };
1941
1942 #ifdef CONFIG_PPC64
1943 #include <linux/compat.h>
1944
1945 static int gpr32_get_common(struct task_struct *target,
1946 const struct user_regset *regset,
1947 unsigned int pos, unsigned int count,
1948 void *kbuf, void __user *ubuf,
1949 unsigned long *regs)
1950 {
1951 compat_ulong_t *k = kbuf;
1952 compat_ulong_t __user *u = ubuf;
1953 compat_ulong_t reg;
1954
1955 pos /= sizeof(reg);
1956 count /= sizeof(reg);
1957
1958 if (kbuf)
1959 for (; count > 0 && pos < PT_MSR; --count)
1960 *k++ = regs[pos++];
1961 else
1962 for (; count > 0 && pos < PT_MSR; --count)
1963 if (__put_user((compat_ulong_t) regs[pos++], u++))
1964 return -EFAULT;
1965
1966 if (count > 0 && pos == PT_MSR) {
1967 reg = get_user_msr(target);
1968 if (kbuf)
1969 *k++ = reg;
1970 else if (__put_user(reg, u++))
1971 return -EFAULT;
1972 ++pos;
1973 --count;
1974 }
1975
1976 if (kbuf)
1977 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1978 *k++ = regs[pos++];
1979 else
1980 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1981 if (__put_user((compat_ulong_t) regs[pos++], u++))
1982 return -EFAULT;
1983
1984 kbuf = k;
1985 ubuf = u;
1986 pos *= sizeof(reg);
1987 count *= sizeof(reg);
1988 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1989 PT_REGS_COUNT * sizeof(reg), -1);
1990 }
1991
1992 static int gpr32_set_common(struct task_struct *target,
1993 const struct user_regset *regset,
1994 unsigned int pos, unsigned int count,
1995 const void *kbuf, const void __user *ubuf,
1996 unsigned long *regs)
1997 {
1998 const compat_ulong_t *k = kbuf;
1999 const compat_ulong_t __user *u = ubuf;
2000 compat_ulong_t reg;
2001
2002 pos /= sizeof(reg);
2003 count /= sizeof(reg);
2004
2005 if (kbuf)
2006 for (; count > 0 && pos < PT_MSR; --count)
2007 regs[pos++] = *k++;
2008 else
2009 for (; count > 0 && pos < PT_MSR; --count) {
2010 if (__get_user(reg, u++))
2011 return -EFAULT;
2012 regs[pos++] = reg;
2013 }
2014
2015
2016 if (count > 0 && pos == PT_MSR) {
2017 if (kbuf)
2018 reg = *k++;
2019 else if (__get_user(reg, u++))
2020 return -EFAULT;
2021 set_user_msr(target, reg);
2022 ++pos;
2023 --count;
2024 }
2025
2026 if (kbuf) {
2027 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2028 regs[pos++] = *k++;
2029 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2030 ++k;
2031 } else {
2032 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2033 if (__get_user(reg, u++))
2034 return -EFAULT;
2035 regs[pos++] = reg;
2036 }
2037 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2038 if (__get_user(reg, u++))
2039 return -EFAULT;
2040 }
2041
2042 if (count > 0 && pos == PT_TRAP) {
2043 if (kbuf)
2044 reg = *k++;
2045 else if (__get_user(reg, u++))
2046 return -EFAULT;
2047 set_user_trap(target, reg);
2048 ++pos;
2049 --count;
2050 }
2051
2052 kbuf = k;
2053 ubuf = u;
2054 pos *= sizeof(reg);
2055 count *= sizeof(reg);
2056 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2057 (PT_TRAP + 1) * sizeof(reg), -1);
2058 }
2059
2060 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2061 static int tm_cgpr32_get(struct task_struct *target,
2062 const struct user_regset *regset,
2063 unsigned int pos, unsigned int count,
2064 void *kbuf, void __user *ubuf)
2065 {
2066 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2067 &target->thread.ckpt_regs.gpr[0]);
2068 }
2069
2070 static int tm_cgpr32_set(struct task_struct *target,
2071 const struct user_regset *regset,
2072 unsigned int pos, unsigned int count,
2073 const void *kbuf, const void __user *ubuf)
2074 {
2075 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2076 &target->thread.ckpt_regs.gpr[0]);
2077 }
2078 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2079
2080 static int gpr32_get(struct task_struct *target,
2081 const struct user_regset *regset,
2082 unsigned int pos, unsigned int count,
2083 void *kbuf, void __user *ubuf)
2084 {
2085 int i;
2086
2087 if (target->thread.regs == NULL)
2088 return -EIO;
2089
2090 if (!FULL_REGS(target->thread.regs)) {
2091 /*
2092 * We have a partial register set.
2093 * Fill 14-31 with bogus values.
