]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/setup_64.c
4abb684584dcc4d1f69d2273ddaac401198355c0
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / setup_64.c
1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #define DEBUG
14
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40
41 #include <asm/debugfs.h>
42 #include <asm/io.h>
43 #include <asm/kdump.h>
44 #include <asm/prom.h>
45 #include <asm/processor.h>
46 #include <asm/pgtable.h>
47 #include <asm/smp.h>
48 #include <asm/elf.h>
49 #include <asm/machdep.h>
50 #include <asm/paca.h>
51 #include <asm/time.h>
52 #include <asm/cputable.h>
53 #include <asm/dt_cpu_ftrs.h>
54 #include <asm/sections.h>
55 #include <asm/btext.h>
56 #include <asm/nvram.h>
57 #include <asm/setup.h>
58 #include <asm/rtas.h>
59 #include <asm/iommu.h>
60 #include <asm/serial.h>
61 #include <asm/cache.h>
62 #include <asm/page.h>
63 #include <asm/mmu.h>
64 #include <asm/firmware.h>
65 #include <asm/xmon.h>
66 #include <asm/udbg.h>
67 #include <asm/kexec.h>
68 #include <asm/code-patching.h>
69 #include <asm/livepatch.h>
70 #include <asm/opal.h>
71 #include <asm/cputhreads.h>
72
73 #include "setup.h"
74
75 #ifdef DEBUG
76 #define DBG(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG(fmt...)
79 #endif
80
81 int spinning_secondaries;
82 u64 ppc64_pft_size;
83
84 struct ppc64_caches ppc64_caches = {
85 .l1d = {
86 .block_size = 0x40,
87 .log_block_size = 6,
88 },
89 .l1i = {
90 .block_size = 0x40,
91 .log_block_size = 6
92 },
93 };
94 EXPORT_SYMBOL_GPL(ppc64_caches);
95
96 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
97 void __init setup_tlb_core_data(void)
98 {
99 int cpu;
100
101 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
102
103 for_each_possible_cpu(cpu) {
104 int first = cpu_first_thread_sibling(cpu);
105
106 /*
107 * If we boot via kdump on a non-primary thread,
108 * make sure we point at the thread that actually
109 * set up this TLB.
110 */
111 if (cpu_first_thread_sibling(boot_cpuid) == first)
112 first = boot_cpuid;
113
114 paca[cpu].tcd_ptr = &paca[first].tcd;
115
116 /*
117 * If we have threads, we need either tlbsrx.
118 * or e6500 tablewalk mode, or else TLB handlers
119 * will be racy and could produce duplicate entries.
120 * Should we panic instead?
121 */
122 WARN_ONCE(smt_enabled_at_boot >= 2 &&
123 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
124 book3e_htw_mode != PPC_HTW_E6500,
125 "%s: unsupported MMU configuration\n", __func__);
126 }
127 }
128 #endif
129
130 #ifdef CONFIG_SMP
131
132 static char *smt_enabled_cmdline;
133
134 /* Look for ibm,smt-enabled OF option */
135 void __init check_smt_enabled(void)
136 {
137 struct device_node *dn;
138 const char *smt_option;
139
140 /* Default to enabling all threads */
141 smt_enabled_at_boot = threads_per_core;
142
143 /* Allow the command line to overrule the OF option */
144 if (smt_enabled_cmdline) {
145 if (!strcmp(smt_enabled_cmdline, "on"))
146 smt_enabled_at_boot = threads_per_core;
147 else if (!strcmp(smt_enabled_cmdline, "off"))
148 smt_enabled_at_boot = 0;
149 else {
150 int smt;
151 int rc;
152
153 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
154 if (!rc)
155 smt_enabled_at_boot =
156 min(threads_per_core, smt);
157 }
158 } else {
159 dn = of_find_node_by_path("/options");
160 if (dn) {
161 smt_option = of_get_property(dn, "ibm,smt-enabled",
162 NULL);
163
164 if (smt_option) {
165 if (!strcmp(smt_option, "on"))
166 smt_enabled_at_boot = threads_per_core;
167 else if (!strcmp(smt_option, "off"))
168 smt_enabled_at_boot = 0;
169 }
170
171 of_node_put(dn);
172 }
173 }
174 }
175
176 /* Look for smt-enabled= cmdline option */
177 static int __init early_smt_enabled(char *p)
178 {
179 smt_enabled_cmdline = p;
180 return 0;
181 }
182 early_param("smt-enabled", early_smt_enabled);
183
184 #endif /* CONFIG_SMP */
185
186 /** Fix up paca fields required for the boot cpu */
187 static void __init fixup_boot_paca(void)
188 {
189 /* The boot cpu is started */
190 get_paca()->cpu_start = 1;
191 /* Allow percpu accesses to work until we setup percpu data */
192 get_paca()->data_offset = 0;
193 }
194
195 static void __init configure_exceptions(void)
196 {
197 /*
198 * Setup the trampolines from the lowmem exception vectors
199 * to the kdump kernel when not using a relocatable kernel.
