]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/ptrace.c
Merge tag 'hwlock-v4.15' of git://github.com/andersson/remoteproc
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / ptrace.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
9 *
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
12 *
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
36
37 #include <linux/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
41 #include <asm/tm.h>
42 #include <asm/asm-prototypes.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 /*
48 * The parameter save area on the stack is used to store arguments being passed
49 * to callee function and is located at fixed offset from stack pointer.
50 */
51 #ifdef CONFIG_PPC32
52 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
53 #else /* CONFIG_PPC32 */
54 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
55 #endif
56
57 struct pt_regs_offset {
58 const char *name;
59 int offset;
60 };
61
62 #define STR(s) #s /* convert to string */
63 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
64 #define GPR_OFFSET_NAME(num) \
65 {.name = STR(r##num), .offset = offsetof(struct pt_regs, gpr[num])}, \
66 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
67 #define REG_OFFSET_END {.name = NULL, .offset = 0}
68
69 #define TVSO(f) (offsetof(struct thread_vr_state, f))
70 #define TFSO(f) (offsetof(struct thread_fp_state, f))
71 #define TSO(f) (offsetof(struct thread_struct, f))
72
73 static const struct pt_regs_offset regoffset_table[] = {
74 GPR_OFFSET_NAME(0),
75 GPR_OFFSET_NAME(1),
76 GPR_OFFSET_NAME(2),
77 GPR_OFFSET_NAME(3),
78 GPR_OFFSET_NAME(4),
79 GPR_OFFSET_NAME(5),
80 GPR_OFFSET_NAME(6),
81 GPR_OFFSET_NAME(7),
82 GPR_OFFSET_NAME(8),
83 GPR_OFFSET_NAME(9),
84 GPR_OFFSET_NAME(10),
85 GPR_OFFSET_NAME(11),
86 GPR_OFFSET_NAME(12),
87 GPR_OFFSET_NAME(13),
88 GPR_OFFSET_NAME(14),
89 GPR_OFFSET_NAME(15),
90 GPR_OFFSET_NAME(16),
91 GPR_OFFSET_NAME(17),
92 GPR_OFFSET_NAME(18),
93 GPR_OFFSET_NAME(19),
94 GPR_OFFSET_NAME(20),
95 GPR_OFFSET_NAME(21),
96 GPR_OFFSET_NAME(22),
97 GPR_OFFSET_NAME(23),
98 GPR_OFFSET_NAME(24),
99 GPR_OFFSET_NAME(25),
100 GPR_OFFSET_NAME(26),
101 GPR_OFFSET_NAME(27),
102 GPR_OFFSET_NAME(28),
103 GPR_OFFSET_NAME(29),
104 GPR_OFFSET_NAME(30),
105 GPR_OFFSET_NAME(31),
106 REG_OFFSET_NAME(nip),
107 REG_OFFSET_NAME(msr),
108 REG_OFFSET_NAME(ctr),
109 REG_OFFSET_NAME(link),
110 REG_OFFSET_NAME(xer),
111 REG_OFFSET_NAME(ccr),
112 #ifdef CONFIG_PPC64
113 REG_OFFSET_NAME(softe),
114 #else
115 REG_OFFSET_NAME(mq),
116 #endif
117 REG_OFFSET_NAME(trap),
118 REG_OFFSET_NAME(dar),
119 REG_OFFSET_NAME(dsisr),
120 REG_OFFSET_END,
121 };
122
123 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
124 static void flush_tmregs_to_thread(struct task_struct *tsk)
125 {
126 /*
127 * If task is not current, it will have been flushed already to
128 * it's thread_struct during __switch_to().
129 *
130 * A reclaim flushes ALL the state or if not in TM save TM SPRs
131 * in the appropriate thread structures from live.
132 */
133
134 if ((!cpu_has_feature(CPU_FTR_TM)) || (tsk != current))
135 return;
136
137 if (MSR_TM_SUSPENDED(mfmsr())) {
138 tm_reclaim_current(TM_CAUSE_SIGNAL);
139 } else {
140 tm_enable();
141 tm_save_sprs(&(tsk->thread));
142 }
143 }
144 #else
145 static inline void flush_tmregs_to_thread(struct task_struct *tsk) { }
146 #endif
147
148 /**
149 * regs_query_register_offset() - query register offset from its name
150 * @name: the name of a register
151 *
152 * regs_query_register_offset() returns the offset of a register in struct
153 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
154 */
155 int regs_query_register_offset(const char *name)
156 {
157 const struct pt_regs_offset *roff;
158 for (roff = regoffset_table; roff->name != NULL; roff++)
159 if (!strcmp(roff->name, name))
160 return roff->offset;
161 return -EINVAL;
162 }
163
164 /**
165 * regs_query_register_name() - query register name from its offset
166 * @offset: the offset of a register in struct pt_regs.
167 *
168 * regs_query_register_name() returns the name of a register from its
169 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
170 */
171 const char *regs_query_register_name(unsigned int offset)
172 {
173 const struct pt_regs_offset *roff;
174 for (roff = regoffset_table; roff->name != NULL; roff++)
175 if (roff->offset == offset)
176 return roff->name;
177 return NULL;
178 }
179
180 /*
181 * does not yet catch signals sent when the child dies.
182 * in exit.c or in signal.c.
183 */
184
185 /*
186 * Set of msr bits that gdb can change on behalf of a process.
187 */
188 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
189 #define MSR_DEBUGCHANGE 0
190 #else
191 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
192 #endif
193
194 /*
195 * Max register writeable via put_reg
196 */
197 #ifdef CONFIG_PPC32
198 #define PT_MAX_PUT_REG PT_MQ
199 #else
200 #define PT_MAX_PUT_REG PT_CCR
201 #endif
202
203 static unsigned long get_user_msr(struct task_struct *task)
204 {
205 return task->thread.regs->msr | task->thread.fpexc_mode;
206 }
207
208 static int set_user_msr(struct task_struct *task, unsigned long msr)
209 {
210 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
211 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
212 return 0;
213 }
214
215 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
216 static unsigned long get_user_ckpt_msr(struct task_struct *task)
217 {
218 return task->thread.ckpt_regs.msr | task->thread.fpexc_mode;
219 }
220
221 static int set_user_ckpt_msr(struct task_struct *task, unsigned long msr)
222 {
223 task->thread.ckpt_regs.msr &= ~MSR_DEBUGCHANGE;
224 task->thread.ckpt_regs.msr |= msr & MSR_DEBUGCHANGE;
225 return 0;
226 }
227
228 static int set_user_ckpt_trap(struct task_struct *task, unsigned long trap)
229 {
230 task->thread.ckpt_regs.trap = trap & 0xfff0;
231 return 0;
232 }
233 #endif
234
235 #ifdef CONFIG_PPC64
236 static int get_user_dscr(struct task_struct *task, unsigned long *data)
237 {
238 *data = task->thread.dscr;
239 return 0;
240 }
241
242 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
243 {
244 task->thread.dscr = dscr;
245 task->thread.dscr_inherit = 1;
246 return 0;
247 }
248 #else
249 static int get_user_dscr(struct task_struct *task, unsigned long *data)
250 {
251 return -EIO;
252 }
253
254 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
255 {
256 return -EIO;
257 }
258 #endif
259
260 /*
261 * We prevent mucking around with the reserved area of trap
262 * which are used internally by the kernel.
263 */
264 static int set_user_trap(struct task_struct *task, unsigned long trap)
265 {
266 task->thread.regs->trap = trap & 0xfff0;
267 return 0;
268 }
269
270 /*
271 * Get contents of register REGNO in task TASK.
272 */
273 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
274 {
275 if ((task->thread.regs == NULL) || !data)
276 return -EIO;
277
278 if (regno == PT_MSR) {
279 *data = get_user_msr(task);
280 return 0;
281 }
282
283 if (regno == PT_DSCR)
284 return get_user_dscr(task, data);
285
286 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
287 *data = ((unsigned long *)task->thread.regs)[regno];
288 return 0;
289 }
290
291 return -EIO;
292 }
293
294 /*
295 * Write contents of register REGNO in task TASK.
296 */
297 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
298 {
299 if (task->thread.regs == NULL)
300 return -EIO;
301
302 if (regno == PT_MSR)
303 return set_user_msr(task, data);
304 if (regno == PT_TRAP)
305 return set_user_trap(task, data);
306 if (regno == PT_DSCR)
307 return set_user_dscr(task, data);
308
309 if (regno <= PT_MAX_PUT_REG) {
310 ((unsigned long *)task->thread.regs)[regno] = data;
311 return 0;
312 }
313 return -EIO;
314 }
315
316 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
317 unsigned int pos, unsigned int count,
318 void *kbuf, void __user *ubuf)
319 {
320 int i, ret;
321
322 if (target->thread.regs == NULL)
323 return -EIO;
324
325 if (!FULL_REGS(target->thread.regs)) {
326 /* We have a partial register set. Fill 14-31 with bogus values */
327 for (i = 14; i < 32; i++)
328 target->thread.regs->gpr[i] = NV_REG_POISON;
329 }
330
331 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
332 target->thread.regs,
333 0, offsetof(struct pt_regs, msr));
334 if (!ret) {
335 unsigned long msr = get_user_msr(target);
336 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
337 offsetof(struct pt_regs, msr),
338 offsetof(struct pt_regs, msr) +
339 sizeof(msr));
340 }
341
342 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
343 offsetof(struct pt_regs, msr) + sizeof(long));
344
345 if (!ret)
346 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
347 &target->thread.regs->orig_gpr3,
348 offsetof(struct pt_regs, orig_gpr3),
349 sizeof(struct pt_regs));
350 if (!ret)
351 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
352 sizeof(struct pt_regs), -1);
353
354 return ret;
355 }
356
357 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
358 unsigned int pos, unsigned int count,
359 const void *kbuf, const void __user *ubuf)
360 {
361 unsigned long reg;
362 int ret;
363
364 if (target->thread.regs == NULL)
365 return -EIO;
366
367 CHECK_FULL_REGS(target->thread.regs);
368
369 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
370 target->thread.regs,
371 0, PT_MSR * sizeof(reg));
372
373 if (!ret && count > 0) {
374 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
375 PT_MSR * sizeof(reg),
376 (PT_MSR + 1) * sizeof(reg));
377 if (!ret)
378 ret = set_user_msr(target, reg);
379 }
380
381 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
382 offsetof(struct pt_regs, msr) + sizeof(long));
383
384 if (!ret)
385 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
386 &target->thread.regs->orig_gpr3,
387 PT_ORIG_R3 * sizeof(reg),
388 (PT_MAX_PUT_REG + 1) * sizeof(reg));
389
390 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
391 ret = user_regset_copyin_ignore(
392 &pos, &count, &kbuf, &ubuf,
393 (PT_MAX_PUT_REG + 1) * sizeof(reg),
394 PT_TRAP * sizeof(reg));
395
396 if (!ret && count > 0) {
397 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
398 PT_TRAP * sizeof(reg),
399 (PT_TRAP + 1) * sizeof(reg));
400 if (!ret)
401 ret = set_user_trap(target, reg);
402 }
403
404 if (!ret)
405 ret = user_regset_copyin_ignore(
406 &pos, &count, &kbuf, &ubuf,
407 (PT_TRAP + 1) * sizeof(reg), -1);
408
409 return ret;
410 }
411
412 /*
413 * Regardless of transactions, 'fp_state' holds the current running
414 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
415 * value of all FPR registers for the current transaction.
416 *
417 * Userspace interface buffer layout:
418 *
419 * struct data {
420 * u64 fpr[32];
421 * u64 fpscr;
422 * };
423 */
424 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
425 unsigned int pos, unsigned int count,
426 void *kbuf, void __user *ubuf)
427 {
428 #ifdef CONFIG_VSX
429 u64 buf[33];
430 int i;
431
432 flush_fp_to_thread(target);
433
434 /* copy to local buffer then write that out */
435 for (i = 0; i < 32 ; i++)
436 buf[i] = target->thread.TS_FPR(i);
437 buf[32] = target->thread.fp_state.fpscr;
438 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
439 #else
440 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
441 offsetof(struct thread_fp_state, fpr[32]));
442
443 flush_fp_to_thread(target);
444
445 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
446 &target->thread.fp_state, 0, -1);
447 #endif
448 }
449
450 /*
451 * Regardless of transactions, 'fp_state' holds the current running
452 * value of all FPR registers and 'ckfp_state' holds the last checkpointed
453 * value of all FPR registers for the current transaction.