2094 */
2095 for (i = 14; i < 32; i++)
2096 target->thread.regs->gpr[i] = NV_REG_POISON;
2097 }
2098 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2099 &target->thread.regs->gpr[0]);
2100 }
2101
2102 static int gpr32_set(struct task_struct *target,
2103 const struct user_regset *regset,
2104 unsigned int pos, unsigned int count,
2105 const void *kbuf, const void __user *ubuf)
2106 {
2107 if (target->thread.regs == NULL)
2108 return -EIO;
2109
2110 CHECK_FULL_REGS(target->thread.regs);
2111 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2112 &target->thread.regs->gpr[0]);
2113 }
2114
2115 /*
2116 * These are the regset flavors matching the CONFIG_PPC32 native set.
2117 */
2118 static const struct user_regset compat_regsets[] = {
2119 [REGSET_GPR] = {
2120 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2121 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2122 .get = gpr32_get, .set = gpr32_set
2123 },
2124 [REGSET_FPR] = {
2125 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2126 .size = sizeof(double), .align = sizeof(double),
2127 .get = fpr_get, .set = fpr_set
2128 },
2129 #ifdef CONFIG_ALTIVEC
2130 [REGSET_VMX] = {
2131 .core_note_type = NT_PPC_VMX, .n = 34,
2132 .size = sizeof(vector128), .align = sizeof(vector128),
2133 .active = vr_active, .get = vr_get, .set = vr_set
2134 },
2135 #endif
2136 #ifdef CONFIG_SPE
2137 [REGSET_SPE] = {
2138 .core_note_type = NT_PPC_SPE, .n = 35,
2139 .size = sizeof(u32), .align = sizeof(u32),
2140 .active = evr_active, .get = evr_get, .set = evr_set
2141 },
2142 #endif
2143 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2144 [REGSET_TM_CGPR] = {
2145 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2146 .size = sizeof(long), .align = sizeof(long),
2147 .active = tm_cgpr_active,
2148 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2149 },
2150 [REGSET_TM_CFPR] = {
2151 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2152 .size = sizeof(double), .align = sizeof(double),
2153 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2154 },
2155 [REGSET_TM_CVMX] = {
2156 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2157 .size = sizeof(vector128), .align = sizeof(vector128),
2158 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2159 },
2160 [REGSET_TM_CVSX] = {
2161 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2162 .size = sizeof(double), .align = sizeof(double),
2163 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2164 },
2165 [REGSET_TM_SPR] = {
2166 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2167 .size = sizeof(u64), .align = sizeof(u64),
2168 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2169 },
2170 [REGSET_TM_CTAR] = {
2171 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2172 .size = sizeof(u64), .align = sizeof(u64),
2173 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2174 },
2175 [REGSET_TM_CPPR] = {
2176 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2177 .size = sizeof(u64), .align = sizeof(u64),
2178 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2179 },
2180 [REGSET_TM_CDSCR] = {
2181 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2182 .size = sizeof(u64), .align = sizeof(u64),
2183 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2184 },
2185 #endif
2186 #ifdef CONFIG_PPC64
2187 [REGSET_PPR] = {
2188 .core_note_type = NT_PPC_PPR, .n = 1,
2189 .size = sizeof(u64), .align = sizeof(u64),
2190 .get = ppr_get, .set = ppr_set
2191 },
2192 [REGSET_DSCR] = {
2193 .core_note_type = NT_PPC_DSCR, .n = 1,
2194 .size = sizeof(u64), .align = sizeof(u64),
2195 .get = dscr_get, .set = dscr_set
2196 },
2197 #endif
2198 #ifdef CONFIG_PPC_BOOK3S_64
2199 [REGSET_TAR] = {
2200 .core_note_type = NT_PPC_TAR, .n = 1,
2201 .size = sizeof(u64), .align = sizeof(u64),
2202 .get = tar_get, .set = tar_set
2203 },
2204 [REGSET_EBB] = {
2205 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2206 .size = sizeof(u64), .align = sizeof(u64),
2207 .active = ebb_active, .get = ebb_get, .set = ebb_set
2208 },
2209 #endif
2210 };
2211
2212 static const struct user_regset_view user_ppc_compat_view = {
2213 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2214 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2215 };
2216 #endif /* CONFIG_PPC64 */
2217
2218 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2219 {
2220 #ifdef CONFIG_PPC64
2221 if (test_tsk_thread_flag(task, TIF_32BIT))
2222 return &user_ppc_compat_view;
2223 #endif
2224 return &user_ppc_native_view;
2225 }
2226
2227
2228 void user_enable_single_step(struct task_struct *task)
2229 {
2230 struct pt_regs *regs = task->thread.regs;
2231
2232 if (regs != NULL) {
2233 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2234 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2235 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2236 regs->msr |= MSR_DE;
2237 #else
2238 regs->msr &= ~MSR_BE;
2239 regs->msr |= MSR_SE;
2240 #endif
2241 }
2242 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2243 }
2244
2245 void user_enable_block_step(struct task_struct *task)
2246 {
2247 struct pt_regs *regs = task->thread.regs;
2248
2249 if (regs != NULL) {
2250 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2251 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2252 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2253 regs->msr |= MSR_DE;
2254 #else
2255 regs->msr &= ~MSR_SE;
2256 regs->msr |= MSR_BE;
2257 #endif
2258 }
2259 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2260 }
2261
2262 void user_disable_single_step(struct task_struct *task)
2263 {
2264 struct pt_regs *regs = task->thread.regs;
2265
2266 if (regs != NULL) {
2267 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2268 /*
2269 * The logic to disable single stepping should be as
2270 * simple as turning off the Instruction Complete flag.