200 */
201 setup_kdump_trampoline();
202
203 /* Under a PAPR hypervisor, we need hypercalls */
204 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
205 /* Enable AIL if possible */
206 pseries_enable_reloc_on_exc();
207
208 /*
209 * Tell the hypervisor that we want our exceptions to
210 * be taken in little endian mode.
211 *
212 * We don't call this for big endian as our calling convention
213 * makes us always enter in BE, and the call may fail under
214 * some circumstances with kdump.
215 */
216 #ifdef __LITTLE_ENDIAN__
217 pseries_little_endian_exceptions();
218 #endif
219 } else {
220 /* Set endian mode using OPAL */
221 if (firmware_has_feature(FW_FEATURE_OPAL))
222 opal_configure_cores();
223
224 /* AIL on native is done in cpu_ready_for_interrupts() */
225 }
226 }
227
228 static void cpu_ready_for_interrupts(void)
229 {
230 /*
231 * Enable AIL if supported, and we are in hypervisor mode. This
232 * is called once for every processor.
233 *
234 * If we are not in hypervisor mode the job is done once for
235 * the whole partition in configure_exceptions().
236 */
237 if (cpu_has_feature(CPU_FTR_HVMODE) &&
238 cpu_has_feature(CPU_FTR_ARCH_207S)) {
239 unsigned long lpcr = mfspr(SPRN_LPCR);
240 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
241 }
242
243 /*
244 * Fixup HFSCR:TM based on CPU features. The bit is set by our
245 * early asm init because at that point we haven't updated our
246 * CPU features from firmware and device-tree. Here we have,
247 * so let's do it.
248 */
249 if (cpu_has_feature(CPU_FTR_HVMODE) && !cpu_has_feature(CPU_FTR_TM_COMP))
250 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
251
252 /* Set IR and DR in PACA MSR */
253 get_paca()->kernel_msr = MSR_KERNEL;
254 }
255
256 /*
257 * Early initialization entry point. This is called by head.S
258 * with MMU translation disabled. We rely on the "feature" of
259 * the CPU that ignores the top 2 bits of the address in real
260 * mode so we can access kernel globals normally provided we
261 * only toy with things in the RMO region. From here, we do
262 * some early parsing of the device-tree to setup out MEMBLOCK
263 * data structures, and allocate & initialize the hash table
264 * and segment tables so we can start running with translation
265 * enabled.
266 *
267 * It is this function which will call the probe() callback of
268 * the various platform types and copy the matching one to the
269 * global ppc_md structure. Your platform can eventually do
270 * some very early initializations from the probe() routine, but
271 * this is not recommended, be very careful as, for example, the
272 * device-tree is not accessible via normal means at this point.
