]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/kernel/setup_64.c
powerpc/kexec: Switch to a static PACA on the way out
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / kernel / setup_64.c
1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #undef DEBUG
14
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/lmb.h>
38 #include <asm/io.h>
39 #include <asm/kdump.h>
40 #include <asm/prom.h>
41 #include <asm/processor.h>
42 #include <asm/pgtable.h>
43 #include <asm/smp.h>
44 #include <asm/elf.h>
45 #include <asm/machdep.h>
46 #include <asm/paca.h>
47 #include <asm/time.h>
48 #include <asm/cputable.h>
49 #include <asm/sections.h>
50 #include <asm/btext.h>
51 #include <asm/nvram.h>
52 #include <asm/setup.h>
53 #include <asm/system.h>
54 #include <asm/rtas.h>
55 #include <asm/iommu.h>
56 #include <asm/serial.h>
57 #include <asm/cache.h>
58 #include <asm/page.h>
59 #include <asm/mmu.h>
60 #include <asm/firmware.h>
61 #include <asm/xmon.h>
62 #include <asm/udbg.h>
63 #include <asm/kexec.h>
64 #include <asm/mmu_context.h>
65
66 #include "setup.h"
67
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73
74 int boot_cpuid = 0;
75 u64 ppc64_pft_size;
76
77 /* Pick defaults since we might want to patch instructions
78 * before we've read this from the device tree.
79 */
80 struct ppc64_caches ppc64_caches = {
81 .dline_size = 0x40,
82 .log_dline_size = 6,
83 .iline_size = 0x40,
84 .log_iline_size = 6
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87
88 /*
89 * These are used in binfmt_elf.c to put aux entries on the stack
90 * for each elf executable being started.
91 */
92 int dcache_bsize;
93 int icache_bsize;
94 int ucache_bsize;
95
96 #ifdef CONFIG_SMP
97
98 static int smt_enabled_cmdline;
99
100 /* Look for ibm,smt-enabled OF option */
101 static void check_smt_enabled(void)
102 {
103 struct device_node *dn;
104 const char *smt_option;
105
106 /* Allow the command line to overrule the OF option */
107 if (smt_enabled_cmdline)
108 return;
109
110 dn = of_find_node_by_path("/options");
111
112 if (dn) {
113 smt_option = of_get_property(dn, "ibm,smt-enabled", NULL);
114
115 if (smt_option) {
116 if (!strcmp(smt_option, "on"))
117 smt_enabled_at_boot = 1;
118 else if (!strcmp(smt_option, "off"))
119 smt_enabled_at_boot = 0;
120 }
121 }
122 }
123
124 /* Look for smt-enabled= cmdline option */
125 static int __init early_smt_enabled(char *p)
126 {
127 smt_enabled_cmdline = 1;
128
129 if (!p)
130 return 0;
131
132 if (!strcmp(p, "on") || !strcmp(p, "1"))
133 smt_enabled_at_boot = 1;
134 else if (!strcmp(p, "off") || !strcmp(p, "0"))
135 smt_enabled_at_boot = 0;
136
137 return 0;
138 }
139 early_param("smt-enabled", early_smt_enabled);
140
141 #else
142 #define check_smt_enabled()
143 #endif /* CONFIG_SMP */
144
145 /*
146 * Early initialization entry point. This is called by head.S
147 * with MMU translation disabled. We rely on the "feature" of
148 * the CPU that ignores the top 2 bits of the address in real
149 * mode so we can access kernel globals normally provided we
150 * only toy with things in the RMO region. From here, we do
151 * some early parsing of the device-tree to setup out LMB
152 * data structures, and allocate & initialize the hash table
153 * and segment tables so we can start running with translation
154 * enabled.
155 *
156 * It is this function which will call the probe() callback of
157 * the various platform types and copy the matching one to the
158 * global ppc_md structure. Your platform can eventually do
159 * some very early initializations from the probe() routine, but
160 * this is not recommended, be very careful as, for example, the
161 * device-tree is not accessible via normal means at this point.
162 */
163
164 void __init early_setup(unsigned long dt_ptr)
165 {
166 /* -------- printk is _NOT_ safe to use here ! ------- */
167
168 /* Identify CPU type */
169 identify_cpu(0, mfspr(SPRN_PVR));
170
171 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
172 initialise_paca(&boot_paca, 0);
173 setup_paca(&boot_paca);
174
175 /* Initialize lockdep early or else spinlocks will blow */
176 lockdep_init();
177
178 /* -------- printk is now safe to use ------- */
179
180 /* Enable early debugging if any specified (see udbg.h) */
181 udbg_early_init();
182
183 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
184
185 /*
186 * Do early initialization using the flattened device
187 * tree, such as retrieving the physical memory map or
188 * calculating/retrieving the hash table size.