2271 * And, after doing so, if all debug flags are off, turn
2272 * off DBCR0(IDM) and MSR(DE) .... Torez
2273 */
2274 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2275 /*
2276 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2277 */
2278 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2279 task->thread.debug.dbcr1)) {
2280 /*
2281 * All debug events were off.....
2282 */
2283 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2284 regs->msr &= ~MSR_DE;
2285 }
2286 #else
2287 regs->msr &= ~(MSR_SE | MSR_BE);
2288 #endif
2289 }
2290 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2291 }
2292
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2294 void ptrace_triggered(struct perf_event *bp,
2295 struct perf_sample_data *data, struct pt_regs *regs)
2296 {
2297 struct perf_event_attr attr;
2298
2299 /*
2300 * Disable the breakpoint request here since ptrace has defined a
2301 * one-shot behaviour for breakpoint exceptions in PPC64.
2302 * The SIGTRAP signal is generated automatically for us in do_dabr().
2303 * We don't have to do anything about that here
2304 */
2305 attr = bp->attr;
2306 attr.disabled = true;
2307 modify_user_hw_breakpoint(bp, &attr);
2308 }
2309 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2310
2311 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2312 unsigned long data)
2313 {
2314 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2315 int ret;
2316 struct thread_struct *thread = &(task->thread);
2317 struct perf_event *bp;
2318 struct perf_event_attr attr;
2319 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2320 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2321 struct arch_hw_breakpoint hw_brk;
2322 #endif
2323
2324 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2325 * For embedded processors we support one DAC and no IAC's at the
2326 * moment.
2327 */
2328 if (addr > 0)
2329 return -EINVAL;
2330
2331 /* The bottom 3 bits in dabr are flags */
2332 if ((data & ~0x7UL) >= TASK_SIZE)
2333 return -EIO;
2334
2335 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2336 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2337 * It was assumed, on previous implementations, that 3 bits were
2338 * passed together with the data address, fitting the design of the
2339 * DABR register, as follows:
2340 *
2341 * bit 0: Read flag
2342 * bit 1: Write flag
2343 * bit 2: Breakpoint translation
2344 *
2345 * Thus, we use them here as so.
2346 */
2347
2348 /* Ensure breakpoint translation bit is set */
2349 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2350 return -EIO;
2351 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2352 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2353 hw_brk.len = 8;
2354 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2355 bp = thread->ptrace_bps[0];
2356 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2357 if (bp) {
2358 unregister_hw_breakpoint(bp);
2359 thread->ptrace_bps[0] = NULL;
2360 }
2361 return 0;
2362 }
2363 if (bp) {
2364 attr = bp->attr;
2365 attr.bp_addr = hw_brk.address;
2366 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2367
2368 /* Enable breakpoint */
2369 attr.disabled = false;
2370
2371 ret = modify_user_hw_breakpoint(bp, &attr);
2372 if (ret) {
2373 return ret;
2374 }
2375 thread->ptrace_bps[0] = bp;
2376 thread->hw_brk = hw_brk;
2377 return 0;
2378 }
2379
2380 /* Create a new breakpoint request if one doesn't exist already */
2381 hw_breakpoint_init(&attr);
2382 attr.bp_addr = hw_brk.address;
2383 arch_bp_generic_fields(hw_brk.type,
2384 &attr.bp_type);
2385
2386 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2387 ptrace_triggered, NULL, task);
2388 if (IS_ERR(bp)) {
2389 thread->ptrace_bps[0] = NULL;
2390 return PTR_ERR(bp);
2391 }
2392
2393 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2394 task->thread.hw_brk = hw_brk;
2395 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2396 /* As described above, it was assumed 3 bits were passed with the data
2397 * address, but we will assume only the mode bits will be passed
2398 * as to not cause alignment restrictions for DAC-based processors.
2399 */
2400
2401 /* DAC's hold the whole address without any mode flags */
2402 task->thread.debug.dac1 = data & ~0x3UL;
2403
2404 if (task->thread.debug.dac1 == 0) {
2405 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2406 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2407 task->thread.debug.dbcr1)) {
2408 task->thread.regs->msr &= ~MSR_DE;
2409 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2410 }
2411 return 0;
2412 }
2413
2414 /* Read or Write bits must be set */
2415
2416 if (!(data & 0x3UL))
2417 return -EINVAL;
2418
2419 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2420 register */
2421 task->thread.debug.dbcr0 |= DBCR0_IDM;
2422
2423 /* Check for write and read flags and set DBCR0
2424 accordingly */
2425 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2426 if (data & 0x1UL)
2427 dbcr_dac(task) |= DBCR_DAC1R;
2428 if (data & 0x2UL)
2429 dbcr_dac(task) |= DBCR_DAC1W;
2430 task->thread.regs->msr |= MSR_DE;
2431 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2432 return 0;
2433 }
2434
2435 /*
2436 * Called by kernel/ptrace.c when detaching..