273 */
274
275 void __init early_setup(unsigned long dt_ptr)
276 {
277 static __initdata struct paca_struct boot_paca;
278
279 /* -------- printk is _NOT_ safe to use here ! ------- */
280
281 /* Try new device tree based feature discovery ... */
282 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
283 /* Otherwise use the old style CPU table */
284 identify_cpu(0, mfspr(SPRN_PVR));
285
286 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
287 initialise_paca(&boot_paca, 0);
288 setup_paca(&boot_paca);
289 fixup_boot_paca();
290
291 /* -------- printk is now safe to use ------- */
292
293 /* Enable early debugging if any specified (see udbg.h) */
294 udbg_early_init();
295
296 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
297
298 /*
299 * Do early initialization using the flattened device
300 * tree, such as retrieving the physical memory map or
301 * calculating/retrieving the hash table size.
302 */
303 early_init_devtree(__va(dt_ptr));
304
305 /* Now we know the logical id of our boot cpu, setup the paca. */
306 setup_paca(&paca[boot_cpuid]);
307 fixup_boot_paca();
308
309 /*
310 * Configure exception handlers. This include setting up trampolines
311 * if needed, setting exception endian mode, etc...
312 */
313 configure_exceptions();
314
315 /* Apply all the dynamic patching */
316 apply_feature_fixups();
317 setup_feature_keys();
318
319 /* Initialize the hash table or TLB handling */
320 early_init_mmu();
321
322 /*
323 * After firmware and early platform setup code has set things up,
324 * we note the SPR values for configurable control/performance
325 * registers, and use those as initial defaults.
326 */
327 record_spr_defaults();
328
329 /*
330 * At this point, we can let interrupts switch to virtual mode
331 * (the MMU has been setup), so adjust the MSR in the PACA to
332 * have IR and DR set and enable AIL if it exists
333 */
334 cpu_ready_for_interrupts();
335
336 DBG(" <- early_setup()\n");
337
338 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
339 /*
340 * This needs to be done *last* (after the above DBG() even)
341 *
342 * Right after we return from this function, we turn on the MMU
343 * which means the real-mode access trick that btext does will
344 * no longer work, it needs to switch to using a real MMU
345 * mapping. This call will ensure that it does
346 */
347 btext_map();
348 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
349 }
350
351 #ifdef CONFIG_SMP
352 void early_setup_secondary(void)
353 {
354 /* Mark interrupts disabled in PACA */
355 get_paca()->soft_enabled = 0;
356
357 /* Initialize the hash table or TLB handling */
358 early_init_mmu_secondary();
359
360 /*
361 * At this point, we can let interrupts switch to virtual mode
362 * (the MMU has been setup), so adjust the MSR in the PACA to
363 * have IR and DR set.
364 */
365 cpu_ready_for_interrupts();
366 }
367
368 #endif /* CONFIG_SMP */
369
370 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
371 static bool use_spinloop(void)
372 {
373 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
374 /*
375 * See comments in head_64.S -- not all platforms insert
376 * secondaries at __secondary_hold and wait at the spin
377 * loop.
378 */
379 if (firmware_has_feature(FW_FEATURE_OPAL))
380 return false;
381 return true;
382 }
383
384 /*
385 * When book3e boots from kexec, the ePAPR spin table does
386 * not get used.
387 */
388 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
389 }
390
391 void smp_release_cpus(void)
392 {
393 unsigned long *ptr;
394 int i;
395
396 if (!use_spinloop())
397 return;
398
399 DBG(" -> smp_release_cpus()\n");
400
401 /* All secondary cpus are spinning on a common spinloop, release them
402 * all now so they can start to spin on their individual paca
403 * spinloops. For non SMP kernels, the secondary cpus never get out
404 * of the common spinloop.
