]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/ptrace.c
powerpc: tm: Always use fp_state and vr_state to store live registers
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / ptrace.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <asm/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 /*
48 * The parameter save area on the stack is used to store arguments being passed
49 * to callee function and is located at fixed offset from stack pointer.
50 */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
55 #endif
56
57 struct pt_regs_offset {
58 const char *name;
59 int offset;
60 };
61
62 #define STR(s) #s /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num) \
65 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f) (offsetof(struct thread_struct, f))
72
73 static const struct pt_regs_offset regoffset_table[] = {
74 GPR_OFFSET_NAME(0),
75 GPR_OFFSET_NAME(1),
76 GPR_OFFSET_NAME(2),
77 GPR_OFFSET_NAME(3),
78 GPR_OFFSET_NAME(4),
79 GPR_OFFSET_NAME(5),
80 GPR_OFFSET_NAME(6),
81 GPR_OFFSET_NAME(7),
82 GPR_OFFSET_NAME(8),
83 GPR_OFFSET_NAME(9),
84 GPR_OFFSET_NAME(10),
85 GPR_OFFSET_NAME(11),
86 GPR_OFFSET_NAME(12),
87 GPR_OFFSET_NAME(13),
88 GPR_OFFSET_NAME(14),
89 GPR_OFFSET_NAME(15),
90 GPR_OFFSET_NAME(16),
91 GPR_OFFSET_NAME(17),
92 GPR_OFFSET_NAME(18),
93 GPR_OFFSET_NAME(19),
94 GPR_OFFSET_NAME(20),
95 GPR_OFFSET_NAME(21),
96 GPR_OFFSET_NAME(22),
97 GPR_OFFSET_NAME(23),
98 GPR_OFFSET_NAME(24),
99 GPR_OFFSET_NAME(25),
100 GPR_OFFSET_NAME(26),
101 GPR_OFFSET_NAME(27),
102 GPR_OFFSET_NAME(28),
103 GPR_OFFSET_NAME(29),
104 GPR_OFFSET_NAME(30),
105 GPR_OFFSET_NAME(31),
106 REG_OFFSET_NAME(nip),
107 REG_OFFSET_NAME(msr),
108 REG_OFFSET_NAME(ctr),
109 REG_OFFSET_NAME(link),
110 REG_OFFSET_NAME(xer),
111 REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113 REG_OFFSET_NAME(softe),
114 #else
115 REG_OFFSET_NAME(mq),
116 #endif
117 REG_OFFSET_NAME(trap),
118 REG_OFFSET_NAME(dar),
119 REG_OFFSET_NAME(dsisr),
120 REG_OFFSET_END,
121 };
122
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126 /*
127 * If task is not current, it will have been flushed already to
128 * it's thread_struct during __switch_to().
129 *
130 * A reclaim flushes ALL the state.
131 */
132
133 if (tsk == current && MSR_TM_SUSPENDED(mfmsr()))
134 tm_reclaim_current(TM_CAUSE_SIGNAL);
135
136 }
137 #else
138 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
139 #endif
140
141 /**
142 * regs_query_register_offset() - query register offset from its name
143 * @name: the name of a register
144 *
145 * regs_query_register_offset() returns the offset of a register in struct
146 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
147 */
148 int regs_query_register_offset(const char *name)
149 {
150 const struct pt_regs_offset *roff;
151 for (roff = regoffset_table; roff->name != NULL; roff++)
152 if (!strcmp(roff->name, name))
153 return roff->offset;
154 return -EINVAL;
155 }
156
157 /**
158 * regs_query_register_name() - query register name from its offset
159 * @offset: the offset of a register in struct pt_regs.
160 *
161 * regs_query_register_name() returns the name of a register from its
162 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
163 */
164 const char *regs_query_register_name(unsigned int offset)
165 {
166 const struct pt_regs_offset *roff;
167 for (roff = regoffset_table; roff->name != NULL; roff++)
168 if (roff->offset == offset)
169 return roff->name;
170 return NULL;
171 }
172
173 /*
174 * does not yet catch signals sent when the child dies.
175 * in exit.c or in signal.c.
176 */
177
178 /*
179 * Set of msr bits that gdb can change on behalf of a process.
180 */
181 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
182 #define MSR_DEBUGCHANGE 0
183 #else
184 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
185 #endif
186
187 /*
188 * Max register writeable via put_reg
189 */
190 #ifdef CONFIG_PPC32
191 #define PT_MAX_PUT_REG PT_MQ
192 #else
193 #define PT_MAX_PUT_REG PT_CCR
194 #endif
195
196 static unsigned long get_user_msr(struct task_struct *task)
197 {
198 return task->thread.regs->msr | task->thread.fpexc_mode;
199 }
200
201 static int set_user_msr(struct task_struct *task, unsigned long msr)
202 {
203 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
204 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
205 return 0;
206 }
207
208 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
209 static unsigned long get_user_ckpt_msr(struct task_struct *task)
210 {
211 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
212 }
213
214 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
215 {
216 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
217 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
218 return 0;
219 }
220
221 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
222 {
223 task->thread.ckpt_regs.trap = trap & 0xfff0;
224 return 0;
225 }
226 #endif
227
228 #ifdef CONFIG_PPC64
229 static int get_user_dscr(struct task_struct *task, unsigned long *data)
230 {
231 *data = task->thread.dscr;
232 return 0;
233 }
234
235 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
236 {
237 task->thread.dscr = dscr;
238 task->thread.dscr_inherit = 1;
239 return 0;
240 }
241 #else
242 static int get_user_dscr(struct task_struct *task, unsigned long *data)
243 {
244 return -EIO;
245 }
246
247 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
248 {
249 return -EIO;
250 }
251 #endif
252
253 /*
254 * We prevent mucking around with the reserved area of trap
255 * which are used internally by the kernel.
256 */
257 static int set_user_trap(struct task_struct *task, unsigned long trap)
258 {
259 task->thread.regs->trap = trap & 0xfff0;
260 return 0;
261 }
262
263 /*
264 * Get contents of register REGNO in task TASK.
265 */
266 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
267 {
268 if ((task->thread.regs == NULL) || !data)
269 return -EIO;
270
271 if (regno == PT_MSR) {
272 *data = get_user_msr(task);
273 return 0;
274 }
275
276 if (regno == PT_DSCR)
277 return get_user_dscr(task, data);
278
279 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
280 *data = ((unsigned long *)task->thread.regs)[regno];
281 return 0;
282 }
283
284 return -EIO;
285 }
286
287 /*
288 * Write contents of register REGNO in task TASK.
289 */
290 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
291 {
292 if (task->thread.regs == NULL)
293 return -EIO;
294
295 if (regno == PT_MSR)
296 return set_user_msr(task, data);
297 if (regno == PT_TRAP)
298 return set_user_trap(task, data);
299 if (regno == PT_DSCR)
300 return set_user_dscr(task, data);
301
302 if (regno <= PT_MAX_PUT_REG) {
303 ((unsigned long *)task->thread.regs)[regno] = data;
304 return 0;
305 }
306 return -EIO;
307 }
308
309 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
310 unsigned int pos, unsigned int count,
311 void *kbuf, void __user *ubuf)
312 {
313 int i, ret;
314
315 if (target->thread.regs == NULL)
316 return -EIO;
317
318 if (!FULL_REGS(target->thread.regs)) {
319 /* We have a partial register set. Fill 14-31 with bogus values */
320 for (i = 14; i < 32; i++)
321 target->thread.regs->gpr[i] = NV_REG_POISON;
322 }
323
324 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
325 target->thread.regs,
326 0, offsetof(struct pt_regs, msr));
327 if (!ret) {
328 unsigned long msr = get_user_msr(target);
329 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
330 offsetof(struct pt_regs, msr),
331 offsetof(struct pt_regs, msr) +
332 sizeof(msr));
333 }
334
335 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
336 offsetof(struct pt_regs, msr) + sizeof(long));
337
338 if (!ret)
339 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
340 &target->thread.regs->orig_gpr3,
341 offsetof(struct pt_regs, orig_gpr3),
342 sizeof(struct pt_regs));
343 if (!ret)
344 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
345 sizeof(struct pt_regs), -1);
346
347 return ret;
348 }
349
350 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
351 unsigned int pos, unsigned int count,
352 const void *kbuf, const void __user *ubuf)
353 {
354 unsigned long reg;
355 int ret;
356
357 if (target->thread.regs == NULL)
358 return -EIO;
359
360 CHECK_FULL_REGS(target->thread.regs);
361
362 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
363 target->thread.regs,
364 0, PT_MSR * sizeof(reg));
365
366 if (!ret && count > 0) {
367 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
368 PT_MSR * sizeof(reg),
369 (PT_MSR + 1) * sizeof(reg));
370 if (!ret)
371 ret = set_user_msr(target, reg);
372 }
373
374 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
375 offsetof(struct pt_regs, msr) + sizeof(long));
376
377 if (!ret)
378 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
379 &target->thread.regs->orig_gpr3,
380 PT_ORIG_R3 * sizeof(reg),
381 (PT_MAX_PUT_REG + 1) * sizeof(reg));
382
383 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
384 ret = user_regset_copyin_ignore(
385 &pos, &count, &kbuf, &ubuf,
386 (PT_MAX_PUT_REG + 1) * sizeof(reg),
387 PT_TRAP * sizeof(reg));
388
389 if (!ret && count > 0) {
390 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
391 PT_TRAP * sizeof(reg),
392 (PT_TRAP + 1) * sizeof(reg));
393 if (!ret)
394 ret = set_user_trap(target, reg);
395 }
396
397 if (!ret)
398 ret = user_regset_copyin_ignore(
399 &pos, &count, &kbuf, &ubuf,
400 (PT_TRAP + 1) * sizeof(reg), -1);
401
402 return ret;
403 }
404
405 /*
406 * Regardless of transactions, 'fp_state' holds the current running
407 * value of all FPR registers and 'transact_fp' holds the last checkpointed
408 * value of all FPR registers for the current transaction.
409 *
410 * Userspace interface buffer layout:
411 *
412 * struct data {
413 * u64 fpr[32];
414 * u64 fpscr;
415 * };
416 */
417 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
418 unsigned int pos, unsigned int count,
419 void *kbuf, void __user *ubuf)
420 {
421 #ifdef CONFIG_VSX
422 u64 buf[33];
423 int i;
424
425 flush_fp_to_thread(target);
426
427 /* copy to local buffer then write that out */
428 for (i = 0; i < 32 ; i++)
429 buf[i] = target->thread.TS_FPR(i);
430 buf[32] = target->thread.fp_state.fpscr;
431 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
432 #else
433 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
434 offsetof(struct thread_fp_state, fpr[32]));
435
436 flush_fp_to_thread(target);
437
438 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
439 &target->thread.fp_state, 0, -1);
440 #endif
441 }
442
443 /*
444 * Regardless of transactions, 'fp_state' holds the current running
445 * value of all FPR registers and 'transact_fp' holds the last checkpointed
446 * value of all FPR registers for the current transaction.
447 *
448 * Userspace interface buffer layout:
449 *
450 * struct data {
451 * u64 fpr[32];
452 * u64 fpscr;
453 * };
454 *
455 */
456 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
457 unsigned int pos, unsigned int count,
458 const void *kbuf, const void __user *ubuf)
459 {
460 #ifdef CONFIG_VSX
461 u64 buf[33];
462 int i;
463
464 flush_fp_to_thread(target);
465
466 /* copy to local buffer then write that out */
467 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
468 if (i)
469 return i;
470
471 for (i = 0; i < 32 ; i++)
472 target->thread.TS_FPR(i) = buf[i];
473 target->thread.fp_state.fpscr = buf[32];
474 return 0;
475 #else
476 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
477 offsetof(struct thread_fp_state, fpr[32]));
478
479 flush_fp_to_thread(target);
480
481 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
482 &target->thread.fp_state, 0, -1);
483 #endif
484 }
485
486 #ifdef CONFIG_ALTIVEC
487 /*
488 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
489 * The transfer totals 34 quadword. Quadwords 0-31 contain the
490 * corresponding vector registers. Quadword 32 contains the vscr as the
491 * last word (offset 12) within that quadword. Quadword 33 contains the
492 * vrsave as the first word (offset 0) within the quadword.