2437 *
2438 * Make sure single step bits etc are not set.
2439 */
2440 void ptrace_disable(struct task_struct *child)
2441 {
2442 /* make sure the single step bit is not set. */
2443 user_disable_single_step(child);
2444 }
2445
2446 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2447 static long set_instruction_bp(struct task_struct *child,
2448 struct ppc_hw_breakpoint *bp_info)
2449 {
2450 int slot;
2451 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2452 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2453 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2454 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2455
2456 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2457 slot2_in_use = 1;
2458 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2459 slot4_in_use = 1;
2460
2461 if (bp_info->addr >= TASK_SIZE)
2462 return -EIO;
2463
2464 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2465
2466 /* Make sure range is valid. */
2467 if (bp_info->addr2 >= TASK_SIZE)
2468 return -EIO;
2469
2470 /* We need a pair of IAC regsisters */
2471 if ((!slot1_in_use) && (!slot2_in_use)) {
2472 slot = 1;
2473 child->thread.debug.iac1 = bp_info->addr;
2474 child->thread.debug.iac2 = bp_info->addr2;
2475 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2476 if (bp_info->addr_mode ==
2477 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2478 dbcr_iac_range(child) |= DBCR_IAC12X;
2479 else
2480 dbcr_iac_range(child) |= DBCR_IAC12I;
2481 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2482 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2483 slot = 3;
2484 child->thread.debug.iac3 = bp_info->addr;
2485 child->thread.debug.iac4 = bp_info->addr2;
2486 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2487 if (bp_info->addr_mode ==
2488 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2489 dbcr_iac_range(child) |= DBCR_IAC34X;
2490 else
2491 dbcr_iac_range(child) |= DBCR_IAC34I;
2492 #endif
2493 } else
2494 return -ENOSPC;
2495 } else {
2496 /* We only need one. If possible leave a pair free in
2497 * case a range is needed later
2498 */
2499 if (!slot1_in_use) {
2500 /*
2501 * Don't use iac1 if iac1-iac2 are free and either
2502 * iac3 or iac4 (but not both) are free
2503 */
2504 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2505 slot = 1;
2506 child->thread.debug.iac1 = bp_info->addr;
2507 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2508 goto out;
2509 }
2510 }
2511 if (!slot2_in_use) {
2512 slot = 2;
2513 child->thread.debug.iac2 = bp_info->addr;
2514 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2515 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2516 } else if (!slot3_in_use) {
2517 slot = 3;
2518 child->thread.debug.iac3 = bp_info->addr;
2519 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2520 } else if (!slot4_in_use) {
2521 slot = 4;
2522 child->thread.debug.iac4 = bp_info->addr;
2523 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2524 #endif
2525 } else
2526 return -ENOSPC;
2527 }
2528 out:
2529 child->thread.debug.dbcr0 |= DBCR0_IDM;
2530 child->thread.regs->msr |= MSR_DE;
2531
2532 return slot;
2533 }
2534
2535 static int del_instruction_bp(struct task_struct *child, int slot)
2536 {
2537 switch (slot) {
2538 case 1:
2539 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2540 return -ENOENT;
2541
2542 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2543 /* address range - clear slots 1 & 2 */
2544 child->thread.debug.iac2 = 0;
2545 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2546 }
2547 child->thread.debug.iac1 = 0;
2548 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2549 break;
2550 case 2:
2551 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2552 return -ENOENT;
2553
2554 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2555 /* used in a range */
2556 return -EINVAL;
2557 child->thread.debug.iac2 = 0;
2558 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2559 break;
2560 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2561 case 3:
2562 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2563 return -ENOENT;
2564
2565 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2566 /* address range - clear slots 3 & 4 */
2567 child->thread.debug.iac4 = 0;
2568 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2569 }
2570 child->thread.debug.iac3 = 0;
2571 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2572 break;
2573 case 4:
2574 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2575 return -ENOENT;
2576
2577 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2578 /* Used in a range */
2579 return -EINVAL;
2580 child->thread.debug.iac4 = 0;
2581 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2582 break;
2583 #endif
2584 default:
2585 return -EINVAL;
2586 }
2587 return 0;
2588 }
2589
2590 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2591 {
2592 int byte_enable =
2593 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2594 & 0xf;
2595 int condition_mode =
2596 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2597 int slot;
2598
2599 if (byte_enable && (condition_mode == 0))
2600 return -EINVAL;
2601
2602 if (bp_info->addr >= TASK_SIZE)
2603 return -EIO;
2604
2605 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2606 slot = 1;
2607 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2608 dbcr_dac(child) |= DBCR_DAC1R;
2609 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2610 dbcr_dac(child) |= DBCR_DAC1W;
2611 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2612 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2613 if (byte_enable) {
2614 child->thread.debug.dvc1 =
2615 (unsigned long)bp_info->condition_value;
2616 child->thread.debug.dbcr2 |=
2617 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2618 (condition_mode << DBCR2_DVC1M_SHIFT));
2619 }
2620 #endif
2621 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2622 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2623 /* Both dac1 and dac2 are part of a range */
2624 return -ENOSPC;
2625 #endif
2626 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2627 slot = 2;
2628 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2629 dbcr_dac(child) |= DBCR_DAC2R;
2630 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2631 dbcr_dac(child) |= DBCR_DAC2W;