189 */
190 early_init_devtree(__va(dt_ptr));
191
192 /* Now we know the logical id of our boot cpu, setup the paca. */
193 setup_paca(&paca[boot_cpuid]);
194
195 /* Fix up paca fields required for the boot cpu */
196 get_paca()->cpu_start = 1;
197
198 /* Probe the machine type */
199 probe_machine();
200
201 setup_kdump_trampoline();
202
203 DBG("Found, Initializing memory management...\n");
204
205 /* Initialize the hash table or TLB handling */
206 early_init_mmu();
207
208 DBG(" <- early_setup()\n");
209 }
210
211 #ifdef CONFIG_SMP
212 void early_setup_secondary(void)
213 {
214 /* Mark interrupts enabled in PACA */
215 get_paca()->soft_enabled = 0;
216
217 /* Initialize the hash table or TLB handling */
218 early_init_mmu_secondary();
219 }
220
221 #endif /* CONFIG_SMP */
222
223 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
224 void smp_release_cpus(void)
225 {
226 unsigned long *ptr;
227
228 DBG(" -> smp_release_cpus()\n");
229
230 /* All secondary cpus are spinning on a common spinloop, release them
231 * all now so they can start to spin on their individual paca
232 * spinloops. For non SMP kernels, the secondary cpus never get out
233 * of the common spinloop.
234 */
235
236 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
237 - PHYSICAL_START);
238 *ptr = __pa(generic_secondary_smp_init);
239 mb();
240
241 DBG(" <- smp_release_cpus()\n");
242 }
243 #endif /* CONFIG_SMP || CONFIG_KEXEC */
244
245 /*
246 * Initialize some remaining members of the ppc64_caches and systemcfg
247 * structures
248 * (at least until we get rid of them completely). This is mostly some
249 * cache informations about the CPU that will be used by cache flush
250 * routines and/or provided to userland
251 */
252 static void __init initialize_cache_info(void)
253 {
254 struct device_node *np;
255 unsigned long num_cpus = 0;
256
257 DBG(" -> initialize_cache_info()\n");
258
259 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
260 num_cpus += 1;
261
262 /* We're assuming *all* of the CPUs have the same
263 * d-cache and i-cache sizes... -Peter
264 */
265
266 if ( num_cpus == 1 ) {
267 const u32 *sizep, *lsizep;
268 u32 size, lsize;
269
270 size = 0;
271 lsize = cur_cpu_spec->dcache_bsize;
272 sizep = of_get_property(np, "d-cache-size", NULL);
273 if (sizep != NULL)
274 size = *sizep;
275 lsizep = of_get_property(np, "d-cache-block-size", NULL);
276 /* fallback if block size missing */
277 if (lsizep == NULL)
278 lsizep = of_get_property(np, "d-cache-line-size", NULL);
279 if (lsizep != NULL)
280 lsize = *lsizep;
281 if (sizep == 0 || lsizep == 0)
282 DBG("Argh, can't find dcache properties ! "
283 "sizep: %p, lsizep: %p\n", sizep, lsizep);
284
285 ppc64_caches.dsize = size;
286 ppc64_caches.dline_size = lsize;
287 ppc64_caches.log_dline_size = __ilog2(lsize);
288 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
289
290 size = 0;
291 lsize = cur_cpu_spec->icache_bsize;
292 sizep = of_get_property(np, "i-cache-size", NULL);
293 if (sizep != NULL)
294 size = *sizep;
295 lsizep = of_get_property(np, "i-cache-block-size", NULL);
296 if (lsizep == NULL)
297 lsizep = of_get_property(np, "i-cache-line-size", NULL);
298 if (lsizep != NULL)
299 lsize = *lsizep;
300 if (sizep == 0 || lsizep == 0)
301 DBG("Argh, can't find icache properties ! "
302 "sizep: %p, lsizep: %p\n", sizep, lsizep);
303
304 ppc64_caches.isize = size;
305 ppc64_caches.iline_size = lsize;
306 ppc64_caches.log_iline_size = __ilog2(lsize);
307 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
308 }
309 }
310
311 DBG(" <- initialize_cache_info()\n");
312 }
313
314
315 /*
316 * Do some initial setup of the system. The parameters are those which
317 * were passed in from the bootloader.
318 */
319 void __init setup_system(void)
320 {
321 DBG(" -> setup_system()\n");
322
323 /* Apply the CPUs-specific and firmware specific fixups to kernel
324 * text (nop out sections not relevant to this CPU or this firmware)
325 */
326 do_feature_fixups(cur_cpu_spec->cpu_features,
327 &__start___ftr_fixup, &__stop___ftr_fixup);
328 do_feature_fixups(cur_cpu_spec->mmu_features,
329 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup);
330 do_feature_fixups(powerpc_firmware_features,
331 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup);
332 do_lwsync_fixups(cur_cpu_spec->cpu_features,
333 &__start___lwsync_fixup, &__stop___lwsync_fixup);
334
335 /*
336 * Unflatten the device-tree passed by prom_init or kexec
337 */
338 unflatten_device_tree();
339
340 /*
341 * Fill the ppc64_caches & systemcfg structures with informations
342 * retrieved from the device-tree.