454 *
455 * Userspace interface buffer layout:
456 *
457 * struct data {
458 * u64 fpr[32];
459 * u64 fpscr;
460 * };
461 *
462 */
463 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
464 unsigned int pos, unsigned int count,
465 const void *kbuf, const void __user *ubuf)
466 {
467 #ifdef CONFIG_VSX
468 u64 buf[33];
469 int i;
470
471 flush_fp_to_thread(target);
472
473 for (i = 0; i < 32 ; i++)
474 buf[i] = target->thread.TS_FPR(i);
475 buf[32] = target->thread.fp_state.fpscr;
476
477 /* copy to local buffer then write that out */
478 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
479 if (i)
480 return i;
481
482 for (i = 0; i < 32 ; i++)
483 target->thread.TS_FPR(i) = buf[i];
484 target->thread.fp_state.fpscr = buf[32];
485 return 0;
486 #else
487 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
488 offsetof(struct thread_fp_state, fpr[32]));
489
490 flush_fp_to_thread(target);
491
492 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
493 &target->thread.fp_state, 0, -1);
494 #endif
495 }
496
497 #ifdef CONFIG_ALTIVEC
498 /*
499 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
500 * The transfer totals 34 quadword. Quadwords 0-31 contain the
501 * corresponding vector registers. Quadword 32 contains the vscr as the
502 * last word (offset 12) within that quadword. Quadword 33 contains the
503 * vrsave as the first word (offset 0) within the quadword.
504 *
505 * This definition of the VMX state is compatible with the current PPC32
506 * ptrace interface. This allows signal handling and ptrace to use the
507 * same structures. This also simplifies the implementation of a bi-arch
508 * (combined (32- and 64-bit) gdb.
509 */
510
511 static int vr_active(struct task_struct *target,
512 const struct user_regset *regset)
513 {
514 flush_altivec_to_thread(target);
515 return target->thread.used_vr ? regset->n : 0;
516 }
517
518 /*
519 * Regardless of transactions, 'vr_state' holds the current running
520 * value of all the VMX registers and 'ckvr_state' holds the last
521 * checkpointed value of all the VMX registers for the current
522 * transaction to fall back on in case it aborts.
523 *
524 * Userspace interface buffer layout:
525 *
526 * struct data {
527 * vector128 vr[32];
528 * vector128 vscr;
529 * vector128 vrsave;
530 * };
531 */
532 static int vr_get(struct task_struct *target, const struct user_regset *regset,
533 unsigned int pos, unsigned int count,
534 void *kbuf, void __user *ubuf)
535 {
536 int ret;
537
538 flush_altivec_to_thread(target);
539
540 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
541 offsetof(struct thread_vr_state, vr[32]));
542
543 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
544 &target->thread.vr_state, 0,
545 33 * sizeof(vector128));
546 if (!ret) {
547 /*
548 * Copy out only the low-order word of vrsave.
549 */
550 union {
551 elf_vrreg_t reg;
552 u32 word;
553 } vrsave;
554 memset(&vrsave, 0, sizeof(vrsave));
555
556 vrsave.word = target->thread.vrsave;
557
558 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
559 33 * sizeof(vector128), -1);
560 }
561
562 return ret;
563 }
564
565 /*
566 * Regardless of transactions, 'vr_state' holds the current running
567 * value of all the VMX registers and 'ckvr_state' holds the last
568 * checkpointed value of all the VMX registers for the current
569 * transaction to fall back on in case it aborts.
570 *
571 * Userspace interface buffer layout:
572 *
573 * struct data {
574 * vector128 vr[32];
575 * vector128 vscr;
576 * vector128 vrsave;
577 * };
578 */
579 static int vr_set(struct task_struct *target, const struct user_regset *regset,
580 unsigned int pos, unsigned int count,
581 const void *kbuf, const void __user *ubuf)
582 {
583 int ret;
584
585 flush_altivec_to_thread(target);
586
587 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
588 offsetof(struct thread_vr_state, vr[32]));
589
590 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
591 &target->thread.vr_state, 0,
592 33 * sizeof(vector128));
593 if (!ret && count > 0) {
594 /*
595 * We use only the first word of vrsave.
596 */
597 union {
598 elf_vrreg_t reg;
599 u32 word;
600 } vrsave;
601 memset(&vrsave, 0, sizeof(vrsave));
602
603 vrsave.word = target->thread.vrsave;
604
605 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
606 33 * sizeof(vector128), -1);
607 if (!ret)
608 target->thread.vrsave = vrsave.word;
609 }
610
611 return ret;
612 }
613 #endif /* CONFIG_ALTIVEC */
614
615 #ifdef CONFIG_VSX
616 /*
617 * Currently to set and and get all the vsx state, you need to call
618 * the fp and VMX calls as well. This only get/sets the lower 32
619 * 128bit VSX registers.
620 */
621
622 static int vsr_active(struct task_struct *target,
623 const struct user_regset *regset)
624 {
625 flush_vsx_to_thread(target);
626 return target->thread.used_vsr ? regset->n : 0;
627 }
628
629 /*
630 * Regardless of transactions, 'fp_state' holds the current running
631 * value of all FPR registers and 'ckfp_state' holds the last
632 * checkpointed value of all FPR registers for the current
633 * transaction.
634 *
635 * Userspace interface buffer layout:
636 *
637 * struct data {
638 * u64 vsx[32];
639 * };
640 */
641 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
642 unsigned int pos, unsigned int count,
643 void *kbuf, void __user *ubuf)
644 {
645 u64 buf[32];
646 int ret, i;
647
648 flush_tmregs_to_thread(target);
649 flush_fp_to_thread(target);
650 flush_altivec_to_thread(target);
651 flush_vsx_to_thread(target);
652
653 for (i = 0; i < 32 ; i++)
654 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
655
656 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
657 buf, 0, 32 * sizeof(double));
658
659 return ret;
660 }
661
662 /*
663 * Regardless of transactions, 'fp_state' holds the current running
664 * value of all FPR registers and 'ckfp_state' holds the last
665 * checkpointed value of all FPR registers for the current
666 * transaction.
667 *
668 * Userspace interface buffer layout:
669 *
670 * struct data {
671 * u64 vsx[32];
672 * };
673 */
674 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
675 unsigned int pos, unsigned int count,
676 const void *kbuf, const void __user *ubuf)
677 {
678 u64 buf[32];
679 int ret,i;
680
681 flush_tmregs_to_thread(target);
682 flush_fp_to_thread(target);
683 flush_altivec_to_thread(target);
684 flush_vsx_to_thread(target);
685
686 for (i = 0; i < 32 ; i++)
687 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
688
689 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
690 buf, 0, 32 * sizeof(double));
691 if (!ret)
692 for (i = 0; i < 32 ; i++)
693 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
694
695 return ret;
696 }
697 #endif /* CONFIG_VSX */
698
699 #ifdef CONFIG_SPE
700
701 /*
702 * For get_evrregs/set_evrregs functions 'data' has the following layout:
703 *
704 * struct {
705 * u32 evr[32];
706 * u64 acc;
707 * u32 spefscr;
708 * }
709 */
710
711 static int evr_active(struct task_struct *target,
712 const struct user_regset *regset)
713 {
714 flush_spe_to_thread(target);
715 return target->thread.used_spe ? regset->n : 0;
716 }
717
718 static int evr_get(struct task_struct *target, const struct user_regset *regset,
719 unsigned int pos, unsigned int count,
720 void *kbuf, void __user *ubuf)
721 {
722 int ret;
723
724 flush_spe_to_thread(target);
725
726 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
727 &target->thread.evr,
728 0, sizeof(target->thread.evr));
729
730 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
731 offsetof(struct thread_struct, spefscr));
732
733 if (!ret)
734 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
735 &target->thread.acc,
736 sizeof(target->thread.evr), -1);
737
738 return ret;
739 }
740
741 static int evr_set(struct task_struct *target, const struct user_regset *regset,
742 unsigned int pos, unsigned int count,
743 const void *kbuf, const void __user *ubuf)
744 {
745 int ret;
746
747 flush_spe_to_thread(target);
748
749 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
750 &target->thread.evr,
751 0, sizeof(target->thread.evr));
752
753 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
754 offsetof(struct thread_struct, spefscr));
755
756 if (!ret)
757 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
758 &target->thread.acc,
759 sizeof(target->thread.evr), -1);
760
761 return ret;
762 }
763 #endif /* CONFIG_SPE */
764
765 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
766 /**
767 * tm_cgpr_active - get active number of registers in CGPR
768 * @target: The target task.
769 * @regset: The user regset structure.
770 *
771 * This function checks for the active number of available
772 * regisers in transaction checkpointed GPR category.
773 */
774 static int tm_cgpr_active(struct task_struct *target,
775 const struct user_regset *regset)
776 {
777 if (!cpu_has_feature(CPU_FTR_TM))
778 return -ENODEV;
779
780 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
781 return 0;
782
783 return regset->n;
784 }
785
786 /**
787 * tm_cgpr_get - get CGPR registers
788 * @target: The target task.
789 * @regset: The user regset structure.
790 * @pos: The buffer position.
791 * @count: Number of bytes to copy.
792 * @kbuf: Kernel buffer to copy from.
793 * @ubuf: User buffer to copy into.
794 *
795 * This function gets transaction checkpointed GPR registers.
796 *
797 * When the transaction is active, 'ckpt_regs' holds all the checkpointed
798 * GPR register values for the current transaction to fall back on if it
799 * aborts in between. This function gets those checkpointed GPR registers.
800 * The userspace interface buffer layout is as follows.
801 *
802 * struct data {
803 * struct pt_regs ckpt_regs;
804 * };
805 */
806 static int tm_cgpr_get(struct task_struct *target,
807 const struct user_regset *regset,
808 unsigned int pos, unsigned int count,
809 void *kbuf, void __user *ubuf)
810 {
811 int ret;
812
813 if (!cpu_has_feature(CPU_FTR_TM))
814 return -ENODEV;
815
816 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
817 return -ENODATA;
818
819 flush_tmregs_to_thread(target);
820 flush_fp_to_thread(target);
821 flush_altivec_to_thread(target);
822
823 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
824 &target->thread.ckpt_regs,
825 0, offsetof(struct pt_regs, msr));
826 if (!ret) {
827 unsigned long msr = get_user_ckpt_msr(target);
828
829 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
830 offsetof(struct pt_regs, msr),
831 offsetof(struct pt_regs, msr) +
832 sizeof(msr));
833 }
834
835 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
836 offsetof(struct pt_regs, msr) + sizeof(long));
837
838 if (!ret)
839 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
840 &target->thread.ckpt_regs.orig_gpr3,
841 offsetof(struct pt_regs, orig_gpr3),
842 sizeof(struct pt_regs));
843 if (!ret)
844 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
845 sizeof(struct pt_regs), -1);
846
847 return ret;
848 }
849
850 /*
851 * tm_cgpr_set - set the CGPR registers
852 * @target: The target task.
853 * @regset: The user regset structure.
854 * @pos: The buffer position.
855 * @count: Number of bytes to copy.
856 * @kbuf: Kernel buffer to copy into.
857 * @ubuf: User buffer to copy from.
858 *
859 * This function sets in transaction checkpointed GPR registers.
860 *
861 * When the transaction is active, 'ckpt_regs' holds the checkpointed
862 * GPR register values for the current transaction to fall back on if it
863 * aborts in between. This function sets those checkpointed GPR registers.
864 * The userspace interface buffer layout is as follows.
865 *
866 * struct data {
867 * struct pt_regs ckpt_regs;
868 * };
869 */
870 static int tm_cgpr_set(struct task_struct *target,
871 const struct user_regset *regset,
872 unsigned int pos, unsigned int count,
873 const void *kbuf, const void __user *ubuf)
874 {
875 unsigned long reg;
876 int ret;
877
878 if (!cpu_has_feature(CPU_FTR_TM))
879 return -ENODEV;
880
881 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
882 return -ENODATA;
883
884 flush_tmregs_to_thread(target);
885 flush_fp_to_thread(target);
886 flush_altivec_to_thread(target);
887
888 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
889 &target->thread.ckpt_regs,
890 0, PT_MSR * sizeof(reg));
891
892 if (!ret && count > 0) {
893 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
894 PT_MSR * sizeof(reg),
895 (PT_MSR + 1) * sizeof(reg));
896 if (!ret)
897 ret = set_user_ckpt_msr(target, reg);
898 }
899
900 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
901 offsetof(struct pt_regs, msr) + sizeof(long));
902
903 if (!ret)
904 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
905 &target->thread.ckpt_regs.orig_gpr3,
906 PT_ORIG_R3 * sizeof(reg),
907 (PT_MAX_PUT_REG + 1) * sizeof(reg));
908
909 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
910 ret = user_regset_copyin_ignore(
911 &pos, &count, &kbuf, &ubuf,
912 (PT_MAX_PUT_REG + 1) * sizeof(reg),
913 PT_TRAP * sizeof(reg));
914
915 if (!ret && count > 0) {
916 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
917 PT_TRAP * sizeof(reg),
918 (PT_TRAP + 1) * sizeof(reg));
919 if (!ret)
920 ret = set_user_ckpt_trap(target, reg);
921 }
922
923 if (!ret)
924 ret = user_regset_copyin_ignore(
925 &pos, &count, &kbuf, &ubuf,
926 (PT_TRAP + 1) * sizeof(reg), -1);
927
928 return ret;
929 }
930
931 /**
932 * tm_cfpr_active - get active number of registers in CFPR
933 * @target: The target task.