2632 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2633 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2634 if (byte_enable) {
2635 child->thread.debug.dvc2 =
2636 (unsigned long)bp_info->condition_value;
2637 child->thread.debug.dbcr2 |=
2638 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2639 (condition_mode << DBCR2_DVC2M_SHIFT));
2640 }
2641 #endif
2642 } else
2643 return -ENOSPC;
2644 child->thread.debug.dbcr0 |= DBCR0_IDM;
2645 child->thread.regs->msr |= MSR_DE;
2646
2647 return slot + 4;
2648 }
2649
2650 static int del_dac(struct task_struct *child, int slot)
2651 {
2652 if (slot == 1) {
2653 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2654 return -ENOENT;
2655
2656 child->thread.debug.dac1 = 0;
2657 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2658 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2659 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2660 child->thread.debug.dac2 = 0;
2661 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2662 }
2663 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2664 #endif
2665 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2666 child->thread.debug.dvc1 = 0;
2667 #endif
2668 } else if (slot == 2) {
2669 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2670 return -ENOENT;
2671
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2674 /* Part of a range */
2675 return -EINVAL;
2676 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2677 #endif
2678 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2679 child->thread.debug.dvc2 = 0;
2680 #endif
2681 child->thread.debug.dac2 = 0;
2682 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2683 } else
2684 return -EINVAL;
2685
2686 return 0;
2687 }
2688 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2689
2690 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2691 static int set_dac_range(struct task_struct *child,
2692 struct ppc_hw_breakpoint *bp_info)
2693 {
2694 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2695
2696 /* We don't allow range watchpoints to be used with DVC */
2697 if (bp_info->condition_mode)
2698 return -EINVAL;
2699
2700 /*
2701 * Best effort to verify the address range. The user/supervisor bits
2702 * prevent trapping in kernel space, but let's fail on an obvious bad
2703 * range. The simple test on the mask is not fool-proof, and any
2704 * exclusive range will spill over into kernel space.
2705 */
2706 if (bp_info->addr >= TASK_SIZE)
2707 return -EIO;
2708 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2709 /*
2710 * dac2 is a bitmask. Don't allow a mask that makes a
2711 * kernel space address from a valid dac1 value
2712 */
2713 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2714 return -EIO;
2715 } else {
2716 /*
2717 * For range breakpoints, addr2 must also be a valid address
2718 */
2719 if (bp_info->addr2 >= TASK_SIZE)
2720 return -EIO;
2721 }
2722
2723 if (child->thread.debug.dbcr0 &
2724 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2725 return -ENOSPC;
2726
2727 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2728 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2729 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2730 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2731 child->thread.debug.dac1 = bp_info->addr;
2732 child->thread.debug.dac2 = bp_info->addr2;
2733 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2734 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2735 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2736 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2737 else /* PPC_BREAKPOINT_MODE_MASK */
2738 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2739 child->thread.regs->msr |= MSR_DE;
2740
2741 return 5;
2742 }
2743 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2744
2745 static long ppc_set_hwdebug(struct task_struct *child,
2746 struct ppc_hw_breakpoint *bp_info)
2747 {
2748 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2749 int len = 0;
2750 struct thread_struct *thread = &(child->thread);
2751 struct perf_event *bp;
2752 struct perf_event_attr attr;
2753 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2754 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2755 struct arch_hw_breakpoint brk;
2756 #endif
2757
2758 if (bp_info->version != 1)
2759 return -ENOTSUPP;
2760 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2761 /*
2762 * Check for invalid flags and combinations
2763 */
2764 if ((bp_info->trigger_type == 0) ||
2765 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2766 PPC_BREAKPOINT_TRIGGER_RW)) ||
2767 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2768 (bp_info->condition_mode &
2769 ~(PPC_BREAKPOINT_CONDITION_MODE |
2770 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2771 return -EINVAL;
2772 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2773 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2774 return -EINVAL;
2775 #endif
2776
2777 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2778 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2779 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2780 return -EINVAL;
2781 return set_instruction_bp(child, bp_info);
2782 }
2783 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2784 return set_dac(child, bp_info);
2785
2786 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2787 return set_dac_range(child, bp_info);
2788 #else
2789 return -EINVAL;
2790 #endif
2791 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2792 /*
2793 * We only support one data breakpoint
2794 */
2795 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2796 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2797 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2798 return -EINVAL;
2799
2800 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2801 return -EIO;
2802
2803 brk.address = bp_info->addr & ~7UL;
2804 brk.type = HW_BRK_TYPE_TRANSLATE;
2805 brk.len = 8;
2806 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2807 brk.type |= HW_BRK_TYPE_READ;
2808 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2809 brk.type |= HW_BRK_TYPE_WRITE;
2810 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2811 /*
2812 * Check if the request is for 'range' breakpoints. We can
2813 * support it if range < 8 bytes.