493 *
494 * This definition of the VMX state is compatible with the current PPC32
495 * ptrace interface. This allows signal handling and ptrace to use the
496 * same structures. This also simplifies the implementation of a bi-arch
497 * (combined (32- and 64-bit) gdb.
498 */
499
500 static int vr_active(struct task_struct *target,
501 const struct user_regset *regset)
502 {
503 flush_altivec_to_thread(target);
504 return target->thread.used_vr ? regset->n : 0;
505 }
506
507 /*
508 * Regardless of transactions, 'vr_state' holds the current running
509 * value of all the VMX registers and 'transact_vr' holds the last
510 * checkpointed value of all the VMX registers for the current
511 * transaction to fall back on in case it aborts.
512 *
513 * Userspace interface buffer layout:
514 *
515 * struct data {
516 * vector128 vr[32];
517 * vector128 vscr;
518 * vector128 vrsave;
519 * };
520 */
521 static int vr_get(struct task_struct *target, const struct user_regset *regset,
522 unsigned int pos, unsigned int count,
523 void *kbuf, void __user *ubuf)
524 {
525 int ret;
526
527 flush_altivec_to_thread(target);
528
529 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
530 offsetof(struct thread_vr_state, vr[32]));
531
532 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
533 &target->thread.vr_state, 0,
534 33 * sizeof(vector128));
535 if (!ret) {
536 /*
537 * Copy out only the low-order word of vrsave.
538 */
539 union {
540 elf_vrreg_t reg;
541 u32 word;
542 } vrsave;
543 memset(&vrsave, 0, sizeof(vrsave));
544
545 vrsave.word = target->thread.vrsave;
546
547 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
548 33 * sizeof(vector128), -1);
549 }
550
551 return ret;
552 }
553
554 /*
555 * Regardless of transactions, 'vr_state' holds the current running
556 * value of all the VMX registers and 'transact_vr' holds the last
557 * checkpointed value of all the VMX registers for the current
558 * transaction to fall back on in case it aborts.
559 *
560 * Userspace interface buffer layout:
561 *
562 * struct data {
563 * vector128 vr[32];
564 * vector128 vscr;
565 * vector128 vrsave;
566 * };
567 */
568 static int vr_set(struct task_struct *target, const struct user_regset *regset,
569 unsigned int pos, unsigned int count,
570 const void *kbuf, const void __user *ubuf)
571 {
572 int ret;
573
574 flush_altivec_to_thread(target);
575
576 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
577 offsetof(struct thread_vr_state, vr[32]));
578
579 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
580 &target->thread.vr_state, 0,
581 33 * sizeof(vector128));
582 if (!ret && count > 0) {
583 /*
584 * We use only the first word of vrsave.
585 */
586 union {
587 elf_vrreg_t reg;
588 u32 word;
589 } vrsave;
590 memset(&vrsave, 0, sizeof(vrsave));
591
592 vrsave.word = target->thread.vrsave;
593
594 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
595 33 * sizeof(vector128), -1);
596 if (!ret)
597 target->thread.vrsave = vrsave.word;
598 }
599
600 return ret;
601 }
602 #endif /* CONFIG_ALTIVEC */
603
604 #ifdef CONFIG_VSX
605 /*
606 * Currently to set and and get all the vsx state, you need to call
607 * the fp and VMX calls as well. This only get/sets the lower 32
608 * 128bit VSX registers.
609 */
610
611 static int vsr_active(struct task_struct *target,
612 const struct user_regset *regset)
613 {
614 flush_vsx_to_thread(target);
615 return target->thread.used_vsr ? regset->n : 0;
616 }
617
618 /*
619 * Regardless of transactions, 'fp_state' holds the current running
620 * value of all FPR registers and 'transact_fp' holds the last
621 * checkpointed value of all FPR registers for the current
622 * transaction.
623 *
624 * Userspace interface buffer layout:
625 *
626 * struct data {
627 * u64 vsx[32];
628 * };
629 */
630 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
631 unsigned int pos, unsigned int count,
632 void *kbuf, void __user *ubuf)
633 {
634 u64 buf[32];
635 int ret, i;
636
637 flush_tmregs_to_thread(target);
638 flush_fp_to_thread(target);
639 flush_altivec_to_thread(target);
640 flush_vsx_to_thread(target);
641
642 for (i = 0; i < 32 ; i++)
643 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
644
645 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
646 buf, 0, 32 * sizeof(double));
647
648 return ret;
649 }
650
651 /*
652 * Regardless of transactions, 'fp_state' holds the current running
653 * value of all FPR registers and 'transact_fp' holds the last
654 * checkpointed value of all FPR registers for the current
655 * transaction.
656 *
657 * Userspace interface buffer layout:
658 *
659 * struct data {
660 * u64 vsx[32];
661 * };
662 */
663 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
664 unsigned int pos, unsigned int count,
665 const void *kbuf, const void __user *ubuf)
666 {
667 u64 buf[32];
668 int ret,i;
669
670 flush_tmregs_to_thread(target);
671 flush_fp_to_thread(target);
672 flush_altivec_to_thread(target);
673 flush_vsx_to_thread(target);
674
675 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
676 buf, 0, 32 * sizeof(double));
677 if (!ret)
678 for (i = 0; i < 32 ; i++)
679 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
680
681 return ret;
682 }
683 #endif /* CONFIG_VSX */
684
685 #ifdef CONFIG_SPE
686
687 /*
688 * For get_evrregs/set_evrregs functions 'data' has the following layout:
689 *
690 * struct {
691 * u32 evr[32];
692 * u64 acc;
693 * u32 spefscr;
694 * }
695 */
696
697 static int evr_active(struct task_struct *target,
698 const struct user_regset *regset)
699 {
700 flush_spe_to_thread(target);
701 return target->thread.used_spe ? regset->n : 0;
702 }
703
704 static int evr_get(struct task_struct *target, const struct user_regset *regset,
705 unsigned int pos, unsigned int count,
706 void *kbuf, void __user *ubuf)
707 {
708 int ret;
709
710 flush_spe_to_thread(target);
711
712 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
713 &target->thread.evr,
714 0, sizeof(target->thread.evr));
715
716 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
717 offsetof(struct thread_struct, spefscr));
718
719 if (!ret)
720 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
721 &target->thread.acc,
722 sizeof(target->thread.evr), -1);
723
724 return ret;
725 }
726
727 static int evr_set(struct task_struct *target, const struct user_regset *regset,
728 unsigned int pos, unsigned int count,
729 const void *kbuf, const void __user *ubuf)
730 {
731 int ret;
732
733 flush_spe_to_thread(target);
734
735 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
736 &target->thread.evr,
737 0, sizeof(target->thread.evr));
738
739 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
740 offsetof(struct thread_struct, spefscr));
741
742 if (!ret)
743 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
744 &target->thread.acc,
745 sizeof(target->thread.evr), -1);
746
747 return ret;
748 }
749 #endif /* CONFIG_SPE */
750
751 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
752 /**
753 * tm_cgpr_active - get active number of registers in CGPR
754 * @target: The target task.
755 * @regset: The user regset structure.
756 *
757 * This function checks for the active number of available
758 * regisers in transaction checkpointed GPR category.
759 */
760 static int tm_cgpr_active(struct task_struct *target,
761 const struct user_regset *regset)
762 {
763 if (!cpu_has_feature(CPU_FTR_TM))
764 return -ENODEV;
765
766 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
767 return 0;
768
769 return regset->n;
770 }
771
772 /**
773 * tm_cgpr_get - get CGPR registers
774 * @target: The target task.
775 * @regset: The user regset structure.
776 * @pos: The buffer position.
777 * @count: Number of bytes to copy.
778 * @kbuf: Kernel buffer to copy from.
779 * @ubuf: User buffer to copy into.
780 *
781 * This function gets transaction checkpointed GPR registers.
782 *
783 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
784 * GPR register values for the current transaction to fall back on if it
785 * aborts in between. This function gets those checkpointed GPR registers.
786 * The userspace interface buffer layout is as follows.
787 *
788 * struct data {
789 * struct pt_regs ckpt_regs;
790 * };
791 */
792 static int tm_cgpr_get(struct task_struct *target,
793 const struct user_regset *regset,
794 unsigned int pos, unsigned int count,
795 void *kbuf, void __user *ubuf)
796 {
797 int ret;
798
799 if (!cpu_has_feature(CPU_FTR_TM))
800 return -ENODEV;
801
802 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
803 return -ENODATA;
804
805 flush_tmregs_to_thread(target);
806 flush_fp_to_thread(target);
807 flush_altivec_to_thread(target);
808
809 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
810 &target->thread.ckpt_regs,
811 0, offsetof(struct pt_regs, msr));
812 if (!ret) {
813 unsigned long msr = get_user_ckpt_msr(target);
814
815 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
816 offsetof(struct pt_regs, msr),
817 offsetof(struct pt_regs, msr) +
818 sizeof(msr));
819 }
820
821 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
822 offsetof(struct pt_regs, msr) + sizeof(long));
823
824 if (!ret)
825 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
826 &target->thread.ckpt_regs.orig_gpr3,
827 offsetof(struct pt_regs, orig_gpr3),
828 sizeof(struct pt_regs));
829 if (!ret)
830 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
831 sizeof(struct pt_regs), -1);
832
833 return ret;
834 }
835
836 /*
837 * tm_cgpr_set - set the CGPR registers
838 * @target: The target task.
839 * @regset: The user regset structure.
840 * @pos: The buffer position.
841 * @count: Number of bytes to copy.
842 * @kbuf: Kernel buffer to copy into.
843 * @ubuf: User buffer to copy from.
844 *
845 * This function sets in transaction checkpointed GPR registers.
846 *
847 * When the transaction is active, 'ckpt_regs' holds the checkpointed
848 * GPR register values for the current transaction to fall back on if it
849 * aborts in between. This function sets those checkpointed GPR registers.
850 * The userspace interface buffer layout is as follows.
851 *
852 * struct data {
853 * struct pt_regs ckpt_regs;
854 * };
855 */
856 static int tm_cgpr_set(struct task_struct *target,
857 const struct user_regset *regset,
858 unsigned int pos, unsigned int count,
859 const void *kbuf, const void __user *ubuf)
860 {
861 unsigned long reg;
862 int ret;
863
864 if (!cpu_has_feature(CPU_FTR_TM))
865 return -ENODEV;
866
867 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
868 return -ENODATA;
869
870 flush_tmregs_to_thread(target);
871 flush_fp_to_thread(target);
872 flush_altivec_to_thread(target);
873
874 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
875 &target->thread.ckpt_regs,
876 0, PT_MSR * sizeof(reg));
877
878 if (!ret && count > 0) {
879 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
880 PT_MSR * sizeof(reg),
881 (PT_MSR + 1) * sizeof(reg));
882 if (!ret)
883 ret = set_user_ckpt_msr(target, reg);
884 }
885
886 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
887 offsetof(struct pt_regs, msr) + sizeof(long));
888
889 if (!ret)
890 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
891 &target->thread.ckpt_regs.orig_gpr3,
892 PT_ORIG_R3 * sizeof(reg),
893 (PT_MAX_PUT_REG + 1) * sizeof(reg));
894
895 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
896 ret = user_regset_copyin_ignore(
897 &pos, &count, &kbuf, &ubuf,
898 (PT_MAX_PUT_REG + 1) * sizeof(reg),
899 PT_TRAP * sizeof(reg));
900
901 if (!ret && count > 0) {
902 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
903 PT_TRAP * sizeof(reg),
904 (PT_TRAP + 1) * sizeof(reg));
905 if (!ret)
906 ret = set_user_ckpt_trap(target, reg);
907 }
908
909 if (!ret)
910 ret = user_regset_copyin_ignore(
911 &pos, &count, &kbuf, &ubuf,
912 (PT_TRAP + 1) * sizeof(reg), -1);
913
914 return ret;
915 }
916
917 /**
918 * tm_cfpr_active - get active number of registers in CFPR
919 * @target: The target task.