934 * @regset: The user regset structure.
935 *
936 * This function checks for the active number of available
937 * regisers in transaction checkpointed FPR category.
938 */
939 static int tm_cfpr_active(struct task_struct *target,
940 const struct user_regset *regset)
941 {
942 if (!cpu_has_feature(CPU_FTR_TM))
943 return -ENODEV;
944
945 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
946 return 0;
947
948 return regset->n;
949 }
950
951 /**
952 * tm_cfpr_get - get CFPR registers
953 * @target: The target task.
954 * @regset: The user regset structure.
955 * @pos: The buffer position.
956 * @count: Number of bytes to copy.
957 * @kbuf: Kernel buffer to copy from.
958 * @ubuf: User buffer to copy into.
959 *
960 * This function gets in transaction checkpointed FPR registers.
961 *
962 * When the transaction is active 'ckfp_state' holds the checkpointed
963 * values for the current transaction to fall back on if it aborts
964 * in between. This function gets those checkpointed FPR registers.
965 * The userspace interface buffer layout is as follows.
966 *
967 * struct data {
968 * u64 fpr[32];
969 * u64 fpscr;
970 *};
971 */
972 static int tm_cfpr_get(struct task_struct *target,
973 const struct user_regset *regset,
974 unsigned int pos, unsigned int count,
975 void *kbuf, void __user *ubuf)
976 {
977 u64 buf[33];
978 int i;
979
980 if (!cpu_has_feature(CPU_FTR_TM))
981 return -ENODEV;
982
983 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
984 return -ENODATA;
985
986 flush_tmregs_to_thread(target);
987 flush_fp_to_thread(target);
988 flush_altivec_to_thread(target);
989
990 /* copy to local buffer then write that out */
991 for (i = 0; i < 32 ; i++)
992 buf[i] = target->thread.TS_CKFPR(i);
993 buf[32] = target->thread.ckfp_state.fpscr;
994 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
995 }
996
997 /**
998 * tm_cfpr_set - set CFPR registers
999 * @target: The target task.
1000 * @regset: The user regset structure.
1001 * @pos: The buffer position.
1002 * @count: Number of bytes to copy.
1003 * @kbuf: Kernel buffer to copy into.
1004 * @ubuf: User buffer to copy from.
1005 *
1006 * This function sets in transaction checkpointed FPR registers.
1007 *
1008 * When the transaction is active 'ckfp_state' holds the checkpointed
1009 * FPR register values for the current transaction to fall back on
1010 * if it aborts in between. This function sets these checkpointed
1011 * FPR registers. The userspace interface buffer layout is as follows.
1012 *
1013 * struct data {
1014 * u64 fpr[32];
1015 * u64 fpscr;
1016 *};
1017 */
1018 static int tm_cfpr_set(struct task_struct *target,
1019 const struct user_regset *regset,
1020 unsigned int pos, unsigned int count,
1021 const void *kbuf, const void __user *ubuf)
1022 {
1023 u64 buf[33];
1024 int i;
1025
1026 if (!cpu_has_feature(CPU_FTR_TM))
1027 return -ENODEV;
1028
1029 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1030 return -ENODATA;
1031
1032 flush_tmregs_to_thread(target);
1033 flush_fp_to_thread(target);
1034 flush_altivec_to_thread(target);
1035
1036 for (i = 0; i < 32; i++)
1037 buf[i] = target->thread.TS_CKFPR(i);
1038 buf[32] = target->thread.ckfp_state.fpscr;
1039
1040 /* copy to local buffer then write that out */
1041 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
1042 if (i)
1043 return i;
1044 for (i = 0; i < 32 ; i++)
1045 target->thread.TS_CKFPR(i) = buf[i];
1046 target->thread.ckfp_state.fpscr = buf[32];
1047 return 0;
1048 }
1049
1050 /**
1051 * tm_cvmx_active - get active number of registers in CVMX
1052 * @target: The target task.
1053 * @regset: The user regset structure.
1054 *
1055 * This function checks for the active number of available
1056 * regisers in checkpointed VMX category.
1057 */
1058 static int tm_cvmx_active(struct task_struct *target,
1059 const struct user_regset *regset)
1060 {
1061 if (!cpu_has_feature(CPU_FTR_TM))
1062 return -ENODEV;
1063
1064 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1065 return 0;
1066
1067 return regset->n;
1068 }
1069
1070 /**
1071 * tm_cvmx_get - get CMVX registers
1072 * @target: The target task.
1073 * @regset: The user regset structure.
1074 * @pos: The buffer position.
1075 * @count: Number of bytes to copy.
1076 * @kbuf: Kernel buffer to copy from.
1077 * @ubuf: User buffer to copy into.
1078 *
1079 * This function gets in transaction checkpointed VMX registers.
1080 *
1081 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1082 * the checkpointed values for the current transaction to fall
1083 * back on if it aborts in between. The userspace interface buffer
1084 * layout is as follows.
1085 *
1086 * struct data {
1087 * vector128 vr[32];
1088 * vector128 vscr;
1089 * vector128 vrsave;
1090 *};
1091 */
1092 static int tm_cvmx_get(struct task_struct *target,
1093 const struct user_regset *regset,
1094 unsigned int pos, unsigned int count,
1095 void *kbuf, void __user *ubuf)
1096 {
1097 int ret;
1098
1099 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1100
1101 if (!cpu_has_feature(CPU_FTR_TM))
1102 return -ENODEV;
1103
1104 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1105 return -ENODATA;
1106
1107 /* Flush the state */
1108 flush_tmregs_to_thread(target);
1109 flush_fp_to_thread(target);
1110 flush_altivec_to_thread(target);
1111
1112 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1113 &target->thread.ckvr_state, 0,
1114 33 * sizeof(vector128));
1115 if (!ret) {
1116 /*
1117 * Copy out only the low-order word of vrsave.
1118 */
1119 union {
1120 elf_vrreg_t reg;
1121 u32 word;
1122 } vrsave;
1123 memset(&vrsave, 0, sizeof(vrsave));
1124 vrsave.word = target->thread.ckvrsave;
1125 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
1126 33 * sizeof(vector128), -1);
1127 }
1128
1129 return ret;
1130 }
1131
1132 /**
1133 * tm_cvmx_set - set CMVX registers
1134 * @target: The target task.
1135 * @regset: The user regset structure.
1136 * @pos: The buffer position.
1137 * @count: Number of bytes to copy.
1138 * @kbuf: Kernel buffer to copy into.
1139 * @ubuf: User buffer to copy from.
1140 *
1141 * This function sets in transaction checkpointed VMX registers.
1142 *
1143 * When the transaction is active 'ckvr_state' and 'ckvrsave' hold
1144 * the checkpointed values for the current transaction to fall
1145 * back on if it aborts in between. The userspace interface buffer
1146 * layout is as follows.
1147 *
1148 * struct data {
1149 * vector128 vr[32];
1150 * vector128 vscr;
1151 * vector128 vrsave;
1152 *};
1153 */
1154 static int tm_cvmx_set(struct task_struct *target,
1155 const struct user_regset *regset,
1156 unsigned int pos, unsigned int count,
1157 const void *kbuf, const void __user *ubuf)
1158 {
1159 int ret;
1160
1161 BUILD_BUG_ON(TVSO(vscr) != TVSO(vr[32]));
1162
1163 if (!cpu_has_feature(CPU_FTR_TM))
1164 return -ENODEV;
1165
1166 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1167 return -ENODATA;
1168
1169 flush_tmregs_to_thread(target);
1170 flush_fp_to_thread(target);
1171 flush_altivec_to_thread(target);
1172
1173 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1174 &target->thread.ckvr_state, 0,
1175 33 * sizeof(vector128));
1176 if (!ret && count > 0) {
1177 /*
1178 * We use only the low-order word of vrsave.
1179 */
1180 union {
1181 elf_vrreg_t reg;
1182 u32 word;
1183 } vrsave;
1184 memset(&vrsave, 0, sizeof(vrsave));
1185 vrsave.word = target->thread.ckvrsave;
1186 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
1187 33 * sizeof(vector128), -1);
1188 if (!ret)
1189 target->thread.ckvrsave = vrsave.word;
1190 }
1191
1192 return ret;
1193 }
1194
1195 /**
1196 * tm_cvsx_active - get active number of registers in CVSX
1197 * @target: The target task.
1198 * @regset: The user regset structure.
1199 *
1200 * This function checks for the active number of available
1201 * regisers in transaction checkpointed VSX category.
1202 */
1203 static int tm_cvsx_active(struct task_struct *target,
1204 const struct user_regset *regset)
1205 {
1206 if (!cpu_has_feature(CPU_FTR_TM))
1207 return -ENODEV;
1208
1209 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1210 return 0;
1211
1212 flush_vsx_to_thread(target);
1213 return target->thread.used_vsr ? regset->n : 0;
1214 }
1215
1216 /**
1217 * tm_cvsx_get - get CVSX registers
1218 * @target: The target task.
1219 * @regset: The user regset structure.
1220 * @pos: The buffer position.
1221 * @count: Number of bytes to copy.
1222 * @kbuf: Kernel buffer to copy from.
1223 * @ubuf: User buffer to copy into.
1224 *
1225 * This function gets in transaction checkpointed VSX registers.
1226 *
1227 * When the transaction is active 'ckfp_state' holds the checkpointed
1228 * values for the current transaction to fall back on if it aborts
1229 * in between. This function gets those checkpointed VSX registers.
1230 * The userspace interface buffer layout is as follows.
1231 *
1232 * struct data {
1233 * u64 vsx[32];
1234 *};
1235 */
1236 static int tm_cvsx_get(struct task_struct *target,
1237 const struct user_regset *regset,
1238 unsigned int pos, unsigned int count,
1239 void *kbuf, void __user *ubuf)
1240 {
1241 u64 buf[32];
1242 int ret, i;
1243
1244 if (!cpu_has_feature(CPU_FTR_TM))
1245 return -ENODEV;
1246
1247 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1248 return -ENODATA;
1249
1250 /* Flush the state */
1251 flush_tmregs_to_thread(target);
1252 flush_fp_to_thread(target);
1253 flush_altivec_to_thread(target);
1254 flush_vsx_to_thread(target);
1255
1256 for (i = 0; i < 32 ; i++)
1257 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1258 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1259 buf, 0, 32 * sizeof(double));
1260
1261 return ret;
1262 }
1263
1264 /**
1265 * tm_cvsx_set - set CFPR registers
1266 * @target: The target task.
1267 * @regset: The user regset structure.
1268 * @pos: The buffer position.
1269 * @count: Number of bytes to copy.
1270 * @kbuf: Kernel buffer to copy into.
1271 * @ubuf: User buffer to copy from.
1272 *
1273 * This function sets in transaction checkpointed VSX registers.
1274 *
1275 * When the transaction is active 'ckfp_state' holds the checkpointed
1276 * VSX register values for the current transaction to fall back on
1277 * if it aborts in between. This function sets these checkpointed
1278 * FPR registers. The userspace interface buffer layout is as follows.