405 */
406
407 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
408 - PHYSICAL_START);
409 *ptr = ppc_function_entry(generic_secondary_smp_init);
410
411 /* And wait a bit for them to catch up */
412 for (i = 0; i < 100000; i++) {
413 mb();
414 HMT_low();
415 if (spinning_secondaries == 0)
416 break;
417 udelay(1);
418 }
419 DBG("spinning_secondaries = %d\n", spinning_secondaries);
420
421 DBG(" <- smp_release_cpus()\n");
422 }
423 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
424
425 /*
426 * Initialize some remaining members of the ppc64_caches and systemcfg
427 * structures
428 * (at least until we get rid of them completely). This is mostly some
429 * cache informations about the CPU that will be used by cache flush
430 * routines and/or provided to userland
431 */
432
433 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
434 u32 bsize, u32 sets)
435 {
436 info->size = size;
437 info->sets = sets;
438 info->line_size = lsize;
439 info->block_size = bsize;
440 info->log_block_size = __ilog2(bsize);
441 if (bsize)
442 info->blocks_per_page = PAGE_SIZE / bsize;
443 else
444 info->blocks_per_page = 0;
445
446 if (sets == 0)
447 info->assoc = 0xffff;
448 else
449 info->assoc = size / (sets * lsize);
450 }
451
452 static bool __init parse_cache_info(struct device_node *np,
453 bool icache,
454 struct ppc_cache_info *info)
455 {
456 static const char *ipropnames[] __initdata = {
457 "i-cache-size",
458 "i-cache-sets",
459 "i-cache-block-size",
460 "i-cache-line-size",
461 };
462 static const char *dpropnames[] __initdata = {
463 "d-cache-size",
464 "d-cache-sets",
465 "d-cache-block-size",
466 "d-cache-line-size",
467 };
468 const char **propnames = icache ? ipropnames : dpropnames;
469 const __be32 *sizep, *lsizep, *bsizep, *setsp;
470 u32 size, lsize, bsize, sets;
471 bool success = true;
472
473 size = 0;
474 sets = -1u;
475 lsize = bsize = cur_cpu_spec->dcache_bsize;
476 sizep = of_get_property(np, propnames[0], NULL);
477 if (sizep != NULL)
478 size = be32_to_cpu(*sizep);
479 setsp = of_get_property(np, propnames[1], NULL);
480 if (setsp != NULL)
481 sets = be32_to_cpu(*setsp);
482 bsizep = of_get_property(np, propnames[2], NULL);
483 lsizep = of_get_property(np, propnames[3], NULL);
484 if (bsizep == NULL)
485 bsizep = lsizep;
486 if (lsizep != NULL)
487 lsize = be32_to_cpu(*lsizep);
488 if (bsizep != NULL)
489 bsize = be32_to_cpu(*bsizep);
490 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
491 success = false;
492
493 /*
494 * OF is weird .. it represents fully associative caches
495 * as "1 way" which doesn't make much sense and doesn't
496 * leave room for direct mapped. We'll assume that 0
497 * in OF means direct mapped for that reason.
498 */
499 if (sets == 1)
500 sets = 0;
501 else if (sets == 0)
502 sets = 1;
503
504 init_cache_info(info, size, lsize, bsize, sets);
505
506 return success;
507 }
508
509 void __init initialize_cache_info(void)
510 {
511 struct device_node *cpu = NULL, *l2, *l3 = NULL;
512 u32 pvr;
513
514 DBG(" -> initialize_cache_info()\n");
515
516 /*
517 * All shipping POWER8 machines have a firmware bug that
518 * puts incorrect information in the device-tree. This will
519 * be (hopefully) fixed for future chips but for now hard
520 * code the values if we are running on one of these
521 */
522 pvr = PVR_VER(mfspr(SPRN_PVR));
523 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
524 pvr == PVR_POWER8NVL) {
525 /* size lsize blk sets */
526 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
527 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
528 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
529 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
530 } else
531 cpu = of_find_node_by_type(NULL, "cpu");
532
533 /*
534 * We're assuming *all* of the CPUs have the same
535 * d-cache and i-cache sizes... -Peter
536 */
537 if (cpu) {
538 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
539 DBG("Argh, can't find dcache properties !\n");
540
541 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
542 DBG("Argh, can't find icache properties !\n");
543
544 /*
545 * Try to find the L2 and L3 if any. Assume they are
546 * unified and use the D-side properties.