920 * @regset: The user regset structure.
921 *
922 * This function checks for the active number of available
923 * regisers in transaction checkpointed FPR category.
924 */
925 static int tm_cfpr_active(struct task_struct *target,
926 const struct user_regset *regset)
927 {
928 if (!cpu_has_feature(CPU_FTR_TM))
929 return -ENODEV;
930
931 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
932 return 0;
933
934 return regset->n;
935 }
936
937 /**
938 * tm_cfpr_get - get CFPR registers
939 * @target: The target task.
940 * @regset: The user regset structure.
941 * @pos: The buffer position.
942 * @count: Number of bytes to copy.
943 * @kbuf: Kernel buffer to copy from.
944 * @ubuf: User buffer to copy into.
945 *
946 * This function gets in transaction checkpointed FPR registers.
947 *
948 * When the transaction is active 'transact_fp' holds the checkpointed
949 * values for the current transaction to fall back on if it aborts
950 * in between. This function gets those checkpointed FPR registers.
951 * The userspace interface buffer layout is as follows.
952 *
953 * struct data {
954 * u64 fpr[32];
955 * u64 fpscr;
956 *};
957 */
958 static int tm_cfpr_get(struct task_struct *target,
959 const struct user_regset *regset,
960 unsigned int pos, unsigned int count,
961 void *kbuf, void __user *ubuf)
962 {
963 u64 buf[33];
964 int i;
965
966 if (!cpu_has_feature(CPU_FTR_TM))
967 return -ENODEV;
968
969 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
970 return -ENODATA;
971
972 flush_tmregs_to_thread(target);
973 flush_fp_to_thread(target);
974 flush_altivec_to_thread(target);
975
976 /* copy to local buffer then write that out */
977 for (i = 0; i < 32 ; i++)
978 buf[i] = target->thread.TS_TRANS_FPR(i);
979 buf[32] = target->thread.transact_fp.fpscr;
980 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
981 }
982
983 /**
984 * tm_cfpr_set - set CFPR registers
985 * @target: The target task.
986 * @regset: The user regset structure.
987 * @pos: The buffer position.
988 * @count: Number of bytes to copy.
989 * @kbuf: Kernel buffer to copy into.
990 * @ubuf: User buffer to copy from.
991 *
992 * This function sets in transaction checkpointed FPR registers.
993 *
994 * When the transaction is active 'transact_fp' holds the checkpointed
995 * FPR register values for the current transaction to fall back on
996 * if it aborts in between. This function sets these checkpointed
997 * FPR registers. The userspace interface buffer layout is as follows.
998 *
999 * struct data {
1000 * u64 fpr[32];
1001 * u64 fpscr;
1002 *};
1003 */
1004 static int tm_cfpr_set(struct task_struct *target,
1005 const struct user_regset *regset,
1006 unsigned int pos, unsigned int count,
1007 const void *kbuf, const void __user *ubuf)
1008 {
1009 u64 buf[33];
1010 int i;
1011
1012 if (!cpu_has_feature(CPU_FTR_TM))
1013 return -ENODEV;
1014
1015 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1016 return -ENODATA;
1017
1018 flush_tmregs_to_thread(target);
1019 flush_fp_to_thread(target);
1020 flush_altivec_to_thread(target);
1021
1022 /* copy to local buffer then write that out */
1023 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1024 if (i)
1025 return i;
1026 for (i = 0; i < 32 ; i++)
1027 target->thread.TS_TRANS_FPR(i) = buf[i];
1028 target->thread.transact_fp.fpscr = buf[32];
1029 return 0;
1030 }
1031
1032 /**
1033 * tm_cvmx_active - get active number of registers in CVMX
1034 * @target: The target task.
1035 * @regset: The user regset structure.
1036 *
1037 * This function checks for the active number of available
1038 * regisers in checkpointed VMX category.
1039 */
1040 static int tm_cvmx_active(struct task_struct *target,
1041 const struct user_regset *regset)
1042 {
1043 if (!cpu_has_feature(CPU_FTR_TM))
1044 return -ENODEV;
1045
1046 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1047 return 0;
1048
1049 return regset->n;
1050 }
1051
1052 /**
1053 * tm_cvmx_get - get CMVX registers
1054 * @target: The target task.
1055 * @regset: The user regset structure.
1056 * @pos: The buffer position.
1057 * @count: Number of bytes to copy.
1058 * @kbuf: Kernel buffer to copy from.
1059 * @ubuf: User buffer to copy into.
1060 *
1061 * This function gets in transaction checkpointed VMX registers.
1062 *
1063 * When the transaction is active 'transact_vr' and 'transact_vrsave' hold
1064 * the checkpointed values for the current transaction to fall
1065 * back on if it aborts in between. The userspace interface buffer
1066 * layout is as follows.
1067 *
1068 * struct data {
1069 * vector128 vr[32];
1070 * vector128 vscr;
1071 * vector128 vrsave;
1072 *};
1073 */
1074 static int tm_cvmx_get(struct task_struct *target,
1075 const struct user_regset *regset,
1076 unsigned int pos, unsigned int count,
1077 void *kbuf, void __user *ubuf)
1078 {
1079 int ret;
1080
1081 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1082
1083 if (!cpu_has_feature(CPU_FTR_TM))
1084 return -ENODEV;
1085
1086 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1087 return -ENODATA;
1088
1089 /* Flush the state */
1090 flush_tmregs_to_thread(target);
1091 flush_fp_to_thread(target);
1092 flush_altivec_to_thread(target);
1093
1094 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1095 &target->thread.transact_vr, 0,
1096 33 * sizeof(vector128));
1097 if (!ret) {
1098 /*
1099 * Copy out only the low-order word of vrsave.
1100 */
1101 union {
1102 elf_vrreg_t reg;
1103 u32 word;
1104 } vrsave;
1105 memset(&vrsave, 0, sizeof(vrsave));
1106 vrsave.word = target->thread.transact_vrsave;
1107 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1108 33 * sizeof(vector128), -1);
1109 }
1110
1111 return ret;
1112 }
1113
1114 /**
1115 * tm_cvmx_set - set CMVX registers
1116 * @target: The target task.
1117 * @regset: The user regset structure.
1118 * @pos: The buffer position.
1119 * @count: Number of bytes to copy.
1120 * @kbuf: Kernel buffer to copy into.
1121 * @ubuf: User buffer to copy from.
1122 *
1123 * This function sets in transaction checkpointed VMX registers.
1124 *
1125 * When the transaction is active 'transact_vr' and 'transact_vrsave' hold
1126 * the checkpointed values for the current transaction to fall
1127 * back on if it aborts in between. The userspace interface buffer
1128 * layout is as follows.
1129 *
1130 * struct data {
1131 * vector128 vr[32];
1132 * vector128 vscr;
1133 * vector128 vrsave;
1134 *};
1135 */
1136 static int tm_cvmx_set(struct task_struct *target,
1137 const struct user_regset *regset,
1138 unsigned int pos, unsigned int count,
1139 const void *kbuf, const void __user *ubuf)
1140 {
1141 int ret;
1142
1143 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1144
1145 if (!cpu_has_feature(CPU_FTR_TM))
1146 return -ENODEV;
1147
1148 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1149 return -ENODATA;
1150
1151 flush_tmregs_to_thread(target);
1152 flush_fp_to_thread(target);
1153 flush_altivec_to_thread(target);
1154
1155 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1156 &target->thread.transact_vr, 0,
1157 33 * sizeof(vector128));
1158 if (!ret && count > 0) {
1159 /*
1160 * We use only the low-order word of vrsave.
1161 */
1162 union {
1163 elf_vrreg_t reg;
1164 u32 word;
1165 } vrsave;
1166 memset(&vrsave, 0, sizeof(vrsave));
1167 vrsave.word = target->thread.transact_vrsave;
1168 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1169 33 * sizeof(vector128), -1);
1170 if (!ret)
1171 target->thread.transact_vrsave = vrsave.word;
1172 }
1173
1174 return ret;
1175 }
1176
1177 /**
1178 * tm_cvsx_active - get active number of registers in CVSX
1179 * @target: The target task.
1180 * @regset: The user regset structure.
1181 *
1182 * This function checks for the active number of available
1183 * regisers in transaction checkpointed VSX category.
1184 */
1185 static int tm_cvsx_active(struct task_struct *target,
1186 const struct user_regset *regset)
1187 {
1188 if (!cpu_has_feature(CPU_FTR_TM))
1189 return -ENODEV;
1190
1191 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1192 return 0;
1193
1194 flush_vsx_to_thread(target);
1195 return target->thread.used_vsr ? regset->n : 0;
1196 }
1197
1198 /**
1199 * tm_cvsx_get - get CVSX registers
1200 * @target: The target task.
1201 * @regset: The user regset structure.
1202 * @pos: The buffer position.
1203 * @count: Number of bytes to copy.
1204 * @kbuf: Kernel buffer to copy from.
1205 * @ubuf: User buffer to copy into.
1206 *
1207 * This function gets in transaction checkpointed VSX registers.
1208 *
1209 * When the transaction is active 'transact_fp' holds the checkpointed
1210 * values for the current transaction to fall back on if it aborts
1211 * in between. This function gets those checkpointed VSX registers.
1212 * The userspace interface buffer layout is as follows.
1213 *
1214 * struct data {
1215 * u64 vsx[32];
1216 *};
1217 */
1218 static int tm_cvsx_get(struct task_struct *target,
1219 const struct user_regset *regset,
1220 unsigned int pos, unsigned int count,
1221 void *kbuf, void __user *ubuf)
1222 {
1223 u64 buf[32];
1224 int ret, i;
1225
1226 if (!cpu_has_feature(CPU_FTR_TM))
1227 return -ENODEV;
1228
1229 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1230 return -ENODATA;
1231
1232 /* Flush the state */
1233 flush_tmregs_to_thread(target);
1234 flush_fp_to_thread(target);
1235 flush_altivec_to_thread(target);
1236 flush_vsx_to_thread(target);
1237
1238 for (i = 0; i < 32 ; i++)
1239 buf[i] = target->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
1240 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1241 buf, 0, 32 * sizeof(double));
1242
1243 return ret;
1244 }
1245
1246 /**
1247 * tm_cvsx_set - set CFPR registers
1248 * @target: The target task.
1249 * @regset: The user regset structure.
1250 * @pos: The buffer position.
1251 * @count: Number of bytes to copy.
1252 * @kbuf: Kernel buffer to copy into.
1253 * @ubuf: User buffer to copy from.
1254 *
1255 * This function sets in transaction checkpointed VSX registers.
1256 *
1257 * When the transaction is active 'transact_fp' holds the checkpointed
1258 * VSX register values for the current transaction to fall back on
1259 * if it aborts in between. This function sets these checkpointed
1260 * FPR registers. The userspace interface buffer layout is as follows.