1279 *
1280 * struct data {
1281 * u64 vsx[32];
1282 *};
1283 */
1284 static int tm_cvsx_set(struct task_struct *target,
1285 const struct user_regset *regset,
1286 unsigned int pos, unsigned int count,
1287 const void *kbuf, const void __user *ubuf)
1288 {
1289 u64 buf[32];
1290 int ret, i;
1291
1292 if (!cpu_has_feature(CPU_FTR_TM))
1293 return -ENODEV;
1294
1295 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1296 return -ENODATA;
1297
1298 /* Flush the state */
1299 flush_tmregs_to_thread(target);
1300 flush_fp_to_thread(target);
1301 flush_altivec_to_thread(target);
1302 flush_vsx_to_thread(target);
1303
1304 for (i = 0; i < 32 ; i++)
1305 buf[i] = target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
1306
1307 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1308 buf, 0, 32 * sizeof(double));
1309 if (!ret)
1310 for (i = 0; i < 32 ; i++)
1311 target->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
1312
1313 return ret;
1314 }
1315
1316 /**
1317 * tm_spr_active - get active number of registers in TM SPR
1318 * @target: The target task.
1319 * @regset: The user regset structure.
1320 *
1321 * This function checks the active number of available
1322 * regisers in the transactional memory SPR category.
1323 */
1324 static int tm_spr_active(struct task_struct *target,
1325 const struct user_regset *regset)
1326 {
1327 if (!cpu_has_feature(CPU_FTR_TM))
1328 return -ENODEV;
1329
1330 return regset->n;
1331 }
1332
1333 /**
1334 * tm_spr_get - get the TM related SPR registers
1335 * @target: The target task.
1336 * @regset: The user regset structure.
1337 * @pos: The buffer position.
1338 * @count: Number of bytes to copy.
1339 * @kbuf: Kernel buffer to copy from.
1340 * @ubuf: User buffer to copy into.
1341 *
1342 * This function gets transactional memory related SPR registers.
1343 * The userspace interface buffer layout is as follows.
1344 *
1345 * struct {
1346 * u64 tm_tfhar;
1347 * u64 tm_texasr;
1348 * u64 tm_tfiar;
1349 * };
1350 */
1351 static int tm_spr_get(struct task_struct *target,
1352 const struct user_regset *regset,
1353 unsigned int pos, unsigned int count,
1354 void *kbuf, void __user *ubuf)
1355 {
1356 int ret;
1357
1358 /* Build tests */
1359 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1360 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1361 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1362
1363 if (!cpu_has_feature(CPU_FTR_TM))
1364 return -ENODEV;
1365
1366 /* Flush the states */
1367 flush_tmregs_to_thread(target);
1368 flush_fp_to_thread(target);
1369 flush_altivec_to_thread(target);
1370
1371 /* TFHAR register */
1372 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1373 &target->thread.tm_tfhar, 0, sizeof(u64));
1374
1375 /* TEXASR register */
1376 if (!ret)
1377 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1378 &target->thread.tm_texasr, sizeof(u64),
1379 2 * sizeof(u64));
1380
1381 /* TFIAR register */
1382 if (!ret)
1383 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1384 &target->thread.tm_tfiar,
1385 2 * sizeof(u64), 3 * sizeof(u64));
1386 return ret;
1387 }
1388
1389 /**
1390 * tm_spr_set - set the TM related SPR registers
1391 * @target: The target task.
1392 * @regset: The user regset structure.
1393 * @pos: The buffer position.
1394 * @count: Number of bytes to copy.
1395 * @kbuf: Kernel buffer to copy into.
1396 * @ubuf: User buffer to copy from.
1397 *
1398 * This function sets transactional memory related SPR registers.
1399 * The userspace interface buffer layout is as follows.
1400 *
1401 * struct {
1402 * u64 tm_tfhar;
1403 * u64 tm_texasr;
1404 * u64 tm_tfiar;
1405 * };
1406 */
1407 static int tm_spr_set(struct task_struct *target,
1408 const struct user_regset *regset,
1409 unsigned int pos, unsigned int count,
1410 const void *kbuf, const void __user *ubuf)
1411 {
1412 int ret;
1413
1414 /* Build tests */
1415 BUILD_BUG_ON(TSO(tm_tfhar) + sizeof(u64) != TSO(tm_texasr));
1416 BUILD_BUG_ON(TSO(tm_texasr) + sizeof(u64) != TSO(tm_tfiar));
1417 BUILD_BUG_ON(TSO(tm_tfiar) + sizeof(u64) != TSO(ckpt_regs));
1418
1419 if (!cpu_has_feature(CPU_FTR_TM))
1420 return -ENODEV;
1421
1422 /* Flush the states */
1423 flush_tmregs_to_thread(target);
1424 flush_fp_to_thread(target);
1425 flush_altivec_to_thread(target);
1426
1427 /* TFHAR register */
1428 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1429 &target->thread.tm_tfhar, 0, sizeof(u64));
1430
1431 /* TEXASR register */
1432 if (!ret)
1433 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1434 &target->thread.tm_texasr, sizeof(u64),
1435 2 * sizeof(u64));
1436
1437 /* TFIAR register */
1438 if (!ret)
1439 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1440 &target->thread.tm_tfiar,
1441 2 * sizeof(u64), 3 * sizeof(u64));
1442 return ret;
1443 }
1444
1445 static int tm_tar_active(struct task_struct *target,
1446 const struct user_regset *regset)
1447 {
1448 if (!cpu_has_feature(CPU_FTR_TM))
1449 return -ENODEV;
1450
1451 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1452 return regset->n;
1453
1454 return 0;
1455 }
1456
1457 static int tm_tar_get(struct task_struct *target,
1458 const struct user_regset *regset,
1459 unsigned int pos, unsigned int count,
1460 void *kbuf, void __user *ubuf)
1461 {
1462 int ret;
1463
1464 if (!cpu_has_feature(CPU_FTR_TM))
1465 return -ENODEV;
1466
1467 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1468 return -ENODATA;
1469
1470 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1471 &target->thread.tm_tar, 0, sizeof(u64));
1472 return ret;
1473 }
1474
1475 static int tm_tar_set(struct task_struct *target,
1476 const struct user_regset *regset,
1477 unsigned int pos, unsigned int count,
1478 const void *kbuf, const void __user *ubuf)
1479 {
1480 int ret;
1481
1482 if (!cpu_has_feature(CPU_FTR_TM))
1483 return -ENODEV;
1484
1485 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1486 return -ENODATA;
1487
1488 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1489 &target->thread.tm_tar, 0, sizeof(u64));
1490 return ret;
1491 }
1492
1493 static int tm_ppr_active(struct task_struct *target,
1494 const struct user_regset *regset)
1495 {
1496 if (!cpu_has_feature(CPU_FTR_TM))
1497 return -ENODEV;
1498
1499 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1500 return regset->n;
1501
1502 return 0;
1503 }
1504
1505
1506 static int tm_ppr_get(struct task_struct *target,
1507 const struct user_regset *regset,
1508 unsigned int pos, unsigned int count,
1509 void *kbuf, void __user *ubuf)
1510 {
1511 int ret;
1512
1513 if (!cpu_has_feature(CPU_FTR_TM))
1514 return -ENODEV;
1515
1516 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1517 return -ENODATA;
1518
1519 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1520 &target->thread.tm_ppr, 0, sizeof(u64));
1521 return ret;
1522 }
1523
1524 static int tm_ppr_set(struct task_struct *target,
1525 const struct user_regset *regset,
1526 unsigned int pos, unsigned int count,
1527 const void *kbuf, const void __user *ubuf)
1528 {
1529 int ret;
1530
1531 if (!cpu_has_feature(CPU_FTR_TM))
1532 return -ENODEV;
1533
1534 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1535 return -ENODATA;
1536
1537 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1538 &target->thread.tm_ppr, 0, sizeof(u64));
1539 return ret;
1540 }
1541
1542 static int tm_dscr_active(struct task_struct *target,
1543 const struct user_regset *regset)
1544 {
1545 if (!cpu_has_feature(CPU_FTR_TM))
1546 return -ENODEV;
1547
1548 if (MSR_TM_ACTIVE(target->thread.regs->msr))
1549 return regset->n;
1550
1551 return 0;
1552 }
1553
1554 static int tm_dscr_get(struct task_struct *target,
1555 const struct user_regset *regset,
1556 unsigned int pos, unsigned int count,
1557 void *kbuf, void __user *ubuf)
1558 {
1559 int ret;
1560
1561 if (!cpu_has_feature(CPU_FTR_TM))
1562 return -ENODEV;
1563
1564 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1565 return -ENODATA;
1566
1567 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1568 &target->thread.tm_dscr, 0, sizeof(u64));
1569 return ret;
1570 }
1571
1572 static int tm_dscr_set(struct task_struct *target,
1573 const struct user_regset *regset,
1574 unsigned int pos, unsigned int count,
1575 const void *kbuf, const void __user *ubuf)
1576 {
1577 int ret;
1578
1579 if (!cpu_has_feature(CPU_FTR_TM))
1580 return -ENODEV;
1581
1582 if (!MSR_TM_ACTIVE(target->thread.regs->msr))
1583 return -ENODATA;
1584
1585 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1586 &target->thread.tm_dscr, 0, sizeof(u64));
1587 return ret;
1588 }
1589 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1590
1591 #ifdef CONFIG_PPC64
1592 static int ppr_get(struct task_struct *target,
1593 const struct user_regset *regset,
1594 unsigned int pos, unsigned int count,
1595 void *kbuf, void __user *ubuf)
1596 {
1597 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1598 &target->thread.ppr, 0, sizeof(u64));
1599 }
1600
1601 static int ppr_set(struct task_struct *target,
1602 const struct user_regset *regset,
1603 unsigned int pos, unsigned int count,
1604 const void *kbuf, const void __user *ubuf)
1605 {
1606 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1607 &target->thread.ppr, 0, sizeof(u64));
1608 }
1609
1610 static int dscr_get(struct task_struct *target,
1611 const struct user_regset *regset,
1612 unsigned int pos, unsigned int count,
1613 void *kbuf, void __user *ubuf)
1614 {
1615 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1616 &target->thread.dscr, 0, sizeof(u64));
1617 }
1618 static int dscr_set(struct task_struct *target,
1619 const struct user_regset *regset,
1620 unsigned int pos, unsigned int count,
1621 const void *kbuf, const void __user *ubuf)
1622 {
1623 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1624 &target->thread.dscr, 0, sizeof(u64));
1625 }
1626 #endif
1627 #ifdef CONFIG_PPC_BOOK3S_64
1628 static int tar_get(struct task_struct *target,
1629 const struct user_regset *regset,
1630 unsigned int pos, unsigned int count,
1631 void *kbuf, void __user *ubuf)
1632 {
1633 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1634 &target->thread.tar, 0, sizeof(u64));
1635 }
1636 static int tar_set(struct task_struct *target,
1637 const struct user_regset *regset,
1638 unsigned int pos, unsigned int count,
1639 const void *kbuf, const void __user *ubuf)
1640 {
1641 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1642 &target->thread.tar, 0, sizeof(u64));
1643 }
1644
1645 static int ebb_active(struct task_struct *target,
1646 const struct user_regset *regset)
1647 {
1648 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1649 return -ENODEV;
1650
1651 if (target->thread.used_ebb)
1652 return regset->n;
1653
1654 return 0;
1655 }
1656
1657 static int ebb_get(struct task_struct *target,
1658 const struct user_regset *regset,
1659 unsigned int pos, unsigned int count,
1660 void *kbuf, void __user *ubuf)
1661 {
1662 /* Build tests */
1663 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1664 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1665
1666 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1667 return -ENODEV;
1668
1669 if (!target->thread.used_ebb)
1670 return -ENODATA;
1671
1672 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1673 &target->thread.ebbrr, 0, 3 * sizeof(unsigned long));
1674 }
1675
1676 static int ebb_set(struct task_struct *target,
1677 const struct user_regset *regset,
1678 unsigned int pos, unsigned int count,
1679 const void *kbuf, const void __user *ubuf)
1680 {
1681 int ret = 0;
1682
1683 /* Build tests */
1684 BUILD_BUG_ON(TSO(ebbrr) + sizeof(unsigned long) != TSO(ebbhr));
1685 BUILD_BUG_ON(TSO(ebbhr) + sizeof(unsigned long) != TSO(bescr));
1686
1687 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1688 return -ENODEV;
1689
1690 if (target->thread.used_ebb)
1691 return -ENODATA;
1692
1693 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1694 &target->thread.ebbrr, 0, sizeof(unsigned long));
1695
1696 if (!ret)
1697 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1698 &target->thread.ebbhr, sizeof(unsigned long),
1699 2 * sizeof(unsigned long));
1700
1701 if (!ret)
1702 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1703 &target->thread.bescr,
1704 2 * sizeof(unsigned long), 3 * sizeof(unsigned long));
1705
1706 return ret;
1707 }
1708 static int pmu_active(struct task_struct *target,
1709 const struct user_regset *regset)
1710 {
1711 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1712 return -ENODEV;
1713
1714 return regset->n;
1715 }
1716
1717 static int pmu_get(struct task_struct *target,
1718 const struct user_regset *regset,
1719 unsigned int pos, unsigned int count,
1720 void *kbuf, void __user *ubuf)
1721 {
1722 /* Build tests */
1723 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1724 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1725 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1726 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1727
1728 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1729 return -ENODEV;
1730
1731 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1732 &target->thread.siar, 0,
1733 5 * sizeof(unsigned long));
1734 }
1735
1736 static int pmu_set(struct task_struct *target,
1737 const struct user_regset *regset,
1738 unsigned int pos, unsigned int count,
1739 const void *kbuf, const void __user *ubuf)
1740 {
1741 int ret = 0;
1742
1743 /* Build tests */
1744 BUILD_BUG_ON(TSO(siar) + sizeof(unsigned long) != TSO(sdar));
1745 BUILD_BUG_ON(TSO(sdar) + sizeof(unsigned long) != TSO(sier));
1746 BUILD_BUG_ON(TSO(sier) + sizeof(unsigned long) != TSO(mmcr2));
1747 BUILD_BUG_ON(TSO(mmcr2) + sizeof(unsigned long) != TSO(mmcr0));
1748
1749 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
1750 return -ENODEV;
1751
1752 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1753 &target->thread.siar, 0,
1754 sizeof(unsigned long));
1755
1756 if (!ret)
1757 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1758 &target->thread.sdar, sizeof(unsigned long),
1759 2 * sizeof(unsigned long));
1760
1761 if (!ret)
1762 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1763 &target->thread.sier, 2 * sizeof(unsigned long),
1764 3 * sizeof(unsigned long));
1765
1766 if (!ret)
1767 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1768 &target->thread.mmcr2, 3 * sizeof(unsigned long),
1769 4 * sizeof(unsigned long));
1770
1771 if (!ret)
1772 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1773 &target->thread.mmcr0, 4 * sizeof(unsigned long),
1774 5 * sizeof(unsigned long));
1775 return ret;
1776 }
1777 #endif
1778 /*
1779 * These are our native regset flavors.