2814 */
2815 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2816 len = bp_info->addr2 - bp_info->addr;
2817 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2818 len = 1;
2819 else
2820 return -EINVAL;
2821 bp = thread->ptrace_bps[0];
2822 if (bp)
2823 return -ENOSPC;
2824
2825 /* Create a new breakpoint request if one doesn't exist already */
2826 hw_breakpoint_init(&attr);
2827 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2828 attr.bp_len = len;
2829 arch_bp_generic_fields(brk.type, &attr.bp_type);
2830
2831 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2832 ptrace_triggered, NULL, child);
2833 if (IS_ERR(bp)) {
2834 thread->ptrace_bps[0] = NULL;
2835 return PTR_ERR(bp);
2836 }
2837
2838 return 1;
2839 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2840
2841 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2842 return -EINVAL;
2843
2844 if (child->thread.hw_brk.address)
2845 return -ENOSPC;
2846
2847 child->thread.hw_brk = brk;
2848
2849 return 1;
2850 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2851 }
2852
2853 static long ppc_del_hwdebug(struct task_struct *child, long data)
2854 {
2855 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2856 int ret = 0;
2857 struct thread_struct *thread = &(child->thread);
2858 struct perf_event *bp;
2859 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2860 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2861 int rc;
2862
2863 if (data <= 4)
2864 rc = del_instruction_bp(child, (int)data);
2865 else
2866 rc = del_dac(child, (int)data - 4);
2867
2868 if (!rc) {
2869 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2870 child->thread.debug.dbcr1)) {
2871 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2872 child->thread.regs->msr &= ~MSR_DE;
2873 }
2874 }
2875 return rc;
2876 #else
2877 if (data != 1)
2878 return -EINVAL;
2879
2880 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2881 bp = thread->ptrace_bps[0];
2882 if (bp) {
2883 unregister_hw_breakpoint(bp);
2884 thread->ptrace_bps[0] = NULL;
2885 } else
2886 ret = -ENOENT;
2887 return ret;
2888 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2889 if (child->thread.hw_brk.address == 0)
2890 return -ENOENT;
2891
2892 child->thread.hw_brk.address = 0;
2893 child->thread.hw_brk.type = 0;
2894 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2895
2896 return 0;
2897 #endif
2898 }
2899
2900 long arch_ptrace(struct task_struct *child, long request,
2901 unsigned long addr, unsigned long data)
2902 {
2903 int ret = -EPERM;
2904 void __user *datavp = (void __user *) data;
2905 unsigned long __user *datalp = datavp;
2906
2907 switch (request) {
2908 /* read the word at location addr in the USER area. */
2909 case PTRACE_PEEKUSR: {
2910 unsigned long index, tmp;
2911
2912 ret = -EIO;
2913 /* convert to index and check */
2914 #ifdef CONFIG_PPC32
2915 index = addr >> 2;
2916 if ((addr & 3) || (index > PT_FPSCR)
2917 || (child->thread.regs == NULL))
2918 #else
2919 index = addr >> 3;
2920 if ((addr & 7) || (index > PT_FPSCR))
2921 #endif
2922 break;
2923
2924 CHECK_FULL_REGS(child->thread.regs);
2925 if (index < PT_FPR0) {
2926 ret = ptrace_get_reg(child, (int) index, &tmp);
2927 if (ret)
2928 break;
2929 } else {
2930 unsigned int fpidx = index - PT_FPR0;
2931
2932 flush_fp_to_thread(child);
2933 if (fpidx < (PT_FPSCR - PT_FPR0))
2934 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2935 sizeof(long));
2936 else
2937 tmp = child->thread.fp_state.fpscr;
2938 }
2939 ret = put_user(tmp, datalp);
2940 break;
2941 }
2942
2943 /* write the word at location addr in the USER area */
2944 case PTRACE_POKEUSR: {
2945 unsigned long index;
2946
2947 ret = -EIO;
2948 /* convert to index and check */
2949 #ifdef CONFIG_PPC32
2950 index = addr >> 2;
2951 if ((addr & 3) || (index > PT_FPSCR)
2952 || (child->thread.regs == NULL))
2953 #else
2954 index = addr >> 3;
2955 if ((addr & 7) || (index > PT_FPSCR))
2956 #endif
2957 break;
2958
2959 CHECK_FULL_REGS(child->thread.regs);
2960 if (index < PT_FPR0) {
2961 ret = ptrace_put_reg(child, index, data);
2962 } else {
2963 unsigned int fpidx = index - PT_FPR0;
2964
2965 flush_fp_to_thread(child);
2966 if (fpidx < (PT_FPSCR - PT_FPR0))
2967 memcpy(&child->thread.TS_FPR(fpidx), &data,
2968 sizeof(long));
2969 else
2970 child->thread.fp_state.fpscr = data;
2971 ret = 0;
2972 }
2973 break;
2974 }
2975
2976 case PPC_PTRACE_GETHWDBGINFO: {
2977 struct ppc_debug_info dbginfo;
2978
2979 dbginfo.version = 1;
2980 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2981 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2982 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2983 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2984 dbginfo.data_bp_alignment = 4;
2985 dbginfo.sizeof_condition = 4;
2986 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2987 PPC_DEBUG_FEATURE_INSN_BP_MASK;