1261 *
1262 * struct data {
1263 * u64 vsx[32];
1264 *};
1265 */
1266 static int tm_cvsx_set(struct task_struct *target,
1267 const struct user_regset *regset,
1268 unsigned int pos, unsigned int count,
1269 const void *kbuf, const void __user *ubuf)
1270 {
1271 u64 buf[32];
1272 int ret, i;
1273
1274 if (!cpu_has_feature(CPU_FTR_TM))
1275 return -ENODEV;
1276
1277 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1278 return -ENODATA;
1279
1280 /* Flush the state */
1281 flush_tmregs_to_thread(target);
1282 flush_fp_to_thread(target);
1283 flush_altivec_to_thread(target);
1284 flush_vsx_to_thread(target);
1285
1286 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1287 buf, 0, 32 * sizeof(double));
1288 if (!ret)
1289 for (i = 0; i < 32 ; i++)
1290 target->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1291
1292 return ret;
1293 }
1294
1295 /**
1296 * tm_spr_active - get active number of registers in TM SPR
1297 * @target: The target task.
1298 * @regset: The user regset structure.
1299 *
1300 * This function checks the active number of available
1301 * regisers in the transactional memory SPR category.
1302 */
1303 static int tm_spr_active(struct task_struct *target,
1304 const struct user_regset *regset)
1305 {
1306 if (!cpu_has_feature(CPU_FTR_TM))
1307 return -ENODEV;
1308
1309 return regset->n;
1310 }
1311
1312 /**
1313 * tm_spr_get - get the TM related SPR registers
1314 * @target: The target task.
1315 * @regset: The user regset structure.
1316 * @pos: The buffer position.
1317 * @count: Number of bytes to copy.
1318 * @kbuf: Kernel buffer to copy from.
1319 * @ubuf: User buffer to copy into.
1320 *
1321 * This function gets transactional memory related SPR registers.
1322 * The userspace interface buffer layout is as follows.
1323 *
1324 * struct {
1325 * u64 tm_tfhar;
1326 * u64 tm_texasr;
1327 * u64 tm_tfiar;
1328 * };
1329 */
1330 static int tm_spr_get(struct task_struct *target,
1331 const struct user_regset *regset,
1332 unsigned int pos, unsigned int count,
1333 void *kbuf, void __user *ubuf)
1334 {
1335 int ret;
1336
1337 /* Build tests */
1338 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1339 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1340 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1341
1342 if (!cpu_has_feature(CPU_FTR_TM))
1343 return -ENODEV;
1344
1345 /* Flush the states */
1346 flush_tmregs_to_thread(target);
1347 flush_fp_to_thread(target);
1348 flush_altivec_to_thread(target);
1349
1350 /* TFHAR register */
1351 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1352 &target->thread.tm_tfhar, 0, sizeof(u64));
1353
1354 /* TEXASR register */
1355 if (!ret)
1356 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1357 &target->thread.tm_texasr, sizeof(u64),
1358 2 * sizeof(u64));
1359
1360 /* TFIAR register */
1361 if (!ret)
1362 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1363 &target->thread.tm_tfiar,
1364 2 * sizeof(u64), 3 * sizeof(u64));
1365 return ret;
1366 }
1367
1368 /**
1369 * tm_spr_set - set the TM related SPR registers
1370 * @target: The target task.
1371 * @regset: The user regset structure.
1372 * @pos: The buffer position.
1373 * @count: Number of bytes to copy.
1374 * @kbuf: Kernel buffer to copy into.
1375 * @ubuf: User buffer to copy from.
1376 *
1377 * This function sets transactional memory related SPR registers.
1378 * The userspace interface buffer layout is as follows.
1379 *
1380 * struct {
1381 * u64 tm_tfhar;
1382 * u64 tm_texasr;
1383 * u64 tm_tfiar;
1384 * };
1385 */
1386 static int tm_spr_set(struct task_struct *target,
1387 const struct user_regset *regset,
1388 unsigned int pos, unsigned int count,
1389 const void *kbuf, const void __user *ubuf)
1390 {
1391 int ret;
1392
1393 /* Build tests */
1394 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1395 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1396 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1397
1398 if (!cpu_has_feature(CPU_FTR_TM))
1399 return -ENODEV;
1400
1401 /* Flush the states */
1402 flush_tmregs_to_thread(target);
1403 flush_fp_to_thread(target);
1404 flush_altivec_to_thread(target);
1405
1406 /* TFHAR register */
1407 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1408 &target->thread.tm_tfhar, 0, sizeof(u64));
1409
1410 /* TEXASR register */
1411 if (!ret)
1412 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1413 &target->thread.tm_texasr, sizeof(u64),
1414 2 * sizeof(u64));
1415
1416 /* TFIAR register */
1417 if (!ret)
1418 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1419 &target->thread.tm_tfiar,
1420 2 * sizeof(u64), 3 * sizeof(u64));
1421 return ret;
1422 }
1423
1424 static int tm_tar_active(struct task_struct *target,
1425 const struct user_regset *regset)
1426 {
1427 if (!cpu_has_feature(CPU_FTR_TM))
1428 return -ENODEV;
1429
1430 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1431 return regset->n;
1432
1433 return 0;
1434 }
1435
1436 static int tm_tar_get(struct task_struct *target,
1437 const struct user_regset *regset,
1438 unsigned int pos, unsigned int count,
1439 void *kbuf, void __user *ubuf)
1440 {
1441 int ret;
1442
1443 if (!cpu_has_feature(CPU_FTR_TM))
1444 return -ENODEV;
1445
1446 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1447 return -ENODATA;
1448
1449 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1450 &target->thread.tm_tar, 0, sizeof(u64));
1451 return ret;
1452 }
1453
1454 static int tm_tar_set(struct task_struct *target,
1455 const struct user_regset *regset,
1456 unsigned int pos, unsigned int count,
1457 const void *kbuf, const void __user *ubuf)
1458 {
1459 int ret;
1460
1461 if (!cpu_has_feature(CPU_FTR_TM))
1462 return -ENODEV;
1463
1464 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1465 return -ENODATA;
1466
1467 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1468 &target->thread.tm_tar, 0, sizeof(u64));
1469 return ret;
1470 }
1471
1472 static int tm_ppr_active(struct task_struct *target,
1473 const struct user_regset *regset)
1474 {
1475 if (!cpu_has_feature(CPU_FTR_TM))
1476 return -ENODEV;
1477
1478 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1479 return regset->n;
1480
1481 return 0;
1482 }
1483
1484
1485 static int tm_ppr_get(struct task_struct *target,
1486 const struct user_regset *regset,
1487 unsigned int pos, unsigned int count,
1488 void *kbuf, void __user *ubuf)
1489 {
1490 int ret;
1491
1492 if (!cpu_has_feature(CPU_FTR_TM))
1493 return -ENODEV;
1494
1495 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1496 return -ENODATA;
1497
1498 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1499 &target->thread.tm_ppr, 0, sizeof(u64));
1500 return ret;
1501 }
1502
1503 static int tm_ppr_set(struct task_struct *target,
1504 const struct user_regset *regset,
1505 unsigned int pos, unsigned int count,
1506 const void *kbuf, const void __user *ubuf)
1507 {
1508 int ret;
1509
1510 if (!cpu_has_feature(CPU_FTR_TM))
1511 return -ENODEV;
1512
1513 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1514 return -ENODATA;
1515
1516 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1517 &target->thread.tm_ppr, 0, sizeof(u64));
1518 return ret;
1519 }
1520
1521 static int tm_dscr_active(struct task_struct *target,
1522 const struct user_regset *regset)
1523 {
1524 if (!cpu_has_feature(CPU_FTR_TM))
1525 return -ENODEV;
1526
1527 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1528 return regset->n;
1529
1530 return 0;
1531 }
1532
1533 static int tm_dscr_get(struct task_struct *target,
1534 const struct user_regset *regset,
1535 unsigned int pos, unsigned int count,
1536 void *kbuf, void __user *ubuf)
1537 {
1538 int ret;
1539
1540 if (!cpu_has_feature(CPU_FTR_TM))
1541 return -ENODEV;
1542
1543 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1544 return -ENODATA;
1545
1546 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1547 &target->thread.tm_dscr, 0, sizeof(u64));
1548 return ret;
1549 }
1550
1551 static int tm_dscr_set(struct task_struct *target,
1552 const struct user_regset *regset,
1553 unsigned int pos, unsigned int count,
1554 const void *kbuf, const void __user *ubuf)
1555 {
1556 int ret;
1557
1558 if (!cpu_has_feature(CPU_FTR_TM))
1559 return -ENODEV;
1560
1561 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1562 return -ENODATA;
1563
1564 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1565 &target->thread.tm_dscr, 0, sizeof(u64));
1566 return ret;
1567 }
1568 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1569
1570 #ifdef CONFIG_PPC64
1571 static int ppr_get(struct task_struct *target,
1572 const struct user_regset *regset,
1573 unsigned int pos, unsigned int count,
1574 void *kbuf, void __user *ubuf)
1575 {
1576 int ret;
1577
1578 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1579 &target->thread.ppr, 0, sizeof(u64));
1580 return ret;
1581 }
1582
1583 static int ppr_set(struct task_struct *target,
1584 const struct user_regset *regset,
1585 unsigned int pos, unsigned int count,
1586 const void *kbuf, const void __user *ubuf)
1587 {
1588 int ret;
1589
1590 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1591 &target->thread.ppr, 0, sizeof(u64));
1592 return ret;
1593 }
1594
1595 static int dscr_get(struct task_struct *target,
1596 const struct user_regset *regset,
1597 unsigned int pos, unsigned int count,
1598 void *kbuf, void __user *ubuf)
1599 {
1600 int ret;
1601
1602 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1603 &target->thread.dscr, 0, sizeof(u64));
1604 return ret;
1605 }
1606 static int dscr_set(struct task_struct *target,
1607 const struct user_regset *regset,
1608 unsigned int pos, unsigned int count,
1609 const void *kbuf, const void __user *ubuf)
1610 {
1611 int ret;
1612
1613 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1614 &target->thread.dscr, 0, sizeof(u64));
1615 return ret;
1616 }
1617 #endif
1618 #ifdef CONFIG_PPC_BOOK3S_64
1619 static int tar_get(struct task_struct *target,
1620 const struct user_regset *regset,
1621 unsigned int pos, unsigned int count,
1622 void *kbuf, void __user *ubuf)
1623 {
1624 int ret;
1625
1626 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1627 &target->thread.tar, 0, sizeof(u64));
1628 return ret;
1629 }
1630 static int tar_set(struct task_struct *target,
1631 const struct user_regset *regset,
1632 unsigned int pos, unsigned int count,
1633 const void *kbuf, const void __user *ubuf)
1634 {
1635 int ret;
1636
1637 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1638 &target->thread.tar, 0, sizeof(u64));
1639 return ret;
1640 }
1641
1642 static int ebb_active(struct task_struct *target,
1643 const struct user_regset *regset)
1644 {
1645 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1646 return -ENODEV;
1647
1648 if (target->thread.used_ebb)
1649 return regset->n;
1650
1651 return 0;
1652 }
1653
1654 static int ebb_get(struct task_struct *target,
1655 const struct user_regset *regset,
1656 unsigned int pos, unsigned int count,
1657 void *kbuf, void __user *ubuf)
1658 {
1659 /* Build tests */
1660 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1661 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1662
1663 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1664 return -ENODEV;
1665
1666 if (!target->thread.used_ebb)
1667 return -ENODATA;
1668
1669 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1670 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1671 }
1672
1673 static int ebb_set(struct task_struct *target,
1674 const struct user_regset *regset,
1675 unsigned int pos, unsigned int count,
1676 const void *kbuf, const void __user *ubuf)
1677 {
1678 int ret = 0;
1679
1680 /* Build tests */
1681 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1682 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1683
1684 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1685 return -ENODEV;
1686
1687 if (target->thread.used_ebb)
1688 return -ENODATA;
1689
1690 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1691 &target->thread.ebbrr, 0, sizeof(unsigned long));
1692
1693 if (!ret)
1694 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1695 &target->thread.ebbhr, sizeof(unsigned long),
1696 2 * sizeof(unsigned long));
1697
1698 if (!ret)
1699 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1700 &target->thread.bescr,
1701 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1702
1703 return ret;
1704 }
1705 static int pmu_active(struct task_struct *target,
1706 const struct user_regset *regset)
1707 {
1708 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1709 return -ENODEV;
1710
1711 return regset->n;
1712 }
1713
1714 static int pmu_get(struct task_struct *target,
1715 const struct user_regset *regset,
1716 unsigned int pos, unsigned int count,
1717 void *kbuf, void __user *ubuf)
1718 {
1719 /* Build tests */
1720 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1721 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1722 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1723 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1724
1725 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1726 return -ENODEV;
1727
1728 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1729 &target->thread.siar, 0,
1730 5 * sizeof(unsigned long));
1731 }
1732
1733 static int pmu_set(struct task_struct *target,
1734 const struct user_regset *regset,
1735 unsigned int pos, unsigned int count,
1736 const void *kbuf, const void __user *ubuf)
1737 {
1738 int ret = 0;
1739
1740 /* Build tests */
1741 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1742 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1743 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1744 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1745
1746 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1747 return -ENODEV;
1748
1749 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1750 &target->thread.siar, 0,
1751 sizeof(unsigned long));
1752
1753 if (!ret)
1754 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1755 &target->thread.sdar, sizeof(unsigned long),
1756 2 * sizeof(unsigned long));
1757
1758 if (!ret)
1759 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1760 &target->thread.sier, 2 * sizeof(unsigned long),
1761 3 * sizeof(unsigned long));
1762
1763 if (!ret)
1764 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1765 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1766 4 * sizeof(unsigned long));
1767
1768 if (!ret)
1769 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1770 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1771 5 * sizeof(unsigned long));
1772 return ret;
1773 }
1774 #endif
1775 /*
1776 * These are our native regset flavors.