1780 */
1781 enum powerpc_regset {
1782 REGSET_GPR,
1783 REGSET_FPR,
1784 #ifdef CONFIG_ALTIVEC
1785 REGSET_VMX,
1786 #endif
1787 #ifdef CONFIG_VSX
1788 REGSET_VSX,
1789 #endif
1790 #ifdef CONFIG_SPE
1791 REGSET_SPE,
1792 #endif
1793 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1794 REGSET_TM_CGPR, /* TM checkpointed GPR registers */
1795 REGSET_TM_CFPR, /* TM checkpointed FPR registers */
1796 REGSET_TM_CVMX, /* TM checkpointed VMX registers */
1797 REGSET_TM_CVSX, /* TM checkpointed VSX registers */
1798 REGSET_TM_SPR, /* TM specific SPR registers */
1799 REGSET_TM_CTAR, /* TM checkpointed TAR register */
1800 REGSET_TM_CPPR, /* TM checkpointed PPR register */
1801 REGSET_TM_CDSCR, /* TM checkpointed DSCR register */
1802 #endif
1803 #ifdef CONFIG_PPC64
1804 REGSET_PPR, /* PPR register */
1805 REGSET_DSCR, /* DSCR register */
1806 #endif
1807 #ifdef CONFIG_PPC_BOOK3S_64
1808 REGSET_TAR, /* TAR register */
1809 REGSET_EBB, /* EBB registers */
1810 REGSET_PMR, /* Performance Monitor Registers */
1811 #endif
1812 };
1813
1814 static const struct user_regset native_regsets[] = {
1815 [REGSET_GPR] = {
1816 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
1817 .size = sizeof(long), .align = sizeof(long),
1818 .get = gpr_get, .set = gpr_set
1819 },
1820 [REGSET_FPR] = {
1821 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
1822 .size = sizeof(double), .align = sizeof(double),
1823 .get = fpr_get, .set = fpr_set
1824 },
1825 #ifdef CONFIG_ALTIVEC
1826 [REGSET_VMX] = {
1827 .core_note_type = NT_PPC_VMX, .n = 34,
1828 .size = sizeof(vector128), .align = sizeof(vector128),
1829 .active = vr_active, .get = vr_get, .set = vr_set
1830 },
1831 #endif
1832 #ifdef CONFIG_VSX
1833 [REGSET_VSX] = {
1834 .core_note_type = NT_PPC_VSX, .n = 32,
1835 .size = sizeof(double), .align = sizeof(double),
1836 .active = vsr_active, .get = vsr_get, .set = vsr_set
1837 },
1838 #endif
1839 #ifdef CONFIG_SPE
1840 [REGSET_SPE] = {
1841 .core_note_type = NT_PPC_SPE, .n = 35,
1842 .size = sizeof(u32), .align = sizeof(u32),
1843 .active = evr_active, .get = evr_get, .set = evr_set
1844 },
1845 #endif
1846 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1847 [REGSET_TM_CGPR] = {
1848 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
1849 .size = sizeof(long), .align = sizeof(long),
1850 .active = tm_cgpr_active, .get = tm_cgpr_get, .set = tm_cgpr_set
1851 },
1852 [REGSET_TM_CFPR] = {
1853 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
1854 .size = sizeof(double), .align = sizeof(double),
1855 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
1856 },
1857 [REGSET_TM_CVMX] = {
1858 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
1859 .size = sizeof(vector128), .align = sizeof(vector128),
1860 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
1861 },
1862 [REGSET_TM_CVSX] = {
1863 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
1864 .size = sizeof(double), .align = sizeof(double),
1865 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
1866 },
1867 [REGSET_TM_SPR] = {
1868 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
1869 .size = sizeof(u64), .align = sizeof(u64),
1870 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
1871 },
1872 [REGSET_TM_CTAR] = {
1873 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
1874 .size = sizeof(u64), .align = sizeof(u64),
1875 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
1876 },
1877 [REGSET_TM_CPPR] = {
1878 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
1879 .size = sizeof(u64), .align = sizeof(u64),
1880 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
1881 },
1882 [REGSET_TM_CDSCR] = {
1883 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
1884 .size = sizeof(u64), .align = sizeof(u64),
1885 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
1886 },
1887 #endif
1888 #ifdef CONFIG_PPC64
1889 [REGSET_PPR] = {
1890 .core_note_type = NT_PPC_PPR, .n = 1,
1891 .size = sizeof(u64), .align = sizeof(u64),
1892 .get = ppr_get, .set = ppr_set
1893 },
1894 [REGSET_DSCR] = {
1895 .core_note_type = NT_PPC_DSCR, .n = 1,
1896 .size = sizeof(u64), .align = sizeof(u64),
1897 .get = dscr_get, .set = dscr_set
1898 },
1899 #endif
1900 #ifdef CONFIG_PPC_BOOK3S_64
1901 [REGSET_TAR] = {
1902 .core_note_type = NT_PPC_TAR, .n = 1,
1903 .size = sizeof(u64), .align = sizeof(u64),
1904 .get = tar_get, .set = tar_set
1905 },
1906 [REGSET_EBB] = {
1907 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
1908 .size = sizeof(u64), .align = sizeof(u64),
1909 .active = ebb_active, .get = ebb_get, .set = ebb_set
1910 },
1911 [REGSET_PMR] = {
1912 .core_note_type = NT_PPC_PMU, .n = ELF_NPMU,
1913 .size = sizeof(u64), .align = sizeof(u64),
1914 .active = pmu_active, .get = pmu_get, .set = pmu_set
1915 },
1916 #endif
1917 };
1918
1919 static const struct user_regset_view user_ppc_native_view = {
1920 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
1921 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1922 };
1923
1924 #ifdef CONFIG_PPC64
1925 #include <linux/compat.h>
1926
1927 static int gpr32_get_common(struct task_struct *target,
1928 const struct user_regset *regset,
1929 unsigned int pos, unsigned int count,
1930 void *kbuf, void __user *ubuf,
1931 unsigned long *regs)
1932 {
1933 compat_ulong_t *k = kbuf;
1934 compat_ulong_t __user *u = ubuf;
1935 compat_ulong_t reg;
1936
1937 pos /= sizeof(reg);
1938 count /= sizeof(reg);
1939
1940 if (kbuf)
1941 for (; count > 0 && pos < PT_MSR; --count)
1942 *k++ = regs[pos++];
1943 else
1944 for (; count > 0 && pos < PT_MSR; --count)
1945 if (__put_user((compat_ulong_t) regs[pos++], u++))
1946 return -EFAULT;
1947
1948 if (count > 0 && pos == PT_MSR) {
1949 reg = get_user_msr(target);
1950 if (kbuf)
1951 *k++ = reg;
1952 else if (__put_user(reg, u++))
1953 return -EFAULT;
1954 ++pos;
1955 --count;
1956 }
1957
1958 if (kbuf)
1959 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1960 *k++ = regs[pos++];
1961 else
1962 for (; count > 0 && pos < PT_REGS_COUNT; --count)
1963 if (__put_user((compat_ulong_t) regs[pos++], u++))
1964 return -EFAULT;
1965
1966 kbuf = k;
1967 ubuf = u;
1968 pos *= sizeof(reg);
1969 count *= sizeof(reg);
1970 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
1971 PT_REGS_COUNT * sizeof(reg), -1);
1972 }
1973
1974 static int gpr32_set_common(struct task_struct *target,
1975 const struct user_regset *regset,
1976 unsigned int pos, unsigned int count,
1977 const void *kbuf, const void __user *ubuf,
1978 unsigned long *regs)
1979 {
1980 const compat_ulong_t *k = kbuf;
1981 const compat_ulong_t __user *u = ubuf;
1982 compat_ulong_t reg;
1983
1984 pos /= sizeof(reg);
1985 count /= sizeof(reg);
1986
1987 if (kbuf)
1988 for (; count > 0 && pos < PT_MSR; --count)
1989 regs[pos++] = *k++;
1990 else
1991 for (; count > 0 && pos < PT_MSR; --count) {
1992 if (__get_user(reg, u++))
1993 return -EFAULT;
1994 regs[pos++] = reg;
1995 }
1996
1997
1998 if (count > 0 && pos == PT_MSR) {
1999 if (kbuf)
2000 reg = *k++;
2001 else if (__get_user(reg, u++))
2002 return -EFAULT;
2003 set_user_msr(target, reg);
2004 ++pos;
2005 --count;
2006 }
2007
2008 if (kbuf) {
2009 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
2010 regs[pos++] = *k++;
2011 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2012 ++k;
2013 } else {
2014 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
2015 if (__get_user(reg, u++))
2016 return -EFAULT;
2017 regs[pos++] = reg;
2018 }
2019 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
2020 if (__get_user(reg, u++))
2021 return -EFAULT;
2022 }
2023
2024 if (count > 0 && pos == PT_TRAP) {
2025 if (kbuf)
2026 reg = *k++;
2027 else if (__get_user(reg, u++))
2028 return -EFAULT;
2029 set_user_trap(target, reg);
2030 ++pos;
2031 --count;
2032 }
2033
2034 kbuf = k;
2035 ubuf = u;
2036 pos *= sizeof(reg);
2037 count *= sizeof(reg);
2038 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
2039 (PT_TRAP + 1) * sizeof(reg), -1);
2040 }
2041
2042 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2043 static int tm_cgpr32_get(struct task_struct *target,
2044 const struct user_regset *regset,
2045 unsigned int pos, unsigned int count,
2046 void *kbuf, void __user *ubuf)
2047 {
2048 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2049 &target->thread.ckpt_regs.gpr[0]);
2050 }
2051
2052 static int tm_cgpr32_set(struct task_struct *target,
2053 const struct user_regset *regset,
2054 unsigned int pos, unsigned int count,
2055 const void *kbuf, const void __user *ubuf)
2056 {
2057 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2058 &target->thread.ckpt_regs.gpr[0]);
2059 }
2060 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2061
2062 static int gpr32_get(struct task_struct *target,
2063 const struct user_regset *regset,
2064 unsigned int pos, unsigned int count,
2065 void *kbuf, void __user *ubuf)
2066 {
2067 int i;
2068
2069 if (target->thread.regs == NULL)
2070 return -EIO;
2071
2072 if (!FULL_REGS(target->thread.regs)) {
2073 /*
2074 * We have a partial register set.
2075 * Fill 14-31 with bogus values.