547 */
548 l2 = of_find_next_cache_node(cpu);
549 of_node_put(cpu);
550 if (l2) {
551 parse_cache_info(l2, false, &ppc64_caches.l2);
552 l3 = of_find_next_cache_node(l2);
553 of_node_put(l2);
554 }
555 if (l3) {
556 parse_cache_info(l3, false, &ppc64_caches.l3);
557 of_node_put(l3);
558 }
559 }
560
561 /* For use by binfmt_elf */
562 dcache_bsize = ppc64_caches.l1d.block_size;
563 icache_bsize = ppc64_caches.l1i.block_size;
564
565 cur_cpu_spec->dcache_bsize = dcache_bsize;
566 cur_cpu_spec->icache_bsize = icache_bsize;
567
568 DBG(" <- initialize_cache_info()\n");
569 }
570
571 /* This returns the limit below which memory accesses to the linear
572 * mapping are guarnateed not to cause a TLB or SLB miss. This is
573 * used to allocate interrupt or emergency stacks for which our
574 * exception entry path doesn't deal with being interrupted.
575 */
576 static __init u64 safe_stack_limit(void)
577 {
578 #ifdef CONFIG_PPC_BOOK3E
579 /* Freescale BookE bolts the entire linear mapping */
580 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
581 return linear_map_top;
582 /* Other BookE, we assume the first GB is bolted */
583 return 1ul << 30;
584 #else
585 if (early_radix_enabled())
586 return ULONG_MAX;
587
588 /* BookS, the first segment is bolted */
589 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
590 return 1UL << SID_SHIFT_1T;
591 return 1UL << SID_SHIFT;
592 #endif
593 }
594
595 void __init irqstack_early_init(void)
596 {
597 u64 limit = safe_stack_limit();
598 unsigned int i;
599
600 /*
601 * Interrupt stacks must be in the first segment since we
602 * cannot afford to take SLB misses on them. They are not
603 * accessed in realmode.
604 */
605 for_each_possible_cpu(i) {
606 softirq_ctx[i] = (struct thread_info *)
607 __va(memblock_alloc_base(THREAD_SIZE,
608 THREAD_SIZE, limit));
609 hardirq_ctx[i] = (struct thread_info *)
610 __va(memblock_alloc_base(THREAD_SIZE,
611 THREAD_SIZE, limit));
612 }
613 }
614
615 #ifdef CONFIG_PPC_BOOK3E
616 void __init exc_lvl_early_init(void)
617 {
618 unsigned int i;
619 unsigned long sp;
620
621 for_each_possible_cpu(i) {
622 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
623 critirq_ctx[i] = (struct thread_info *)__va(sp);
624 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
625
626 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
627 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
628 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
629
630 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
631 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
632 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
633 }
634
635 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
636 patch_exception(0x040, exc_debug_debug_book3e);
637 }
638 #endif
639
640 /*
641 * Emergency stacks are used for a range of things, from asynchronous
642 * NMIs (system reset, machine check) to synchronous, process context.
643 * We set preempt_count to zero, even though that isn't necessarily correct. To
644 * get the right value we'd need to copy it from the previous thread_info, but
645 * doing that might fault causing more problems.
646 * TODO: what to do with accounting?
647 */
648 static void emerg_stack_init_thread_info(struct thread_info *ti, int cpu)
649 {
650 ti->task = NULL;
651 ti->cpu = cpu;
652 ti->preempt_count = 0;
653 ti->local_flags = 0;
654 ti->flags = 0;
655 klp_init_thread_info(ti);
656 }
657
658 /*
659 * Stack space used when we detect a bad kernel stack pointer, and
660 * early in SMP boots before relocation is enabled. Exclusive emergency
661 * stack for machine checks.
662 */
663 void __init emergency_stack_init(void)
664 {
665 u64 limit;
666 unsigned int i;
667
668 /*
669 * Emergency stacks must be under 256MB, we cannot afford to take
670 * SLB misses on them. The ABI also requires them to be 128-byte
671 * aligned.