1777 */
1778 enum powerpc_regset {
1779 REGSET_GPR,
1780 REGSET_FPR,
1781 #ifdef CONFIG_ALTIVEC
1782 REGSET_VMX,
1783 #endif
1784 #ifdef CONFIG_VSX
1785 REGSET_VSX,
1786 #endif
1787 #ifdef CONFIG_SPE
1788 REGSET_SPE,
1789 #endif
1790 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1791 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1792 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1793 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1794 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1795 REGSET_TM_SPR, /* TM specific SPR registers */
1796 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1797 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1798 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1799 #endif
1800 #ifdef CONFIG_PPC64
1801 REGSET_PPR, /* PPR register */
1802 REGSET_DSCR, /* DSCR register */
1803 #endif
1804 #ifdef CONFIG_PPC_BOOK3S_64
1805 REGSET_TAR, /* TAR register */
1806 REGSET_EBB, /* EBB registers */
1807 REGSET_PMR, /* Performance Monitor Registers */
1808 #endif
1809 };
1810
1811 static const struct user_regset native_regsets[] = {
1812 [REGSET_GPR] = {
1813 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1814 .size = sizeof(long), .align = sizeof(long),
1815 .get = gpr_get, .set = gpr_set
1816 },
1817 [REGSET_FPR] = {
1818 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1819 .size = sizeof(double), .align = sizeof(double),
1820 .get = fpr_get, .set = fpr_set
1821 },
1822 #ifdef CONFIG_ALTIVEC
1823 [REGSET_VMX] = {
1824 .core_note_type = NT_PPC_VMX, .n = 34,
1825 .size = sizeof(vector128), .align = sizeof(vector128),
1826 .active = vr_active, .get = vr_get, .set = vr_set
1827 },
1828 #endif
1829 #ifdef CONFIG_VSX
1830 [REGSET_VSX] = {
1831 .core_note_type = NT_PPC_VSX, .n = 32,
1832 .size = sizeof(double), .align = sizeof(double),
1833 .active = vsr_active, .get = vsr_get, .set = vsr_set
1834 },
1835 #endif
1836 #ifdef CONFIG_SPE
1837 [REGSET_SPE] = {
1838 .core_note_type = NT_PPC_SPE, .n = 35,
1839 .size = sizeof(u32), .align = sizeof(u32),
1840 .active = evr_active, .get = evr_get, .set = evr_set
1841 },
1842 #endif
1843 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1844 [REGSET_TM_CGPR] = {
1845 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1846 .size = sizeof(long), .align = sizeof(long),
1847 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1848 },
1849 [REGSET_TM_CFPR] = {
1850 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1851 .size = sizeof(double), .align = sizeof(double),
1852 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1853 },
1854 [REGSET_TM_CVMX] = {
1855 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1856 .size = sizeof(vector128), .align = sizeof(vector128),
1857 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1858 },
1859 [REGSET_TM_CVSX] = {
1860 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1861 .size = sizeof(double), .align = sizeof(double),
1862 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1863 },
1864 [REGSET_TM_SPR] = {
1865 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1866 .size = sizeof(u64), .align = sizeof(u64),
1867 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1868 },
1869 [REGSET_TM_CTAR] = {
1870 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1871 .size = sizeof(u64), .align = sizeof(u64),
1872 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1873 },
1874 [REGSET_TM_CPPR] = {
1875 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1876 .size = sizeof(u64), .align = sizeof(u64),
1877 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1878 },
1879 [REGSET_TM_CDSCR] = {
1880 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1881 .size = sizeof(u64), .align = sizeof(u64),
1882 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1883 },
1884 #endif
1885 #ifdef CONFIG_PPC64
1886 [REGSET_PPR] = {
1887 .core_note_type = NT_PPC_PPR, .n = 1,
1888 .size = sizeof(u64), .align = sizeof(u64),
1889 .get = ppr_get, .set = ppr_set
1890 },
1891 [REGSET_DSCR] = {
1892 .core_note_type = NT_PPC_DSCR, .n = 1,
1893 .size = sizeof(u64), .align = sizeof(u64),
1894 .get = dscr_get, .set = dscr_set
1895 },
1896 #endif
1897 #ifdef CONFIG_PPC_BOOK3S_64
1898 [REGSET_TAR] = {
1899 .core_note_type = NT_PPC_TAR, .n = 1,
1900 .size = sizeof(u64), .align = sizeof(u64),
1901 .get = tar_get, .set = tar_set
1902 },
1903 [REGSET_EBB] = {
1904 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1905 .size = sizeof(u64), .align = sizeof(u64),
1906 .active = ebb_active, .get = ebb_get, .set = ebb_set
1907 },
1908 [REGSET_PMR] = {
1909 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1910 .size = sizeof(u64), .align = sizeof(u64),
1911 .active = pmu_active, .get = pmu_get, .set = pmu_set
1912 },
1913 #endif
1914 };
1915
1916 static const struct user_regset_view user_ppc_native_view = {
1917 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1918 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1919 };
1920
1921 #ifdef CONFIG_PPC64
1922 #include <linux/compat.h>
1923
1924 static int gpr32_get_common(struct task_struct *target,
1925 const struct user_regset *regset,
1926 unsigned int pos, unsigned int count,
1927 void *kbuf, void __user *ubuf,
1928 unsigned long *regs)
1929 {
1930 compat_ulong_t *k = kbuf;
1931 compat_ulong_t __user *u = ubuf;
1932 compat_ulong_t reg;
1933
1934 pos /= sizeof(reg);
1935 count /= sizeof(reg);
1936
1937 if (kbuf)
1938 for (; count > 0 && pos < PT_MSR; --count)
1939 *k++ = regs[pos++];
1940 else
1941 for (; count > 0 && pos < PT_MSR; --count)
1942 if (__put_user((compat_ulong_t) regs[pos++], u++))
1943 return -EFAULT;
1944
1945 if (count > 0 && pos == PT_MSR) {
1946 reg = get_user_msr(target);
1947 if (kbuf)
1948 *k++ = reg;
1949 else if (__put_user(reg, u++))
1950 return -EFAULT;
1951 ++pos;
1952 --count;
1953 }
1954
1955 if (kbuf)
1956 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1957 *k++ = regs[pos++];
1958 else
1959 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1960 if (__put_user((compat_ulong_t) regs[pos++], u++))
1961 return -EFAULT;
1962
1963 kbuf = k;
1964 ubuf = u;
1965 pos *= sizeof(reg);
1966 count *= sizeof(reg);
1967 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1968 PT_REGS_COUNT * sizeof(reg), -1);
1969 }
1970
1971 static int gpr32_set_common(struct task_struct *target,
1972 const struct user_regset *regset,
1973 unsigned int pos, unsigned int count,
1974 const void *kbuf, const void __user *ubuf,
1975 unsigned long *regs)
1976 {
1977 const compat_ulong_t *k = kbuf;
1978 const compat_ulong_t __user *u = ubuf;
1979 compat_ulong_t reg;
1980
1981 pos /= sizeof(reg);
1982 count /= sizeof(reg);
1983
1984 if (kbuf)
1985 for (; count > 0 && pos < PT_MSR; --count)
1986 regs[pos++] = *k++;
1987 else
1988 for (; count > 0 && pos < PT_MSR; --count) {
1989 if (__get_user(reg, u++))
1990 return -EFAULT;
1991 regs[pos++] = reg;
1992 }
1993
1994
1995 if (count > 0 && pos == PT_MSR) {
1996 if (kbuf)
1997 reg = *k++;
1998 else if (__get_user(reg, u++))
1999 return -EFAULT;
2000 set_user_msr(target, reg);
2001 ++pos;
2002 --count;
2003 }
2004
2005 if (kbuf) {
2006 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2007 regs[pos++] = *k++;
2008 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2009 ++k;
2010 } else {
2011 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2012 if (__get_user(reg, u++))
2013 return -EFAULT;
2014 regs[pos++] = reg;
2015 }
2016 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2017 if (__get_user(reg, u++))
2018 return -EFAULT;
2019 }
2020
2021 if (count > 0 && pos == PT_TRAP) {
2022 if (kbuf)
2023 reg = *k++;
2024 else if (__get_user(reg, u++))
2025 return -EFAULT;
2026 set_user_trap(target, reg);
2027 ++pos;
2028 --count;
2029 }
2030
2031 kbuf = k;
2032 ubuf = u;
2033 pos *= sizeof(reg);
2034 count *= sizeof(reg);
2035 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2036 (PT_TRAP + 1) * sizeof(reg), -1);
2037 }
2038
2039 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2040 static int tm_cgpr32_get(struct task_struct *target,
2041 const struct user_regset *regset,
2042 unsigned int pos, unsigned int count,
2043 void *kbuf, void __user *ubuf)
2044 {
2045 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2046 &target->thread.ckpt_regs.gpr[0]);
2047 }
2048
2049 static int tm_cgpr32_set(struct task_struct *target,
2050 const struct user_regset *regset,
2051 unsigned int pos, unsigned int count,
2052 const void *kbuf, const void __user *ubuf)
2053 {
2054 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2055 &target->thread.ckpt_regs.gpr[0]);
2056 }
2057 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2058
2059 static int gpr32_get(struct task_struct *target,
2060 const struct user_regset *regset,
2061 unsigned int pos, unsigned int count,
2062 void *kbuf, void __user *ubuf)
2063 {
2064 int i;
2065
2066 if (target->thread.regs == NULL)
2067 return -EIO;
2068
2069 if (!FULL_REGS(target->thread.regs)) {
2070 /*
2071 * We have a partial register set.