2076 */
2077 for (i = 14; i < 32; i++)
2078 target->thread.regs->gpr[i] = NV_REG_POISON;
2079 }
2080 return gpr32_get_common(target, regset, pos, count, kbuf, ubuf,
2081 &target->thread.regs->gpr[0]);
2082 }
2083
2084 static int gpr32_set(struct task_struct *target,
2085 const struct user_regset *regset,
2086 unsigned int pos, unsigned int count,
2087 const void *kbuf, const void __user *ubuf)
2088 {
2089 if (target->thread.regs == NULL)
2090 return -EIO;
2091
2092 CHECK_FULL_REGS(target->thread.regs);
2093 return gpr32_set_common(target, regset, pos, count, kbuf, ubuf,
2094 &target->thread.regs->gpr[0]);
2095 }
2096
2097 /*
2098 * These are the regset flavors matching the CONFIG_PPC32 native set.
2099 */
2100 static const struct user_regset compat_regsets[] = {
2101 [REGSET_GPR] = {
2102 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
2103 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
2104 .get = gpr32_get, .set = gpr32_set
2105 },
2106 [REGSET_FPR] = {
2107 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
2108 .size = sizeof(double), .align = sizeof(double),
2109 .get = fpr_get, .set = fpr_set
2110 },
2111 #ifdef CONFIG_ALTIVEC
2112 [REGSET_VMX] = {
2113 .core_note_type = NT_PPC_VMX, .n = 34,
2114 .size = sizeof(vector128), .align = sizeof(vector128),
2115 .active = vr_active, .get = vr_get, .set = vr_set
2116 },
2117 #endif
2118 #ifdef CONFIG_SPE
2119 [REGSET_SPE] = {
2120 .core_note_type = NT_PPC_SPE, .n = 35,
2121 .size = sizeof(u32), .align = sizeof(u32),
2122 .active = evr_active, .get = evr_get, .set = evr_set
2123 },
2124 #endif
2125 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2126 [REGSET_TM_CGPR] = {
2127 .core_note_type = NT_PPC_TM_CGPR, .n = ELF_NGREG,
2128 .size = sizeof(long), .align = sizeof(long),
2129 .active = tm_cgpr_active,
2130 .get = tm_cgpr32_get, .set = tm_cgpr32_set
2131 },
2132 [REGSET_TM_CFPR] = {
2133 .core_note_type = NT_PPC_TM_CFPR, .n = ELF_NFPREG,
2134 .size = sizeof(double), .align = sizeof(double),
2135 .active = tm_cfpr_active, .get = tm_cfpr_get, .set = tm_cfpr_set
2136 },
2137 [REGSET_TM_CVMX] = {
2138 .core_note_type = NT_PPC_TM_CVMX, .n = ELF_NVMX,
2139 .size = sizeof(vector128), .align = sizeof(vector128),
2140 .active = tm_cvmx_active, .get = tm_cvmx_get, .set = tm_cvmx_set
2141 },
2142 [REGSET_TM_CVSX] = {
2143 .core_note_type = NT_PPC_TM_CVSX, .n = ELF_NVSX,
2144 .size = sizeof(double), .align = sizeof(double),
2145 .active = tm_cvsx_active, .get = tm_cvsx_get, .set = tm_cvsx_set
2146 },
2147 [REGSET_TM_SPR] = {
2148 .core_note_type = NT_PPC_TM_SPR, .n = ELF_NTMSPRREG,
2149 .size = sizeof(u64), .align = sizeof(u64),
2150 .active = tm_spr_active, .get = tm_spr_get, .set = tm_spr_set
2151 },
2152 [REGSET_TM_CTAR] = {
2153 .core_note_type = NT_PPC_TM_CTAR, .n = 1,
2154 .size = sizeof(u64), .align = sizeof(u64),
2155 .active = tm_tar_active, .get = tm_tar_get, .set = tm_tar_set
2156 },
2157 [REGSET_TM_CPPR] = {
2158 .core_note_type = NT_PPC_TM_CPPR, .n = 1,
2159 .size = sizeof(u64), .align = sizeof(u64),
2160 .active = tm_ppr_active, .get = tm_ppr_get, .set = tm_ppr_set
2161 },
2162 [REGSET_TM_CDSCR] = {
2163 .core_note_type = NT_PPC_TM_CDSCR, .n = 1,
2164 .size = sizeof(u64), .align = sizeof(u64),
2165 .active = tm_dscr_active, .get = tm_dscr_get, .set = tm_dscr_set
2166 },
2167 #endif
2168 #ifdef CONFIG_PPC64
2169 [REGSET_PPR] = {
2170 .core_note_type = NT_PPC_PPR, .n = 1,
2171 .size = sizeof(u64), .align = sizeof(u64),
2172 .get = ppr_get, .set = ppr_set
2173 },
2174 [REGSET_DSCR] = {
2175 .core_note_type = NT_PPC_DSCR, .n = 1,
2176 .size = sizeof(u64), .align = sizeof(u64),
2177 .get = dscr_get, .set = dscr_set
2178 },
2179 #endif
2180 #ifdef CONFIG_PPC_BOOK3S_64
2181 [REGSET_TAR] = {
2182 .core_note_type = NT_PPC_TAR, .n = 1,
2183 .size = sizeof(u64), .align = sizeof(u64),
2184 .get = tar_get, .set = tar_set
2185 },
2186 [REGSET_EBB] = {
2187 .core_note_type = NT_PPC_EBB, .n = ELF_NEBB,
2188 .size = sizeof(u64), .align = sizeof(u64),
2189 .active = ebb_active, .get = ebb_get, .set = ebb_set
2190 },
2191 #endif
2192 };
2193
2194 static const struct user_regset_view user_ppc_compat_view = {
2195 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
2196 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
2197 };
2198 #endif /* CONFIG_PPC64 */
2199
2200 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
2201 {
2202 #ifdef CONFIG_PPC64
2203 if (test_tsk_thread_flag(task, TIF_32BIT))
2204 return &user_ppc_compat_view;
2205 #endif
2206 return &user_ppc_native_view;
2207 }
2208
2209
2210 void user_enable_single_step(struct task_struct *task)
2211 {
2212 struct pt_regs *regs = task->thread.regs;
2213
2214 if (regs != NULL) {
2215 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2216 task->thread.debug.dbcr0 &= ~DBCR0_BT;
2217 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
2218 regs->msr |= MSR_DE;
2219 #else
2220 regs->msr &= ~MSR_BE;
2221 regs->msr |= MSR_SE;
2222 #endif
2223 }
2224 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2225 }
2226
2227 void user_enable_block_step(struct task_struct *task)
2228 {
2229 struct pt_regs *regs = task->thread.regs;
2230
2231 if (regs != NULL) {
2232 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2233 task->thread.debug.dbcr0 &= ~DBCR0_IC;
2234 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
2235 regs->msr |= MSR_DE;
2236 #else
2237 regs->msr &= ~MSR_SE;
2238 regs->msr |= MSR_BE;
2239 #endif
2240 }
2241 set_tsk_thread_flag(task, TIF_SINGLESTEP);
2242 }
2243
2244 void user_disable_single_step(struct task_struct *task)
2245 {
2246 struct pt_regs *regs = task->thread.regs;
2247
2248 if (regs != NULL) {
2249 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2250 /*
2251 * The logic to disable single stepping should be as
2252 * simple as turning off the Instruction Complete flag.
2253 * And, after doing so, if all debug flags are off, turn
2254 * off DBCR0(IDM) and MSR(DE) .... Torez
2255 */
2256 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
2257 /*
2258 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
2259 */
2260 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2261 task->thread.debug.dbcr1)) {
2262 /*
2263 * All debug events were off.....
2264 */
2265 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2266 regs->msr &= ~MSR_DE;
2267 }
2268 #else
2269 regs->msr &= ~(MSR_SE | MSR_BE);
2270 #endif
2271 }
2272 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
2273 }
2274
2275 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2276 void ptrace_triggered(struct perf_event *bp,
2277 struct perf_sample_data *data, struct pt_regs *regs)
2278 {
2279 struct perf_event_attr attr;
2280
2281 /*
2282 * Disable the breakpoint request here since ptrace has defined a
2283 * one-shot behaviour for breakpoint exceptions in PPC64.
2284 * The SIGTRAP signal is generated automatically for us in do_dabr().
2285 * We don't have to do anything about that here
2286 */
2287 attr = bp->attr;
2288 attr.disabled = true;
2289 modify_user_hw_breakpoint(bp, &attr);
2290 }
2291 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2292
2293 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
2294 unsigned long data)
2295 {
2296 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2297 int ret;
2298 struct thread_struct *thread = &(task->thread);
2299 struct perf_event *bp;
2300 struct perf_event_attr attr;
2301 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2302 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2303 struct arch_hw_breakpoint hw_brk;
2304 #endif
2305
2306 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
2307 * For embedded processors we support one DAC and no IAC's at the
2308 * moment.
2309 */
2310 if (addr > 0)
2311 return -EINVAL;
2312
2313 /* The bottom 3 bits in dabr are flags */
2314 if ((data & ~0x7UL) >= TASK_SIZE)
2315 return -EIO;
2316
2317 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2318 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
2319 * It was assumed, on previous implementations, that 3 bits were
2320 * passed together with the data address, fitting the design of the
2321 * DABR register, as follows:
2322 *
2323 * bit 0: Read flag
2324 * bit 1: Write flag
2325 * bit 2: Breakpoint translation
2326 *
2327 * Thus, we use them here as so.
2328 */
2329
2330 /* Ensure breakpoint translation bit is set */
2331 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
2332 return -EIO;
2333 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
2334 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
2335 hw_brk.len = 8;
2336 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2337 bp = thread->ptrace_bps[0];
2338 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
2339 if (bp) {
2340 unregister_hw_breakpoint(bp);
2341 thread->ptrace_bps[0] = NULL;
2342 }
2343 return 0;
2344 }
2345 if (bp) {
2346 attr = bp->attr;
2347 attr.bp_addr = hw_brk.address;
2348 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
2349
2350 /* Enable breakpoint */
2351 attr.disabled = false;
2352
2353 ret = modify_user_hw_breakpoint(bp, &attr);
2354 if (ret) {
2355 return ret;
2356 }
2357 thread->ptrace_bps[0] = bp;
2358 thread->hw_brk = hw_brk;
2359 return 0;
2360 }
2361
2362 /* Create a new breakpoint request if one doesn't exist already */
2363 hw_breakpoint_init(&attr);
2364 attr.bp_addr = hw_brk.address;
2365 arch_bp_generic_fields(hw_brk.type,
2366 &attr.bp_type);
2367
2368 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2369 ptrace_triggered, NULL, task);
2370 if (IS_ERR(bp)) {
2371 thread->ptrace_bps[0] = NULL;
2372 return PTR_ERR(bp);
2373 }
2374
2375 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2376 task->thread.hw_brk = hw_brk;
2377 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
2378 /* As described above, it was assumed 3 bits were passed with the data
2379 * address, but we will assume only the mode bits will be passed
2380 * as to not cause alignment restrictions for DAC-based processors.
2381 */
2382
2383 /* DAC's hold the whole address without any mode flags */
2384 task->thread.debug.dac1 = data & ~0x3UL;
2385
2386 if (task->thread.debug.dac1 == 0) {
2387 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2388 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
2389 task->thread.debug.dbcr1)) {
2390 task->thread.regs->msr &= ~MSR_DE;
2391 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
2392 }
2393 return 0;
2394 }
2395
2396 /* Read or Write bits must be set */
2397
2398 if (!(data & 0x3UL))
2399 return -EINVAL;
2400
2401 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
2402 register */
2403 task->thread.debug.dbcr0 |= DBCR0_IDM;
2404
2405 /* Check for write and read flags and set DBCR0
2406 accordingly */
2407 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
2408 if (data & 0x1UL)
2409 dbcr_dac(task) |= DBCR_DAC1R;
2410 if (data & 0x2UL)
2411 dbcr_dac(task) |= DBCR_DAC1W;
2412 task->thread.regs->msr |= MSR_DE;
2413 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2414 return 0;
2415 }
2416
2417 /*
2418 * Called by kernel/ptrace.c when detaching..
2419 *
2420 * Make sure single step bits etc are not set.