2988 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2989 dbginfo.features |=
2990 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2991 PPC_DEBUG_FEATURE_DATA_BP_MASK;
2992 #endif
2993 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2994 dbginfo.num_instruction_bps = 0;
2995 dbginfo.num_data_bps = 1;
2996 dbginfo.num_condition_regs = 0;
2997 #ifdef CONFIG_PPC64
2998 dbginfo.data_bp_alignment = 8;
2999 #else
3000 dbginfo.data_bp_alignment = 4;
3001 #endif
3002 dbginfo.sizeof_condition = 0;
3003 #ifdef CONFIG_HAVE_HW_BREAKPOINT
3004 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
3005 if (cpu_has_feature(CPU_FTR_DAWR))
3006 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
3007 #else
3008 dbginfo.features = 0;
3009 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
3010 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
3011
3012 if (!access_ok(VERIFY_WRITE, datavp,
3013 sizeof(struct ppc_debug_info)))
3014 return -EFAULT;
3015 ret = __copy_to_user(datavp, &dbginfo,
3016 sizeof(struct ppc_debug_info)) ?
3017 -EFAULT : 0;
3018 break;
3019 }
3020
3021 case PPC_PTRACE_SETHWDEBUG: {
3022 struct ppc_hw_breakpoint bp_info;
3023
3024 if (!access_ok(VERIFY_READ, datavp,
3025 sizeof(struct ppc_hw_breakpoint)))
3026 return -EFAULT;
3027 ret = __copy_from_user(&bp_info, datavp,
3028 sizeof(struct ppc_hw_breakpoint)) ?
3029 -EFAULT : 0;
3030 if (!ret)
3031 ret = ppc_set_hwdebug(child, &bp_info);
3032 break;
3033 }
3034
3035 case PPC_PTRACE_DELHWDEBUG: {
3036 ret = ppc_del_hwdebug(child, data);
3037 break;
3038 }
3039
3040 case PTRACE_GET_DEBUGREG: {
3041 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3042 unsigned long dabr_fake;
3043 #endif
3044 ret = -EINVAL;
3045 /* We only support one DABR and no IABRS at the moment */
3046 if (addr > 0)
3047 break;
3048 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3049 ret = put_user(child->thread.debug.dac1, datalp);
3050 #else
3051 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3052 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3053 ret = put_user(dabr_fake, datalp);
3054 #endif
3055 break;
3056 }
3057
3058 case PTRACE_SET_DEBUGREG:
3059 ret = ptrace_set_debugreg(child, addr, data);
3060 break;
3061
3062 #ifdef CONFIG_PPC64
3063 case PTRACE_GETREGS64:
3064 #endif
3065 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3066 return copy_regset_to_user(child, &user_ppc_native_view,
3067 REGSET_GPR,
3068 0, sizeof(struct pt_regs),
3069 datavp);
3070
3071 #ifdef CONFIG_PPC64
3072 case PTRACE_SETREGS64:
3073 #endif
3074 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3075 return copy_regset_from_user(child, &user_ppc_native_view,
3076 REGSET_GPR,
3077 0, sizeof(struct pt_regs),
3078 datavp);
3079
3080 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3081 return copy_regset_to_user(child, &user_ppc_native_view,
3082 REGSET_FPR,
3083 0, sizeof(elf_fpregset_t),
3084 datavp);
3085
3086 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3087 return copy_regset_from_user(child, &user_ppc_native_view,
3088 REGSET_FPR,
3089 0, sizeof(elf_fpregset_t),
3090 datavp);
3091
3092 #ifdef CONFIG_ALTIVEC
3093 case PTRACE_GETVRREGS:
3094 return copy_regset_to_user(child, &user_ppc_native_view,
3095 REGSET_VMX,
3096 0, (33 * sizeof(vector128) +
3097 sizeof(u32)),
3098 datavp);
3099
3100 case PTRACE_SETVRREGS:
3101 return copy_regset_from_user(child, &user_ppc_native_view,
3102 REGSET_VMX,
3103 0, (33 * sizeof(vector128) +
3104 sizeof(u32)),
3105 datavp);
3106 #endif
3107 #ifdef CONFIG_VSX
3108 case PTRACE_GETVSRREGS:
3109 return copy_regset_to_user(child, &user_ppc_native_view,
3110 REGSET_VSX,
3111 0, 32 * sizeof(double),
3112 datavp);
3113
3114 case PTRACE_SETVSRREGS:
3115 return copy_regset_from_user(child, &user_ppc_native_view,
3116 REGSET_VSX,
3117 0, 32 * sizeof(double),
3118 datavp);
3119 #endif
3120 #ifdef CONFIG_SPE
3121 case PTRACE_GETEVRREGS:
3122 /* Get the child spe register state. */
3123 return copy_regset_to_user(child, &user_ppc_native_view,
3124 REGSET_SPE, 0, 35 * sizeof(u32),
3125 datavp);
3126
3127 case PTRACE_SETEVRREGS:
3128 /* Set the child spe register state. */
3129 return copy_regset_from_user(child, &user_ppc_native_view,
3130 REGSET_SPE, 0, 35 * sizeof(u32),
3131 datavp);
3132 #endif
3133
3134 default:
3135 ret = ptrace_request(child, request, addr, data);
3136 break;
3137 }
3138 return ret;
3139 }
3140
3141 #ifdef CONFIG_SECCOMP
3142 static int do_seccomp(struct pt_regs *regs)
3143 {
3144 if (!test_thread_flag(TIF_SECCOMP))
3145 return 0;
3146
3147 /*
3148 * The ABI we present to seccomp tracers is that r3 contains
3149 * the syscall return value and orig_gpr3 contains the first
3150 * syscall parameter. This is different to the ptrace ABI where
3151 * both r3 and orig_gpr3 contain the first syscall parameter.