672 *
673 * Since we use these as temporary stacks during secondary CPU
674 * bringup, machine check, system reset, and HMI, we need to get
675 * at them in real mode. This means they must also be within the RMO
676 * region.
677 *
678 * The IRQ stacks allocated elsewhere in this file are zeroed and
679 * initialized in kernel/irq.c. These are initialized here in order
680 * to have emergency stacks available as early as possible.
681 */
682 limit = min(safe_stack_limit(), ppc64_rma_size);
683
684 for_each_possible_cpu(i) {
685 struct thread_info *ti;
686 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
687 memset(ti, 0, THREAD_SIZE);
688 emerg_stack_init_thread_info(ti, i);
689 paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
690
691 #ifdef CONFIG_PPC_BOOK3S_64
692 /* emergency stack for NMI exception handling. */
693 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
694 memset(ti, 0, THREAD_SIZE);
695 emerg_stack_init_thread_info(ti, i);
696 paca[i].nmi_emergency_sp = (void *)ti + THREAD_SIZE;
697
698 /* emergency stack for machine check exception handling. */
699 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
700 memset(ti, 0, THREAD_SIZE);
701 emerg_stack_init_thread_info(ti, i);
702 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
703 #endif
704 }
705 }
706
707 #ifdef CONFIG_SMP
708 #define PCPU_DYN_SIZE ()
709
710 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
711 {
712 return __alloc_bootmem_node(NODE_DATA(early_cpu_to_node(cpu)), size, align,
713 __pa(MAX_DMA_ADDRESS));
714 }
715
716 static void __init pcpu_fc_free(void *ptr, size_t size)
717 {
718 free_bootmem(__pa(ptr), size);
719 }
720
721 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
722 {
723 if (early_cpu_to_node(from) == early_cpu_to_node(to))
724 return LOCAL_DISTANCE;
725 else
726 return REMOTE_DISTANCE;
727 }
728
729 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
730 EXPORT_SYMBOL(__per_cpu_offset);
731
732 void __init setup_per_cpu_areas(void)
733 {
734 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
735 size_t atom_size;
736 unsigned long delta;
737 unsigned int cpu;
738 int rc;
739
740 /*
741 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
742 * to group units. For larger mappings, use 1M atom which
743 * should be large enough to contain a number of units.
744 */
745 if (mmu_linear_psize == MMU_PAGE_4K)
746 atom_size = PAGE_SIZE;
747 else
748 atom_size = 1 << 20;
749
750 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
751 pcpu_fc_alloc, pcpu_fc_free);
752 if (rc < 0)
753 panic("cannot initialize percpu area (err=%d)", rc);
754
755 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
756 for_each_possible_cpu(cpu) {
757 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
758 paca[cpu].data_offset = __per_cpu_offset[cpu];
759 }
760 }
761 #endif
762
763 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
764 unsigned long memory_block_size_bytes(void)
765 {
766 if (ppc_md.memory_block_size)
767 return ppc_md.memory_block_size();
768
769 return MIN_MEMORY_BLOCK_SIZE;
770 }
771 #endif
772
773 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
774 struct ppc_pci_io ppc_pci_io;
775 EXPORT_SYMBOL(ppc_pci_io);
776 #endif
777
778 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
779 u64 hw_nmi_get_sample_period(int watchdog_thresh)
780 {
781 return ppc_proc_freq * watchdog_thresh;
782 }
783 #endif
784
785 /*
786 * The perf based hardlockup detector breaks PMU event based branches, so
787 * disable it by default. Book3S has a soft-nmi hardlockup detector based
788 * on the decrementer interrupt, so it does not suffer from this problem.
789 *
790 * It is likely to get false positives in VM guests, so disable it there
791 * by default too.