2072 * Fill 14-31 with bogus values.
2073 */
2074 for (i = 14; i < 32; i++)
2075 target->thread.regs->gpr[i] = NV_REG_POISON;
2076 }
2077 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2078 &target->thread.regs->gpr[0]);
2079 }
2080
2081 static int gpr32_set(struct task_struct *target,
2082 const struct user_regset *regset,
2083 unsigned int pos, unsigned int count,
2084 const void *kbuf, const void __user *ubuf)
2085 {
2086 if (target->thread.regs == NULL)
2087 return -EIO;
2088
2089 CHECK_FULL_REGS(target->thread.regs);
2090 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2091 &target->thread.regs->gpr[0]);
2092 }
2093
2094 /*
2095 * These are the regset flavors matching the CONFIG_PPC32 native set.
2096 */
2097 static const struct user_regset compat_regsets[] = {
2098 [REGSET_GPR] = {
2099 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2100 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2101 .get = gpr32_get, .set = gpr32_set
2102 },
2103 [REGSET_FPR] = {
2104 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2105 .size = sizeof(double), .align = sizeof(double),
2106 .get = fpr_get, .set = fpr_set
2107 },
2108 #ifdef CONFIG_ALTIVEC
2109 [REGSET_VMX] = {
2110 .core_note_type = NT_PPC_VMX, .n = 34,
2111 .size = sizeof(vector128), .align = sizeof(vector128),
2112 .active = vr_active, .get = vr_get, .set = vr_set
2113 },
2114 #endif
2115 #ifdef CONFIG_SPE
2116 [REGSET_SPE] = {
2117 .core_note_type = NT_PPC_SPE, .n = 35,
2118 .size = sizeof(u32), .align = sizeof(u32),
2119 .active = evr_active, .get = evr_get, .set = evr_set
2120 },
2121 #endif
2122 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2123 [REGSET_TM_CGPR] = {
2124 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2125 .size = sizeof(long), .align = sizeof(long),
2126 .active = tm_cgpr_active,
2127 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2128 },
2129 [REGSET_TM_CFPR] = {
2130 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2131 .size = sizeof(double), .align = sizeof(double),
2132 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2133 },
2134 [REGSET_TM_CVMX] = {
2135 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2136 .size = sizeof(vector128), .align = sizeof(vector128),
2137 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2138 },
2139 [REGSET_TM_CVSX] = {
2140 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2141 .size = sizeof(double), .align = sizeof(double),
2142 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2143 },
2144 [REGSET_TM_SPR] = {
2145 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2146 .size = sizeof(u64), .align = sizeof(u64),
2147 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2148 },
2149 [REGSET_TM_CTAR] = {
2150 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2151 .size = sizeof(u64), .align = sizeof(u64),
2152 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2153 },
2154 [REGSET_TM_CPPR] = {
2155 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2156 .size = sizeof(u64), .align = sizeof(u64),
2157 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2158 },
2159 [REGSET_TM_CDSCR] = {
2160 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2161 .size = sizeof(u64), .align = sizeof(u64),
2162 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2163 },
2164 #endif
2165 #ifdef CONFIG_PPC64
2166 [REGSET_PPR] = {
2167 .core_note_type = NT_PPC_PPR, .n = 1,
2168 .size = sizeof(u64), .align = sizeof(u64),
2169 .get = ppr_get, .set = ppr_set
2170 },
2171 [REGSET_DSCR] = {
2172 .core_note_type = NT_PPC_DSCR, .n = 1,
2173 .size = sizeof(u64), .align = sizeof(u64),
2174 .get = dscr_get, .set = dscr_set
2175 },
2176 #endif
2177 #ifdef CONFIG_PPC_BOOK3S_64
2178 [REGSET_TAR] = {
2179 .core_note_type = NT_PPC_TAR, .n = 1,
2180 .size = sizeof(u64), .align = sizeof(u64),
2181 .get = tar_get, .set = tar_set
2182 },
2183 [REGSET_EBB] = {
2184 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2185 .size = sizeof(u64), .align = sizeof(u64),
2186 .active = ebb_active, .get = ebb_get, .set = ebb_set
2187 },
2188 #endif
2189 };
2190
2191 static const struct user_regset_view user_ppc_compat_view = {
2192 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2193 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2194 };
2195 #endif /* CONFIG_PPC64 */
2196
2197 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2198 {
2199 #ifdef CONFIG_PPC64
2200 if (test_tsk_thread_flag(task, TIF_32BIT))
2201 return &user_ppc_compat_view;
2202 #endif
2203 return &user_ppc_native_view;
2204 }
2205
2206
2207 void user_enable_single_step(struct task_struct *task)
2208 {
2209 struct pt_regs *regs = task->thread.regs;
2210
2211 if (regs != NULL) {
2212 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2213 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2214 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2215 regs->msr |= MSR_DE;
2216 #else
2217 regs->msr &= ~MSR_BE;
2218 regs->msr |= MSR_SE;
2219 #endif
2220 }
2221 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2222 }
2223
2224 void user_enable_block_step(struct task_struct *task)
2225 {
2226 struct pt_regs *regs = task->thread.regs;
2227
2228 if (regs != NULL) {
2229 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2230 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2231 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2232 regs->msr |= MSR_DE;
2233 #else
2234 regs->msr &= ~MSR_SE;
2235 regs->msr |= MSR_BE;
2236 #endif
2237 }
2238 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2239 }
2240
2241 void user_disable_single_step(struct task_struct *task)
2242 {
2243 struct pt_regs *regs = task->thread.regs;
2244
2245 if (regs != NULL) {
2246 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2247 /*
2248 * The logic to disable single stepping should be as
2249 * simple as turning off the Instruction Complete flag.
2250 * And, after doing so, if all debug flags are off, turn
2251 * off DBCR0(IDM) and MSR(DE) .... Torez
2252 */
2253 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2254 /*
2255 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2256 */
2257 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2258 task->thread.debug.dbcr1)) {
2259 /*
2260 * All debug events were off.....
2261 */
2262 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2263 regs->msr &= ~MSR_DE;
2264 }
2265 #else
2266 regs->msr &= ~(MSR_SE | MSR_BE);
2267 #endif
2268 }
2269 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2270 }
2271
2272 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2273 void ptrace_triggered(struct perf_event *bp,
2274 struct perf_sample_data *data, struct pt_regs *regs)
2275 {
2276 struct perf_event_attr attr;
2277
2278 /*
2279 * Disable the breakpoint request here since ptrace has defined a
2280 * one-shot behaviour for breakpoint exceptions in PPC64.
2281 * The SIGTRAP signal is generated automatically for us in do_dabr().
2282 * We don't have to do anything about that here
2283 */
2284 attr = bp->attr;
2285 attr.disabled = true;
2286 modify_user_hw_breakpoint(bp, &attr);
2287 }
2288 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2289
2290 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2291 unsigned long data)
2292 {
2293 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2294 int ret;
2295 struct thread_struct *thread = &(task->thread);
2296 struct perf_event *bp;
2297 struct perf_event_attr attr;
2298 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2299 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2300 struct arch_hw_breakpoint hw_brk;
2301 #endif
2302
2303 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2304 * For embedded processors we support one DAC and no IAC's at the
2305 * moment.
2306 */
2307 if (addr > 0)
2308 return -EINVAL;
2309
2310 /* The bottom 3 bits in dabr are flags */
2311 if ((data & ~0x7UL) >= TASK_SIZE)
2312 return -EIO;
2313
2314 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2315 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2316 * It was assumed, on previous implementations, that 3 bits were
2317 * passed together with the data address, fitting the design of the
2318 * DABR register, as follows:
2319 *
2320 * bit 0: Read flag
2321 * bit 1: Write flag
2322 * bit 2: Breakpoint translation
2323 *
2324 * Thus, we use them here as so.
2325 */
2326
2327 /* Ensure breakpoint translation bit is set */
2328 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2329 return -EIO;
2330 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2331 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2332 hw_brk.len = 8;
2333 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2334 bp = thread->ptrace_bps[0];
2335 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2336 if (bp) {
2337 unregister_hw_breakpoint(bp);
2338 thread->ptrace_bps[0] = NULL;
2339 }
2340 return 0;
2341 }
2342 if (bp) {
2343 attr = bp->attr;
2344 attr.bp_addr = hw_brk.address;
2345 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2346
2347 /* Enable breakpoint */
2348 attr.disabled = false;
2349
2350 ret = modify_user_hw_breakpoint(bp, &attr);
2351 if (ret) {
2352 return ret;
2353 }
2354 thread->ptrace_bps[0] = bp;
2355 thread->hw_brk = hw_brk;
2356 return 0;
2357 }
2358
2359 /* Create a new breakpoint request if one doesn't exist already */
2360 hw_breakpoint_init(&attr);
2361 attr.bp_addr = hw_brk.address;
2362 arch_bp_generic_fields(hw_brk.type,
2363 &attr.bp_type);
2364
2365 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2366 ptrace_triggered, NULL, task);
2367 if (IS_ERR(bp)) {
2368 thread->ptrace_bps[0] = NULL;
2369 return PTR_ERR(bp);
2370 }
2371
2372 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2373 task->thread.hw_brk = hw_brk;
2374 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2375 /* As described above, it was assumed 3 bits were passed with the data
2376 * address, but we will assume only the mode bits will be passed
2377 * as to not cause alignment restrictions for DAC-based processors.
2378 */
2379
2380 /* DAC's hold the whole address without any mode flags */
2381 task->thread.debug.dac1 = data & ~0x3UL;
2382
2383 if (task->thread.debug.dac1 == 0) {
2384 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2385 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2386 task->thread.debug.dbcr1)) {
2387 task->thread.regs->msr &= ~MSR_DE;
2388 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2389 }
2390 return 0;
2391 }
2392
2393 /* Read or Write bits must be set */
2394
2395 if (!(data & 0x3UL))
2396 return -EINVAL;
2397
2398 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2399 register */
2400 task->thread.debug.dbcr0 |= DBCR0_IDM;
2401
2402 /* Check for write and read flags and set DBCR0
2403 accordingly */
2404 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2405 if (data & 0x1UL)
2406 dbcr_dac(task) |= DBCR_DAC1R;
2407 if (data & 0x2UL)
2408 dbcr_dac(task) |= DBCR_DAC1W;
2409 task->thread.regs->msr |= MSR_DE;
2410 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2411 return 0;
2412 }
2413
2414 /*
2415 * Called by kernel/ptrace.c when detaching..
2416 *
2417 * Make sure single step bits etc are not set.