2421 */
2422 void ptrace_disable(struct task_struct *child)
2423 {
2424 /* make sure the single step bit is not set. */
2425 user_disable_single_step(child);
2426 }
2427
2428 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2429 static long set_instruction_bp(struct task_struct *child,
2430 struct ppc_hw_breakpoint *bp_info)
2431 {
2432 int slot;
2433 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
2434 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
2435 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
2436 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
2437
2438 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2439 slot2_in_use = 1;
2440 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2441 slot4_in_use = 1;
2442
2443 if (bp_info->addr >= TASK_SIZE)
2444 return -EIO;
2445
2446 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
2447
2448 /* Make sure range is valid. */
2449 if (bp_info->addr2 >= TASK_SIZE)
2450 return -EIO;
2451
2452 /* We need a pair of IAC regsisters */
2453 if ((!slot1_in_use) && (!slot2_in_use)) {
2454 slot = 1;
2455 child->thread.debug.iac1 = bp_info->addr;
2456 child->thread.debug.iac2 = bp_info->addr2;
2457 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2458 if (bp_info->addr_mode ==
2459 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2460 dbcr_iac_range(child) |= DBCR_IAC12X;
2461 else
2462 dbcr_iac_range(child) |= DBCR_IAC12I;
2463 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2464 } else if ((!slot3_in_use) && (!slot4_in_use)) {
2465 slot = 3;
2466 child->thread.debug.iac3 = bp_info->addr;
2467 child->thread.debug.iac4 = bp_info->addr2;
2468 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2469 if (bp_info->addr_mode ==
2470 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2471 dbcr_iac_range(child) |= DBCR_IAC34X;
2472 else
2473 dbcr_iac_range(child) |= DBCR_IAC34I;
2474 #endif
2475 } else
2476 return -ENOSPC;
2477 } else {
2478 /* We only need one. If possible leave a pair free in
2479 * case a range is needed later
2480 */
2481 if (!slot1_in_use) {
2482 /*
2483 * Don't use iac1 if iac1-iac2 are free and either
2484 * iac3 or iac4 (but not both) are free
2485 */
2486 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
2487 slot = 1;
2488 child->thread.debug.iac1 = bp_info->addr;
2489 child->thread.debug.dbcr0 |= DBCR0_IAC1;
2490 goto out;
2491 }
2492 }
2493 if (!slot2_in_use) {
2494 slot = 2;
2495 child->thread.debug.iac2 = bp_info->addr;
2496 child->thread.debug.dbcr0 |= DBCR0_IAC2;
2497 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2498 } else if (!slot3_in_use) {
2499 slot = 3;
2500 child->thread.debug.iac3 = bp_info->addr;
2501 child->thread.debug.dbcr0 |= DBCR0_IAC3;
2502 } else if (!slot4_in_use) {
2503 slot = 4;
2504 child->thread.debug.iac4 = bp_info->addr;
2505 child->thread.debug.dbcr0 |= DBCR0_IAC4;
2506 #endif
2507 } else
2508 return -ENOSPC;
2509 }
2510 out:
2511 child->thread.debug.dbcr0 |= DBCR0_IDM;
2512 child->thread.regs->msr |= MSR_DE;
2513
2514 return slot;
2515 }
2516
2517 static int del_instruction_bp(struct task_struct *child, int slot)
2518 {
2519 switch (slot) {
2520 case 1:
2521 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
2522 return -ENOENT;
2523
2524 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
2525 /* address range - clear slots 1 & 2 */
2526 child->thread.debug.iac2 = 0;
2527 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
2528 }
2529 child->thread.debug.iac1 = 0;
2530 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
2531 break;
2532 case 2:
2533 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
2534 return -ENOENT;
2535
2536 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
2537 /* used in a range */
2538 return -EINVAL;
2539 child->thread.debug.iac2 = 0;
2540 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
2541 break;
2542 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
2543 case 3:
2544 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
2545 return -ENOENT;
2546
2547 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
2548 /* address range - clear slots 3 & 4 */
2549 child->thread.debug.iac4 = 0;
2550 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
2551 }
2552 child->thread.debug.iac3 = 0;
2553 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
2554 break;
2555 case 4:
2556 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
2557 return -ENOENT;
2558
2559 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
2560 /* Used in a range */
2561 return -EINVAL;
2562 child->thread.debug.iac4 = 0;
2563 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
2564 break;
2565 #endif
2566 default:
2567 return -EINVAL;
2568 }
2569 return 0;
2570 }
2571
2572 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
2573 {
2574 int byte_enable =
2575 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
2576 & 0xf;
2577 int condition_mode =
2578 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
2579 int slot;
2580
2581 if (byte_enable && (condition_mode == 0))
2582 return -EINVAL;
2583
2584 if (bp_info->addr >= TASK_SIZE)
2585 return -EIO;
2586
2587 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
2588 slot = 1;
2589 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2590 dbcr_dac(child) |= DBCR_DAC1R;
2591 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2592 dbcr_dac(child) |= DBCR_DAC1W;
2593 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
2594 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2595 if (byte_enable) {
2596 child->thread.debug.dvc1 =
2597 (unsigned long)bp_info->condition_value;
2598 child->thread.debug.dbcr2 |=
2599 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
2600 (condition_mode << DBCR2_DVC1M_SHIFT));
2601 }
2602 #endif
2603 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2604 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2605 /* Both dac1 and dac2 are part of a range */
2606 return -ENOSPC;
2607 #endif
2608 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
2609 slot = 2;
2610 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2611 dbcr_dac(child) |= DBCR_DAC2R;
2612 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2613 dbcr_dac(child) |= DBCR_DAC2W;
2614 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
2615 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2616 if (byte_enable) {
2617 child->thread.debug.dvc2 =
2618 (unsigned long)bp_info->condition_value;
2619 child->thread.debug.dbcr2 |=
2620 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
2621 (condition_mode << DBCR2_DVC2M_SHIFT));
2622 }
2623 #endif
2624 } else
2625 return -ENOSPC;
2626 child->thread.debug.dbcr0 |= DBCR0_IDM;
2627 child->thread.regs->msr |= MSR_DE;
2628
2629 return slot + 4;
2630 }
2631
2632 static int del_dac(struct task_struct *child, int slot)
2633 {
2634 if (slot == 1) {
2635 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
2636 return -ENOENT;
2637
2638 child->thread.debug.dac1 = 0;
2639 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
2640 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2641 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
2642 child->thread.debug.dac2 = 0;
2643 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
2644 }
2645 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
2646 #endif
2647 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2648 child->thread.debug.dvc1 = 0;
2649 #endif
2650 } else if (slot == 2) {
2651 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
2652 return -ENOENT;
2653
2654 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2655 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
2656 /* Part of a range */
2657 return -EINVAL;
2658 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
2659 #endif
2660 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
2661 child->thread.debug.dvc2 = 0;
2662 #endif
2663 child->thread.debug.dac2 = 0;
2664 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
2665 } else
2666 return -EINVAL;
2667
2668 return 0;
2669 }
2670 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2671
2672 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2673 static int set_dac_range(struct task_struct *child,
2674 struct ppc_hw_breakpoint *bp_info)
2675 {
2676 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
2677
2678 /* We don't allow range watchpoints to be used with DVC */
2679 if (bp_info->condition_mode)
2680 return -EINVAL;
2681
2682 /*
2683 * Best effort to verify the address range. The user/supervisor bits
2684 * prevent trapping in kernel space, but let's fail on an obvious bad
2685 * range. The simple test on the mask is not fool-proof, and any
2686 * exclusive range will spill over into kernel space.
2687 */
2688 if (bp_info->addr >= TASK_SIZE)
2689 return -EIO;
2690 if (mode == PPC_BREAKPOINT_MODE_MASK) {
2691 /*
2692 * dac2 is a bitmask. Don't allow a mask that makes a
2693 * kernel space address from a valid dac1 value
2694 */
2695 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
2696 return -EIO;
2697 } else {
2698 /*
2699 * For range breakpoints, addr2 must also be a valid address
2700 */
2701 if (bp_info->addr2 >= TASK_SIZE)
2702 return -EIO;
2703 }
2704
2705 if (child->thread.debug.dbcr0 &
2706 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
2707 return -ENOSPC;
2708
2709 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2710 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
2711 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2712 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
2713 child->thread.debug.dac1 = bp_info->addr;
2714 child->thread.debug.dac2 = bp_info->addr2;
2715 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2716 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
2717 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
2718 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
2719 else /* PPC_BREAKPOINT_MODE_MASK */
2720 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
2721 child->thread.regs->msr |= MSR_DE;
2722
2723 return 5;
2724 }
2725 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
2726
2727 static long ppc_set_hwdebug(struct task_struct *child,
2728 struct ppc_hw_breakpoint *bp_info)
2729 {
2730 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2731 int len = 0;
2732 struct thread_struct *thread = &(child->thread);
2733 struct perf_event *bp;
2734 struct perf_event_attr attr;
2735 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2736 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
2737 struct arch_hw_breakpoint brk;
2738 #endif
2739
2740 if (bp_info->version != 1)
2741 return -ENOTSUPP;
2742 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2743 /*
2744 * Check for invalid flags and combinations
2745 */
2746 if ((bp_info->trigger_type == 0) ||
2747 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
2748 PPC_BREAKPOINT_TRIGGER_RW)) ||
2749 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
2750 (bp_info->condition_mode &
2751 ~(PPC_BREAKPOINT_CONDITION_MODE |
2752 PPC_BREAKPOINT_CONDITION_BE_ALL)))
2753 return -EINVAL;
2754 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
2755 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2756 return -EINVAL;
2757 #endif
2758
2759 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
2760 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
2761 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
2762 return -EINVAL;
2763 return set_instruction_bp(child, bp_info);
2764 }
2765 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2766 return set_dac(child, bp_info);
2767
2768 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2769 return set_dac_range(child, bp_info);
2770 #else
2771 return -EINVAL;
2772 #endif
2773 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2774 /*
2775 * We only support one data breakpoint
2776 */
2777 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
2778 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
2779 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2780 return -EINVAL;
2781
2782 if ((unsigned long)bp_info->addr >= TASK_SIZE)
2783 return -EIO;
2784
2785 brk.address = bp_info->addr & ~7UL;
2786 brk.type = HW_BRK_TYPE_TRANSLATE;
2787 brk.len = 8;
2788 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
2789 brk.type |= HW_BRK_TYPE_READ;
2790 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
2791 brk.type |= HW_BRK_TYPE_WRITE;
2792 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2793 /*
2794 * Check if the request is for 'range' breakpoints. We can
2795 * support it if range < 8 bytes.