792 */
793 static int __init disable_hardlockup_detector(void)
794 {
795 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
796 hardlockup_detector_disable();
797 #else
798 if (firmware_has_feature(FW_FEATURE_LPAR))
799 hardlockup_detector_disable();
800 #endif
801
802 return 0;
803 }
804 early_initcall(disable_hardlockup_detector);
805
806 #ifdef CONFIG_PPC_BOOK3S_64
807 static enum l1d_flush_type enabled_flush_types;
808 static void *l1d_flush_fallback_area;
809 static bool no_rfi_flush;
810 bool rfi_flush;
811
812 static int __init handle_no_rfi_flush(char *p)
813 {
814 pr_info("rfi-flush: disabled on command line.");
815 no_rfi_flush = true;
816 return 0;
817 }
818 early_param("no_rfi_flush", handle_no_rfi_flush);
819
820 /*
821 * The RFI flush is not KPTI, but because users will see doco that says to use
822 * nopti we hijack that option here to also disable the RFI flush.
823 */
824 static int __init handle_no_pti(char *p)
825 {
826 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
827 handle_no_rfi_flush(NULL);
828 return 0;
829 }
830 early_param("nopti", handle_no_pti);
831
832 static void do_nothing(void *unused)
833 {
834 /*
835 * We don't need to do the flush explicitly, just enter+exit kernel is
836 * sufficient, the RFI exit handlers will do the right thing.
837 */
838 }
839
840 void rfi_flush_enable(bool enable)
841 {
842 if (enable) {
843 do_rfi_flush_fixups(enabled_flush_types);
844 on_each_cpu(do_nothing, NULL, 1);
845 } else
846 do_rfi_flush_fixups(L1D_FLUSH_NONE);
847
848 rfi_flush = enable;
849 }
850
851 static void __ref init_fallback_flush(void)
852 {
853 u64 l1d_size, limit;
854 int cpu;
855
856 /* Only allocate the fallback flush area once (at boot time). */
857 if (l1d_flush_fallback_area)
858 return;
859
860 l1d_size = ppc64_caches.l1d.size;
861 limit = min(safe_stack_limit(), ppc64_rma_size);
862
863 /*
864 * Align to L1d size, and size it at 2x L1d size, to catch possible
865 * hardware prefetch runoff. We don't have a recipe for load patterns to
866 * reliably avoid the prefetcher.
867 */
868 l1d_flush_fallback_area = __va(memblock_alloc_base(l1d_size * 2, l1d_size, limit));
869 memset(l1d_flush_fallback_area, 0, l1d_size * 2);
870
871 for_each_possible_cpu(cpu) {
872 paca[cpu].rfi_flush_fallback_area = l1d_flush_fallback_area;
873 paca[cpu].l1d_flush_size = l1d_size;
874 }
875 }
876
877 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
878 {
879 if (types & L1D_FLUSH_FALLBACK) {
880 pr_info("rfi-flush: fallback displacement flush available\n");
881 init_fallback_flush();
882 }
883
884 if (types & L1D_FLUSH_ORI)
885 pr_info("rfi-flush: ori type flush available\n");
886
887 if (types & L1D_FLUSH_MTTRIG)
888 pr_info("rfi-flush: mttrig type flush available\n");
889
890 enabled_flush_types = types;
891
892 if (!no_rfi_flush)
893 rfi_flush_enable(enable);
894 }
895
896 #ifdef CONFIG_DEBUG_FS
897 static int rfi_flush_set(void *data, u64 val)
898 {
899 bool enable;
900
901 if (val == 1)
902 enable = true;
903 else if (val == 0)
904 enable = false;
905 else
906 return -EINVAL;
907
908 /* Only do anything if we're changing state */
909 if (enable != rfi_flush)
910 rfi_flush_enable(enable);
911
912 return 0;
913 }
914
915 static int rfi_flush_get(void *data, u64 *val)
916 {
917 *val = rfi_flush ? 1 : 0;
918 return 0;
919 }
920
921 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
922
923 static __init int rfi_flush_debugfs_init(void)
924 {
925 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
926 return 0;
927 }
928 device_initcall(rfi_flush_debugfs_init);
929 #endif
930 #endif /* CONFIG_PPC_BOOK3S_64 */