2418 */
2419 void ptrace_disable(struct task_struct *child)
2420 {
2421 /* make sure the single step bit is not set. */
2422 user_disable_single_step(child);
2423 }
2424
2425 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2426 static long set_instruction_bp(struct task_struct *child,
2427 struct ppc_hw_breakpoint *bp_info)
2428 {
2429 int slot;
2430 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2431 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2432 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2433 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2434
2435 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2436 slot2_in_use = 1;
2437 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2438 slot4_in_use = 1;
2439
2440 if (bp_info->addr >= TASK_SIZE)
2441 return -EIO;
2442
2443 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2444
2445 /* Make sure range is valid. */
2446 if (bp_info->addr2 >= TASK_SIZE)
2447 return -EIO;
2448
2449 /* We need a pair of IAC regsisters */
2450 if ((!slot1_in_use) && (!slot2_in_use)) {
2451 slot = 1;
2452 child->thread.debug.iac1 = bp_info->addr;
2453 child->thread.debug.iac2 = bp_info->addr2;
2454 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2455 if (bp_info->addr_mode ==
2456 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2457 dbcr_iac_range(child) |= DBCR_IAC12X;
2458 else
2459 dbcr_iac_range(child) |= DBCR_IAC12I;
2460 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2461 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2462 slot = 3;
2463 child->thread.debug.iac3 = bp_info->addr;
2464 child->thread.debug.iac4 = bp_info->addr2;
2465 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2466 if (bp_info->addr_mode ==
2467 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2468 dbcr_iac_range(child) |= DBCR_IAC34X;
2469 else
2470 dbcr_iac_range(child) |= DBCR_IAC34I;
2471 #endif
2472 } else
2473 return -ENOSPC;
2474 } else {
2475 /* We only need one. If possible leave a pair free in
2476 * case a range is needed later
2477 */
2478 if (!slot1_in_use) {
2479 /*
2480 * Don't use iac1 if iac1-iac2 are free and either
2481 * iac3 or iac4 (but not both) are free
2482 */
2483 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2484 slot = 1;
2485 child->thread.debug.iac1 = bp_info->addr;
2486 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2487 goto out;
2488 }
2489 }
2490 if (!slot2_in_use) {
2491 slot = 2;
2492 child->thread.debug.iac2 = bp_info->addr;
2493 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2494 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2495 } else if (!slot3_in_use) {
2496 slot = 3;
2497 child->thread.debug.iac3 = bp_info->addr;
2498 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2499 } else if (!slot4_in_use) {
2500 slot = 4;
2501 child->thread.debug.iac4 = bp_info->addr;
2502 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2503 #endif
2504 } else
2505 return -ENOSPC;
2506 }
2507 out:
2508 child->thread.debug.dbcr0 |= DBCR0_IDM;
2509 child->thread.regs->msr |= MSR_DE;
2510
2511 return slot;
2512 }
2513
2514 static int del_instruction_bp(struct task_struct *child, int slot)
2515 {
2516 switch (slot) {
2517 case 1:
2518 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2519 return -ENOENT;
2520
2521 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2522 /* address range - clear slots 1 & 2 */
2523 child->thread.debug.iac2 = 0;
2524 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2525 }
2526 child->thread.debug.iac1 = 0;
2527 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2528 break;
2529 case 2:
2530 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2531 return -ENOENT;
2532
2533 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2534 /* used in a range */
2535 return -EINVAL;
2536 child->thread.debug.iac2 = 0;
2537 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2538 break;
2539 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2540 case 3:
2541 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2542 return -ENOENT;
2543
2544 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2545 /* address range - clear slots 3 & 4 */
2546 child->thread.debug.iac4 = 0;
2547 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2548 }
2549 child->thread.debug.iac3 = 0;
2550 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2551 break;
2552 case 4:
2553 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2554 return -ENOENT;
2555
2556 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2557 /* Used in a range */
2558 return -EINVAL;
2559 child->thread.debug.iac4 = 0;
2560 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2561 break;
2562 #endif
2563 default:
2564 return -EINVAL;
2565 }
2566 return 0;
2567 }
2568
2569 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2570 {
2571 int byte_enable =
2572 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2573 & 0xf;
2574 int condition_mode =
2575 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2576 int slot;
2577
2578 if (byte_enable && (condition_mode == 0))
2579 return -EINVAL;
2580
2581 if (bp_info->addr >= TASK_SIZE)
2582 return -EIO;
2583
2584 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2585 slot = 1;
2586 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2587 dbcr_dac(child) |= DBCR_DAC1R;
2588 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2589 dbcr_dac(child) |= DBCR_DAC1W;
2590 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2591 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2592 if (byte_enable) {
2593 child->thread.debug.dvc1 =
2594 (unsigned long)bp_info->condition_value;
2595 child->thread.debug.dbcr2 |=
2596 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2597 (condition_mode << DBCR2_DVC1M_SHIFT));
2598 }
2599 #endif
2600 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2601 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2602 /* Both dac1 and dac2 are part of a range */
2603 return -ENOSPC;
2604 #endif
2605 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2606 slot = 2;
2607 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2608 dbcr_dac(child) |= DBCR_DAC2R;
2609 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2610 dbcr_dac(child) |= DBCR_DAC2W;
2611 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2612 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2613 if (byte_enable) {
2614 child->thread.debug.dvc2 =
2615 (unsigned long)bp_info->condition_value;
2616 child->thread.debug.dbcr2 |=
2617 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2618 (condition_mode << DBCR2_DVC2M_SHIFT));
2619 }
2620 #endif
2621 } else
2622 return -ENOSPC;
2623 child->thread.debug.dbcr0 |= DBCR0_IDM;
2624 child->thread.regs->msr |= MSR_DE;
2625
2626 return slot + 4;
2627 }
2628
2629 static int del_dac(struct task_struct *child, int slot)
2630 {
2631 if (slot == 1) {
2632 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2633 return -ENOENT;
2634
2635 child->thread.debug.dac1 = 0;
2636 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2637 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2638 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2639 child->thread.debug.dac2 = 0;
2640 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2641 }
2642 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2643 #endif
2644 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2645 child->thread.debug.dvc1 = 0;
2646 #endif
2647 } else if (slot == 2) {
2648 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2649 return -ENOENT;
2650
2651 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2652 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2653 /* Part of a range */
2654 return -EINVAL;
2655 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2656 #endif
2657 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2658 child->thread.debug.dvc2 = 0;
2659 #endif
2660 child->thread.debug.dac2 = 0;
2661 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2662 } else
2663 return -EINVAL;
2664
2665 return 0;
2666 }
2667 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2668
2669 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2670 static int set_dac_range(struct task_struct *child,
2671 struct ppc_hw_breakpoint *bp_info)
2672 {
2673 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2674
2675 /* We don't allow range watchpoints to be used with DVC */
2676 if (bp_info->condition_mode)
2677 return -EINVAL;
2678
2679 /*
2680 * Best effort to verify the address range. The user/supervisor bits
2681 * prevent trapping in kernel space, but let's fail on an obvious bad
2682 * range. The simple test on the mask is not fool-proof, and any
2683 * exclusive range will spill over into kernel space.
2684 */
2685 if (bp_info->addr >= TASK_SIZE)
2686 return -EIO;
2687 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2688 /*
2689 * dac2 is a bitmask. Don't allow a mask that makes a
2690 * kernel space address from a valid dac1 value
2691 */
2692 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2693 return -EIO;
2694 } else {
2695 /*
2696 * For range breakpoints, addr2 must also be a valid address
2697 */
2698 if (bp_info->addr2 >= TASK_SIZE)
2699 return -EIO;
2700 }
2701
2702 if (child->thread.debug.dbcr0 &
2703 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2704 return -ENOSPC;
2705
2706 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2707 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2708 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2709 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2710 child->thread.debug.dac1 = bp_info->addr;
2711 child->thread.debug.dac2 = bp_info->addr2;
2712 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2713 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2714 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2715 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2716 else /* PPC_BREAKPOINT_MODE_MASK */
2717 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2718 child->thread.regs->msr |= MSR_DE;
2719
2720 return 5;
2721 }
2722 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2723
2724 static long ppc_set_hwdebug(struct task_struct *child,
2725 struct ppc_hw_breakpoint *bp_info)
2726 {
2727 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2728 int len = 0;
2729 struct thread_struct *thread = &(child->thread);
2730 struct perf_event *bp;
2731 struct perf_event_attr attr;
2732 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2733 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2734 struct arch_hw_breakpoint brk;
2735 #endif
2736
2737 if (bp_info->version != 1)
2738 return -ENOTSUPP;
2739 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2740 /*
2741 * Check for invalid flags and combinations
2742 */
2743 if ((bp_info->trigger_type == 0) ||
2744 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2745 PPC_BREAKPOINT_TRIGGER_RW)) ||
2746 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2747 (bp_info->condition_mode &
2748 ~(PPC_BREAKPOINT_CONDITION_MODE |
2749 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2750 return -EINVAL;
2751 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2752 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2753 return -EINVAL;
2754 #endif
2755
2756 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2757 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2758 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2759 return -EINVAL;
2760 return set_instruction_bp(child, bp_info);
2761 }
2762 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2763 return set_dac(child, bp_info);
2764
2765 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2766 return set_dac_range(child, bp_info);
2767 #else
2768 return -EINVAL;
2769 #endif
2770 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2771 /*
2772 * We only support one data breakpoint
2773 */
2774 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2775 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2776 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2777 return -EINVAL;
2778
2779 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2780 return -EIO;
2781
2782 brk.address = bp_info->addr & ~7UL;
2783 brk.type = HW_BRK_TYPE_TRANSLATE;
2784 brk.len = 8;
2785 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2786 brk.type |= HW_BRK_TYPE_READ;
2787 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2788 brk.type |= HW_BRK_TYPE_WRITE;
2789 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2790 /*
2791 * Check if the request is for 'range' breakpoints. We can
2792 * support it if range < 8 bytes.