3152 */
3153 regs->gpr[3] = -ENOSYS;
3154
3155 /*
3156 * We use the __ version here because we have already checked
3157 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3158 * have already loaded -ENOSYS into r3, or seccomp has put
3159 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3160 */
3161 if (__secure_computing(NULL))
3162 return -1;
3163
3164 /*
3165 * The syscall was allowed by seccomp, restore the register
3166 * state to what audit expects.
3167 * Note that we use orig_gpr3, which means a seccomp tracer can
3168 * modify the first syscall parameter (in orig_gpr3) and also
3169 * allow the syscall to proceed.
3170 */
3171 regs->gpr[3] = regs->orig_gpr3;
3172
3173 return 0;
3174 }
3175 #else
3176 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3177 #endif /* CONFIG_SECCOMP */
3178
3179 /**
3180 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3181 * @regs: the pt_regs of the task to trace (current)
3182 *
3183 * Performs various types of tracing on syscall entry. This includes seccomp,
3184 * ptrace, syscall tracepoints and audit.
3185 *
3186 * The pt_regs are potentially visible to userspace via ptrace, so their
3187 * contents is ABI.
3188 *
3189 * One or more of the tracers may modify the contents of pt_regs, in particular
3190 * to modify arguments or even the syscall number itself.
3191 *
3192 * It's also possible that a tracer can choose to reject the system call. In
3193 * that case this function will return an illegal syscall number, and will put
3194 * an appropriate return value in regs->r3.
3195 *
3196 * Return: the (possibly changed) syscall number.
3197 */
3198 long do_syscall_trace_enter(struct pt_regs *regs)
3199 {
3200 user_exit();
3201
3202 /*
3203 * The tracer may decide to abort the syscall, if so tracehook
3204 * will return !0. Note that the tracer may also just change
3205 * regs->gpr[0] to an invalid syscall number, that is handled
3206 * below on the exit path.
3207 */
3208 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3209 tracehook_report_syscall_entry(regs))
3210 goto skip;
3211
3212 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3213 if (do_seccomp(regs))
3214 return -1;
3215
3216 /* Avoid trace and audit when syscall is invalid. */
3217 if (regs->gpr[0] >= NR_syscalls)
3218 goto skip;
3219
3220 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3221 trace_sys_enter(regs, regs->gpr[0]);
3222
3223 #ifdef CONFIG_PPC64
3224 if (!is_32bit_task())
3225 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3226 regs->gpr[5], regs->gpr[6]);
3227 else
3228 #endif
3229 audit_syscall_entry(regs->gpr[0],
3230 regs->gpr[3] & 0xffffffff,
3231 regs->gpr[4] & 0xffffffff,
3232 regs->gpr[5] & 0xffffffff,
3233 regs->gpr[6] & 0xffffffff);
3234
3235 /* Return the possibly modified but valid syscall number */
3236 return regs->gpr[0];
3237
3238 skip:
3239 /*
3240 * If we are aborting explicitly, or if the syscall number is
3241 * now invalid, set the return value to -ENOSYS.
3242 */
3243 regs->gpr[3] = -ENOSYS;
3244 return -1;
3245 }
3246
3247 void do_syscall_trace_leave(struct pt_regs *regs)
3248 {
3249 int step;
3250
3251 audit_syscall_exit(regs);
3252
3253 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3254 trace_sys_exit(regs, regs->result);
3255
3256 step = test_thread_flag(TIF_SINGLESTEP);
3257 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3258 tracehook_report_syscall_exit(regs, step);
3259
3260 user_enter();
3261 }