2796 */
2797 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
2798 len = bp_info->addr2 - bp_info->addr;
2799 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
2800 len = 1;
2801 else
2802 return -EINVAL;
2803 bp = thread->ptrace_bps[0];
2804 if (bp)
2805 return -ENOSPC;
2806
2807 /* Create a new breakpoint request if one doesn't exist already */
2808 hw_breakpoint_init(&attr);
2809 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
2810 attr.bp_len = len;
2811 arch_bp_generic_fields(brk.type, &attr.bp_type);
2812
2813 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
2814 ptrace_triggered, NULL, child);
2815 if (IS_ERR(bp)) {
2816 thread->ptrace_bps[0] = NULL;
2817 return PTR_ERR(bp);
2818 }
2819
2820 return 1;
2821 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2822
2823 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
2824 return -EINVAL;
2825
2826 if (child->thread.hw_brk.address)
2827 return -ENOSPC;
2828
2829 child->thread.hw_brk = brk;
2830
2831 return 1;
2832 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
2833 }
2834
2835 static long ppc_del_hwdebug(struct task_struct *child, long data)
2836 {
2837 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2838 int ret = 0;
2839 struct thread_struct *thread = &(child->thread);
2840 struct perf_event *bp;
2841 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2842 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2843 int rc;
2844
2845 if (data <= 4)
2846 rc = del_instruction_bp(child, (int)data);
2847 else
2848 rc = del_dac(child, (int)data - 4);
2849
2850 if (!rc) {
2851 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
2852 child->thread.debug.dbcr1)) {
2853 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
2854 child->thread.regs->msr &= ~MSR_DE;
2855 }
2856 }
2857 return rc;
2858 #else
2859 if (data != 1)
2860 return -EINVAL;
2861
2862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2863 bp = thread->ptrace_bps[0];
2864 if (bp) {
2865 unregister_hw_breakpoint(bp);
2866 thread->ptrace_bps[0] = NULL;
2867 } else
2868 ret = -ENOENT;
2869 return ret;
2870 #else /* CONFIG_HAVE_HW_BREAKPOINT */
2871 if (child->thread.hw_brk.address == 0)
2872 return -ENOENT;
2873
2874 child->thread.hw_brk.address = 0;
2875 child->thread.hw_brk.type = 0;
2876 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2877
2878 return 0;
2879 #endif
2880 }
2881
2882 long arch_ptrace(struct task_struct *child, long request,
2883 unsigned long addr, unsigned long data)
2884 {
2885 int ret = -EPERM;
2886 void __user *datavp = (void __user *) data;
2887 unsigned long __user *datalp = datavp;
2888
2889 switch (request) {
2890 /* read the word at location addr in the USER area. */
2891 case PTRACE_PEEKUSR: {
2892 unsigned long index, tmp;
2893
2894 ret = -EIO;
2895 /* convert to index and check */
2896 #ifdef CONFIG_PPC32
2897 index = addr >> 2;
2898 if ((addr & 3) || (index > PT_FPSCR)
2899 || (child->thread.regs == NULL))
2900 #else
2901 index = addr >> 3;
2902 if ((addr & 7) || (index > PT_FPSCR))
2903 #endif
2904 break;
2905
2906 CHECK_FULL_REGS(child->thread.regs);
2907 if (index < PT_FPR0) {
2908 ret = ptrace_get_reg(child, (int) index, &tmp);
2909 if (ret)
2910 break;
2911 } else {
2912 unsigned int fpidx = index - PT_FPR0;
2913
2914 flush_fp_to_thread(child);
2915 if (fpidx < (PT_FPSCR - PT_FPR0))
2916 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
2917 sizeof(long));
2918 else
2919 tmp = child->thread.fp_state.fpscr;
2920 }
2921 ret = put_user(tmp, datalp);
2922 break;
2923 }
2924
2925 /* write the word at location addr in the USER area */
2926 case PTRACE_POKEUSR: {
2927 unsigned long index;
2928
2929 ret = -EIO;
2930 /* convert to index and check */
2931 #ifdef CONFIG_PPC32
2932 index = addr >> 2;
2933 if ((addr & 3) || (index > PT_FPSCR)
2934 || (child->thread.regs == NULL))
2935 #else
2936 index = addr >> 3;
2937 if ((addr & 7) || (index > PT_FPSCR))
2938 #endif
2939 break;
2940
2941 CHECK_FULL_REGS(child->thread.regs);
2942 if (index < PT_FPR0) {
2943 ret = ptrace_put_reg(child, index, data);
2944 } else {
2945 unsigned int fpidx = index - PT_FPR0;
2946
2947 flush_fp_to_thread(child);
2948 if (fpidx < (PT_FPSCR - PT_FPR0))
2949 memcpy(&child->thread.TS_FPR(fpidx), &data,
2950 sizeof(long));
2951 else
2952 child->thread.fp_state.fpscr = data;
2953 ret = 0;
2954 }
2955 break;
2956 }
2957
2958 case PPC_PTRACE_GETHWDBGINFO: {
2959 struct ppc_debug_info dbginfo;
2960
2961 dbginfo.version = 1;
2962 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
2963 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
2964 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
2965 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
2966 dbginfo.data_bp_alignment = 4;
2967 dbginfo.sizeof_condition = 4;
2968 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
2969 PPC_DEBUG_FEATURE_INSN_BP_MASK;
2970 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
2971 dbginfo.features |=
2972 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
2973 PPC_DEBUG_FEATURE_DATA_BP_MASK;
2974 #endif
2975 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
2976 dbginfo.num_instruction_bps = 0;
2977 dbginfo.num_data_bps = 1;
2978 dbginfo.num_condition_regs = 0;
2979 #ifdef CONFIG_PPC64
2980 dbginfo.data_bp_alignment = 8;
2981 #else
2982 dbginfo.data_bp_alignment = 4;
2983 #endif
2984 dbginfo.sizeof_condition = 0;
2985 #ifdef CONFIG_HAVE_HW_BREAKPOINT
2986 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
2987 if (cpu_has_feature(CPU_FTR_DAWR))
2988 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
2989 #else
2990 dbginfo.features = 0;
2991 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
2992 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
2993
2994 if (!access_ok(VERIFY_WRITE, datavp,
2995 sizeof(struct ppc_debug_info)))
2996 return -EFAULT;
2997 ret = __copy_to_user(datavp, &dbginfo,
2998 sizeof(struct ppc_debug_info)) ?
2999 -EFAULT : 0;
3000 break;
3001 }
3002
3003 case PPC_PTRACE_SETHWDEBUG: {
3004 struct ppc_hw_breakpoint bp_info;
3005
3006 if (!access_ok(VERIFY_READ, datavp,
3007 sizeof(struct ppc_hw_breakpoint)))
3008 return -EFAULT;
3009 ret = __copy_from_user(&bp_info, datavp,
3010 sizeof(struct ppc_hw_breakpoint)) ?
3011 -EFAULT : 0;
3012 if (!ret)
3013 ret = ppc_set_hwdebug(child, &bp_info);
3014 break;
3015 }
3016
3017 case PPC_PTRACE_DELHWDEBUG: {
3018 ret = ppc_del_hwdebug(child, data);
3019 break;
3020 }
3021
3022 case PTRACE_GET_DEBUGREG: {
3023 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
3024 unsigned long dabr_fake;
3025 #endif
3026 ret = -EINVAL;
3027 /* We only support one DABR and no IABRS at the moment */
3028 if (addr > 0)
3029 break;
3030 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
3031 ret = put_user(child->thread.debug.dac1, datalp);
3032 #else
3033 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
3034 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
3035 ret = put_user(dabr_fake, datalp);
3036 #endif
3037 break;
3038 }
3039
3040 case PTRACE_SET_DEBUGREG:
3041 ret = ptrace_set_debugreg(child, addr, data);
3042 break;
3043
3044 #ifdef CONFIG_PPC64
3045 case PTRACE_GETREGS64:
3046 #endif
3047 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
3048 return copy_regset_to_user(child, &user_ppc_native_view,
3049 REGSET_GPR,
3050 0, sizeof(struct pt_regs),
3051 datavp);
3052
3053 #ifdef CONFIG_PPC64
3054 case PTRACE_SETREGS64:
3055 #endif
3056 case PTRACE_SETREGS: /* Set all gp regs in the child. */
3057 return copy_regset_from_user(child, &user_ppc_native_view,
3058 REGSET_GPR,
3059 0, sizeof(struct pt_regs),
3060 datavp);
3061
3062 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
3063 return copy_regset_to_user(child, &user_ppc_native_view,
3064 REGSET_FPR,
3065 0, sizeof(elf_fpregset_t),
3066 datavp);
3067
3068 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
3069 return copy_regset_from_user(child, &user_ppc_native_view,
3070 REGSET_FPR,
3071 0, sizeof(elf_fpregset_t),
3072 datavp);
3073
3074 #ifdef CONFIG_ALTIVEC
3075 case PTRACE_GETVRREGS:
3076 return copy_regset_to_user(child, &user_ppc_native_view,
3077 REGSET_VMX,
3078 0, (33 * sizeof(vector128) +
3079 sizeof(u32)),
3080 datavp);
3081
3082 case PTRACE_SETVRREGS:
3083 return copy_regset_from_user(child, &user_ppc_native_view,
3084 REGSET_VMX,
3085 0, (33 * sizeof(vector128) +
3086 sizeof(u32)),
3087 datavp);
3088 #endif
3089 #ifdef CONFIG_VSX
3090 case PTRACE_GETVSRREGS:
3091 return copy_regset_to_user(child, &user_ppc_native_view,
3092 REGSET_VSX,
3093 0, 32 * sizeof(double),
3094 datavp);
3095
3096 case PTRACE_SETVSRREGS:
3097 return copy_regset_from_user(child, &user_ppc_native_view,
3098 REGSET_VSX,
3099 0, 32 * sizeof(double),
3100 datavp);
3101 #endif
3102 #ifdef CONFIG_SPE
3103 case PTRACE_GETEVRREGS:
3104 /* Get the child spe register state. */
3105 return copy_regset_to_user(child, &user_ppc_native_view,
3106 REGSET_SPE, 0, 35 * sizeof(u32),
3107 datavp);
3108
3109 case PTRACE_SETEVRREGS:
3110 /* Set the child spe register state. */
3111 return copy_regset_from_user(child, &user_ppc_native_view,
3112 REGSET_SPE, 0, 35 * sizeof(u32),
3113 datavp);
3114 #endif
3115
3116 default:
3117 ret = ptrace_request(child, request, addr, data);
3118 break;
3119 }
3120 return ret;
3121 }
3122
3123 #ifdef CONFIG_SECCOMP
3124 static int do_seccomp(struct pt_regs *regs)
3125 {
3126 if (!test_thread_flag(TIF_SECCOMP))
3127 return 0;
3128
3129 /*
3130 * The ABI we present to seccomp tracers is that r3 contains
3131 * the syscall return value and orig_gpr3 contains the first
3132 * syscall parameter. This is different to the ptrace ABI where
3133 * both r3 and orig_gpr3 contain the first syscall parameter.
3134 */
3135 regs->gpr[3] = -ENOSYS;
3136
3137 /*
3138 * We use the __ version here because we have already checked
3139 * TIF_SECCOMP. If this fails, there is nothing left to do, we
3140 * have already loaded -ENOSYS into r3, or seccomp has put
3141 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
3142 */
3143 if (__secure_computing(NULL))
3144 return -1;
3145
3146 /*
3147 * The syscall was allowed by seccomp, restore the register
3148 * state to what audit expects.
3149 * Note that we use orig_gpr3, which means a seccomp tracer can
3150 * modify the first syscall parameter (in orig_gpr3) and also
3151 * allow the syscall to proceed.
3152 */
3153 regs->gpr[3] = regs->orig_gpr3;
3154
3155 return 0;
3156 }
3157 #else
3158 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
3159 #endif /* CONFIG_SECCOMP */
3160
3161 /**
3162 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
3163 * @regs: the pt_regs of the task to trace (current)
3164 *
3165 * Performs various types of tracing on syscall entry. This includes seccomp,
3166 * ptrace, syscall tracepoints and audit.
3167 *
3168 * The pt_regs are potentially visible to userspace via ptrace, so their
3169 * contents is ABI.
3170 *
3171 * One or more of the tracers may modify the contents of pt_regs, in particular
3172 * to modify arguments or even the syscall number itself.
3173 *
3174 * It's also possible that a tracer can choose to reject the system call. In
3175 * that case this function will return an illegal syscall number, and will put
3176 * an appropriate return value in regs->r3.
3177 *
3178 * Return: the (possibly changed) syscall number.
3179 */
3180 long do_syscall_trace_enter(struct pt_regs *regs)
3181 {
3182 user_exit();
3183
3184 /*
3185 * The tracer may decide to abort the syscall, if so tracehook
3186 * will return !0. Note that the tracer may also just change
3187 * regs->gpr[0] to an invalid syscall number, that is handled
3188 * below on the exit path.
3189 */
3190 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
3191 tracehook_report_syscall_entry(regs))
3192 goto skip;
3193
3194 /* Run seccomp after ptrace; allow it to set gpr[3]. */
3195 if (do_seccomp(regs))
3196 return -1;
3197
3198 /* Avoid trace and audit when syscall is invalid. */
3199 if (regs->gpr[0] >= NR_syscalls)
3200 goto skip;
3201
3202 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3203 trace_sys_enter(regs, regs->gpr[0]);
3204
3205 #ifdef CONFIG_PPC64
3206 if (!is_32bit_task())
3207 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
3208 regs->gpr[5], regs->gpr[6]);
3209 else
3210 #endif
3211 audit_syscall_entry(regs->gpr[0],
3212 regs->gpr[3] & 0xffffffff,
3213 regs->gpr[4] & 0xffffffff,
3214 regs->gpr[5] & 0xffffffff,
3215 regs->gpr[6] & 0xffffffff);
3216
3217 /* Return the possibly modified but valid syscall number */
3218 return regs->gpr[0];
3219
3220 skip:
3221 /*
3222 * If we are aborting explicitly, or if the syscall number is
3223 * now invalid, set the return value to -ENOSYS.
3224 */
3225 regs->gpr[3] = -ENOSYS;
3226 return -1;
3227 }
3228
3229 void do_syscall_trace_leave(struct pt_regs *regs)
3230 {
3231 int step;
3232
3233 audit_syscall_exit(regs);
3234
3235 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
3236 trace_sys_exit(regs, regs->result);
3237
3238 step = test_thread_flag(TIF_SINGLESTEP);
3239 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
3240 tracehook_report_syscall_exit(regs, step);
3241
3242 user_enter();
3243 }