2793 */
2794 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2795 len = bp_info->addr2 - bp_info->addr;
2796 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2797 len = 1;
2798 else
2799 return -EINVAL;
2800 bp = thread->ptrace_bps[0];
2801 if (bp)
2802 return -ENOSPC;
2803
2804 /* Create a new breakpoint request if one doesn't exist already */
2805 hw_breakpoint_init(&attr);
2806 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2807 attr.bp_len = len;
2808 arch_bp_generic_fields(brk.type, &attr.bp_type);
2809
2810 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2811 ptrace_triggered, NULL, child);
2812 if (IS_ERR(bp)) {
2813 thread->ptrace_bps[0] = NULL;
2814 return PTR_ERR(bp);
2815 }
2816
2817 return 1;
2818 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2819
2820 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2821 return -EINVAL;
2822
2823 if (child->thread.hw_brk.address)
2824 return -ENOSPC;
2825
2826 child->thread.hw_brk = brk;
2827
2828 return 1;
2829 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2830 }
2831
2832 static long ppc_del_hwdebug(struct task_struct *child, long data)
2833 {
2834 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2835 int ret = 0;
2836 struct thread_struct *thread = &(child->thread);
2837 struct perf_event *bp;
2838 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2839 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2840 int rc;
2841
2842 if (data <= 4)
2843 rc = del_instruction_bp(child, (int)data);
2844 else
2845 rc = del_dac(child, (int)data - 4);
2846
2847 if (!rc) {
2848 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2849 child->thread.debug.dbcr1)) {
2850 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2851 child->thread.regs->msr &= ~MSR_DE;
2852 }
2853 }
2854 return rc;
2855 #else
2856 if (data != 1)
2857 return -EINVAL;
2858
2859 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2860 bp = thread->ptrace_bps[0];
2861 if (bp) {
2862 unregister_hw_breakpoint(bp);
2863 thread->ptrace_bps[0] = NULL;
2864 } else
2865 ret = -ENOENT;
2866 return ret;
2867 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2868 if (child->thread.hw_brk.address == 0)
2869 return -ENOENT;
2870
2871 child->thread.hw_brk.address = 0;
2872 child->thread.hw_brk.type = 0;
2873 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2874
2875 return 0;
2876 #endif
2877 }
2878
2879 long arch_ptrace(struct task_struct *child, long request,
2880 unsigned long addr, unsigned long data)
2881 {
2882 int ret = -EPERM;
2883 void __user *datavp = (void __user *) data;
2884 unsigned long __user *datalp = datavp;
2885
2886 switch (request) {
2887 /* read the word at location addr in the USER area. */
2888 case PTRACE_PEEKUSR: {
2889 unsigned long index, tmp;
2890
2891 ret = -EIO;
2892 /* convert to index and check */
2893 #ifdef CONFIG_PPC32
2894 index = addr >> 2;
2895 if ((addr & 3) || (index > PT_FPSCR)
2896 || (child->thread.regs == NULL))
2897 #else
2898 index = addr >> 3;
2899 if ((addr & 7) || (index > PT_FPSCR))
2900 #endif
2901 break;
2902
2903 CHECK_FULL_REGS(child->thread.regs);
2904 if (index < PT_FPR0) {
2905 ret = ptrace_get_reg(child, (int) index, &tmp);
2906 if (ret)
2907 break;
2908 } else {
2909 unsigned int fpidx = index - PT_FPR0;
2910
2911 flush_fp_to_thread(child);
2912 if (fpidx < (PT_FPSCR - PT_FPR0))
2913 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2914 sizeof(long));
2915 else
2916 tmp = child->thread.fp_state.fpscr;
2917 }
2918 ret = put_user(tmp, datalp);
2919 break;
2920 }
2921
2922 /* write the word at location addr in the USER area */
2923 case PTRACE_POKEUSR: {
2924 unsigned long index;
2925
2926 ret = -EIO;
2927 /* convert to index and check */
2928 #ifdef CONFIG_PPC32
2929 index = addr >> 2;
2930 if ((addr & 3) || (index > PT_FPSCR)
2931 || (child->thread.regs == NULL))
2932 #else
2933 index = addr >> 3;
2934 if ((addr & 7) || (index > PT_FPSCR))
2935 #endif
2936 break;
2937
2938 CHECK_FULL_REGS(child->thread.regs);
2939 if (index < PT_FPR0) {
2940 ret = ptrace_put_reg(child, index, data);
2941 } else {
2942 unsigned int fpidx = index - PT_FPR0;
2943
2944 flush_fp_to_thread(child);
2945 if (fpidx < (PT_FPSCR - PT_FPR0))
2946 memcpy(&child->thread.TS_FPR(fpidx), &data,
2947 sizeof(long));
2948 else
2949 child->thread.fp_state.fpscr = data;
2950 ret = 0;
2951 }
2952 break;
2953 }
2954
2955 case PPC_PTRACE_GETHWDBGINFO: {
2956 struct ppc_debug_info dbginfo;
2957
2958 dbginfo.version = 1;
2959 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2960 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2961 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2962 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2963 dbginfo.data_bp_alignment = 4;
2964 dbginfo.sizeof_condition = 4;
2965 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2966 PPC_DEBUG_FEATURE_INSN_BP_MASK;
2967 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2968 dbginfo.features |=
2969 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2970 PPC_DEBUG_FEATURE_DATA_BP_MASK;
2971 #endif
2972 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2973 dbginfo.num_instruction_bps = 0;
2974 dbginfo.num_data_bps = 1;
2975 dbginfo.num_condition_regs = 0;
2976 #ifdef CONFIG_PPC64
2977 dbginfo.data_bp_alignment = 8;
2978 #else
2979 dbginfo.data_bp_alignment = 4;
2980 #endif
2981 dbginfo.sizeof_condition = 0;
2982 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2983 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2984 if (cpu_has_feature(CPU_FTR_DAWR))
2985 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
2986 #else
2987 dbginfo.features = 0;
2988 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2989 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2990
2991 if (!access_ok(VERIFY_WRITE, datavp,
2992 sizeof(struct ppc_debug_info)))
2993 return -EFAULT;
2994 ret = __copy_to_user(datavp, &dbginfo,
2995 sizeof(struct ppc_debug_info)) ?
2996 -EFAULT : 0;
2997 break;
2998 }
2999
3000 case PPC_PTRACE_SETHWDEBUG: {
3001 struct ppc_hw_breakpoint bp_info;
3002
3003 if (!access_ok(VERIFY_READ, datavp,
3004 sizeof(struct ppc_hw_breakpoint)))
3005 return -EFAULT;
3006 ret = __copy_from_user(&bp_info, datavp,
3007 sizeof(struct ppc_hw_breakpoint)) ?
3008 -EFAULT : 0;
3009 if (!ret)
3010 ret = ppc_set_hwdebug(child, &bp_info);
3011 break;
3012 }
3013
3014 case PPC_PTRACE_DELHWDEBUG: {
3015 ret = ppc_del_hwdebug(child, data);
3016 break;
3017 }
3018
3019 case PTRACE_GET_DEBUGREG: {
3020 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3021 unsigned long dabr_fake;
3022 #endif
3023 ret = -EINVAL;
3024 /* We only support one DABR and no IABRS at the moment */
3025 if (addr > 0)
3026 break;
3027 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3028 ret = put_user(child->thread.debug.dac1, datalp);
3029 #else
3030 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3031 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3032 ret = put_user(dabr_fake, datalp);
3033 #endif
3034 break;
3035 }
3036
3037 case PTRACE_SET_DEBUGREG:
3038 ret = ptrace_set_debugreg(child, addr, data);
3039 break;
3040
3041 #ifdef CONFIG_PPC64
3042 case PTRACE_GETREGS64:
3043 #endif
3044 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3045 return copy_regset_to_user(child, &user_ppc_native_view,
3046 REGSET_GPR,
3047 0, sizeof(struct pt_regs),
3048 datavp);
3049
3050 #ifdef CONFIG_PPC64
3051 case PTRACE_SETREGS64:
3052 #endif
3053 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3054 return copy_regset_from_user(child, &user_ppc_native_view,
3055 REGSET_GPR,
3056 0, sizeof(struct pt_regs),
3057 datavp);
3058
3059 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3060 return copy_regset_to_user(child, &user_ppc_native_view,
3061 REGSET_FPR,
3062 0, sizeof(elf_fpregset_t),
3063 datavp);
3064
3065 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3066 return copy_regset_from_user(child, &user_ppc_native_view,
3067 REGSET_FPR,
3068 0, sizeof(elf_fpregset_t),
3069 datavp);
3070
3071 #ifdef CONFIG_ALTIVEC
3072 case PTRACE_GETVRREGS:
3073 return copy_regset_to_user(child, &user_ppc_native_view,
3074 REGSET_VMX,
3075 0, (33 * sizeof(vector128) +
3076 sizeof(u32)),
3077 datavp);
3078
3079 case PTRACE_SETVRREGS:
3080 return copy_regset_from_user(child, &user_ppc_native_view,
3081 REGSET_VMX,
3082 0, (33 * sizeof(vector128) +
3083 sizeof(u32)),
3084 datavp);
3085 #endif
3086 #ifdef CONFIG_VSX
3087 case PTRACE_GETVSRREGS:
3088 return copy_regset_to_user(child, &user_ppc_native_view,
3089 REGSET_VSX,
3090 0, 32 * sizeof(double),
3091 datavp);
3092
3093 case PTRACE_SETVSRREGS:
3094 return copy_regset_from_user(child, &user_ppc_native_view,
3095 REGSET_VSX,
3096 0, 32 * sizeof(double),
3097 datavp);
3098 #endif
3099 #ifdef CONFIG_SPE
3100 case PTRACE_GETEVRREGS:
3101 /* Get the child spe register state. */
3102 return copy_regset_to_user(child, &user_ppc_native_view,
3103 REGSET_SPE, 0, 35 * sizeof(u32),
3104 datavp);
3105
3106 case PTRACE_SETEVRREGS:
3107 /* Set the child spe register state. */
3108 return copy_regset_from_user(child, &user_ppc_native_view,
3109 REGSET_SPE, 0, 35 * sizeof(u32),
3110 datavp);
3111 #endif
3112
3113 default:
3114 ret = ptrace_request(child, request, addr, data);
3115 break;
3116 }
3117 return ret;
3118 }
3119
3120 #ifdef CONFIG_SECCOMP
3121 static int do_seccomp(struct pt_regs *regs)
3122 {
3123 if (!test_thread_flag(TIF_SECCOMP))
3124 return 0;
3125
3126 /*
3127 * The ABI we present to seccomp tracers is that r3 contains
3128 * the syscall return value and orig_gpr3 contains the first
3129 * syscall parameter. This is different to the ptrace ABI where
3130 * both r3 and orig_gpr3 contain the first syscall parameter.
3131 */
3132 regs->gpr[3] = -ENOSYS;
3133
3134 /*
3135 * We use the __ version here because we have already checked
3136 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3137 * have already loaded -ENOSYS into r3, or seccomp has put
3138 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3139 */
3140 if (__secure_computing(NULL))
3141 return -1;
3142
3143 /*
3144 * The syscall was allowed by seccomp, restore the register
3145 * state to what audit expects.
3146 * Note that we use orig_gpr3, which means a seccomp tracer can
3147 * modify the first syscall parameter (in orig_gpr3) and also
3148 * allow the syscall to proceed.
3149 */
3150 regs->gpr[3] = regs->orig_gpr3;
3151
3152 return 0;
3153 }
3154 #else
3155 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3156 #endif /* CONFIG_SECCOMP */
3157
3158 /**
3159 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3160 * @regs: the pt_regs of the task to trace (current)
3161 *
3162 * Performs various types of tracing on syscall entry. This includes seccomp,
3163 * ptrace, syscall tracepoints and audit.
3164 *
3165 * The pt_regs are potentially visible to userspace via ptrace, so their
3166 * contents is ABI.
3167 *
3168 * One or more of the tracers may modify the contents of pt_regs, in particular
3169 * to modify arguments or even the syscall number itself.
3170 *
3171 * It's also possible that a tracer can choose to reject the system call. In
3172 * that case this function will return an illegal syscall number, and will put
3173 * an appropriate return value in regs->r3.
3174 *
3175 * Return: the (possibly changed) syscall number.
3176 */
3177 long do_syscall_trace_enter(struct pt_regs *regs)
3178 {
3179 user_exit();
3180
3181 /*
3182 * The tracer may decide to abort the syscall, if so tracehook
3183 * will return !0. Note that the tracer may also just change
3184 * regs->gpr[0] to an invalid syscall number, that is handled
3185 * below on the exit path.
3186 */
3187 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3188 tracehook_report_syscall_entry(regs))
3189 goto skip;
3190
3191 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3192 if (do_seccomp(regs))
3193 return -1;
3194
3195 /* Avoid trace and audit when syscall is invalid. */
3196 if (regs->gpr[0] >= NR_syscalls)
3197 goto skip;
3198
3199 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3200 trace_sys_enter(regs, regs->gpr[0]);
3201
3202 #ifdef CONFIG_PPC64
3203 if (!is_32bit_task())
3204 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3205 regs->gpr[5], regs->gpr[6]);
3206 else
3207 #endif
3208 audit_syscall_entry(regs->gpr[0],
3209 regs->gpr[3] & 0xffffffff,
3210 regs->gpr[4] & 0xffffffff,
3211 regs->gpr[5] & 0xffffffff,
3212 regs->gpr[6] & 0xffffffff);
3213
3214 /* Return the possibly modified but valid syscall number */
3215 return regs->gpr[0];
3216
3217 skip:
3218 /*
3219 * If we are aborting explicitly, or if the syscall number is
3220 * now invalid, set the return value to -ENOSYS.
3221 */
3222 regs->gpr[3] = -ENOSYS;
3223 return -1;
3224 }
3225
3226 void do_syscall_trace_leave(struct pt_regs *regs)
3227 {
3228 int step;
3229
3230 audit_syscall_exit(regs);
3231
3232 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3233 trace_sys_exit(regs, regs->result);
3234
3235 step = test_thread_flag(TIF_SINGLESTEP);
3236 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3237 tracehook_report_syscall_exit(regs, step);
3238
3239 user_enter();
3240 }