343 */
344 initialize_cache_info();
345
346 #ifdef CONFIG_PPC_RTAS
347 /*
348 * Initialize RTAS if available
349 */
350 rtas_initialize();
351 #endif /* CONFIG_PPC_RTAS */
352
353 /*
354 * Check if we have an initrd provided via the device-tree
355 */
356 check_for_initrd();
357
358 /*
359 * Do some platform specific early initializations, that includes
360 * setting up the hash table pointers. It also sets up some interrupt-mapping
361 * related options that will be used by finish_device_tree()
362 */
363 if (ppc_md.init_early)
364 ppc_md.init_early();
365
366 /*
367 * We can discover serial ports now since the above did setup the
368 * hash table management for us, thus ioremap works. We do that early
369 * so that further code can be debugged
370 */
371 find_legacy_serial_ports();
372
373 /*
374 * Register early console
375 */
376 register_early_udbg_console();
377
378 /*
379 * Initialize xmon
380 */
381 xmon_setup();
382
383 check_smt_enabled();
384 smp_setup_cpu_maps();
385
386 #ifdef CONFIG_SMP
387 /* Release secondary cpus out of their spinloops at 0x60 now that
388 * we can map physical -> logical CPU ids
389 */
390 smp_release_cpus();
391 #endif
392
393 printk("Starting Linux PPC64 %s\n", init_utsname()->version);
394
395 printk("-----------------------------------------------------\n");
396 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size);
397 printk("physicalMemorySize = 0x%llx\n", lmb_phys_mem_size());
398 if (ppc64_caches.dline_size != 0x80)
399 printk("ppc64_caches.dcache_line_size = 0x%x\n",
400 ppc64_caches.dline_size);
401 if (ppc64_caches.iline_size != 0x80)
402 printk("ppc64_caches.icache_line_size = 0x%x\n",
403 ppc64_caches.iline_size);
404 #ifdef CONFIG_PPC_STD_MMU_64
405 if (htab_address)
406 printk("htab_address = 0x%p\n", htab_address);
407 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
408 #endif /* CONFIG_PPC_STD_MMU_64 */
409 if (PHYSICAL_START > 0)
410 printk("physical_start = 0x%llx\n",
411 (unsigned long long)PHYSICAL_START);
412 printk("-----------------------------------------------------\n");
413
414 DBG(" <- setup_system()\n");
415 }
416
417 static u64 slb0_limit(void)
418 {
419 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
420 return 1UL << SID_SHIFT_1T;
421 }
422 return 1UL << SID_SHIFT;
423 }
424
425 static void __init irqstack_early_init(void)
426 {
427 u64 limit = slb0_limit();
428 unsigned int i;
429
430 /*
431 * interrupt stacks must be under 256MB, we cannot afford to take
432 * SLB misses on them.
433 */
434 for_each_possible_cpu(i) {
435 softirq_ctx[i] = (struct thread_info *)
436 __va(lmb_alloc_base(THREAD_SIZE,
437 THREAD_SIZE, limit));
438 hardirq_ctx[i] = (struct thread_info *)
439 __va(lmb_alloc_base(THREAD_SIZE,
440 THREAD_SIZE, limit));
441 }
442 }
443
444 #ifdef CONFIG_PPC_BOOK3E
445 static void __init exc_lvl_early_init(void)
446 {
447 unsigned int i;
448
449 for_each_possible_cpu(i) {
450 critirq_ctx[i] = (struct thread_info *)
451 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
452 dbgirq_ctx[i] = (struct thread_info *)
453 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
454 mcheckirq_ctx[i] = (struct thread_info *)
455 __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
456 }
457 }
458 #else
459 #define exc_lvl_early_init()
460 #endif
461
462 /*
463 * Stack space used when we detect a bad kernel stack pointer, and
464 * early in SMP boots before relocation is enabled.
465 */
466 static void __init emergency_stack_init(void)
467 {
468 u64 limit;
469 unsigned int i;
470
471 /*
472 * Emergency stacks must be under 256MB, we cannot afford to take
473 * SLB misses on them. The ABI also requires them to be 128-byte
474 * aligned.
475 *
476 * Since we use these as temporary stacks during secondary CPU
477 * bringup, we need to get at them in real mode. This means they
478 * must also be within the RMO region.
479 */
480 limit = min(slb0_limit(), lmb.rmo_size);
481
482 for_each_possible_cpu(i) {
483 unsigned long sp;
484 sp = lmb_alloc_base(THREAD_SIZE, THREAD_SIZE, limit);
485 sp += THREAD_SIZE;
486 paca[i].emergency_sp = __va(sp);
487 }
488 }
489
490 /*
491 * Called into from start_kernel, after lock_kernel has been called.
492 * Initializes bootmem, which is unsed to manage page allocation until
493 * mem_init is called.
494 */
495 void __init setup_arch(char **cmdline_p)
496 {
497 ppc64_boot_msg(0x12, "Setup Arch");
498
499 *cmdline_p = cmd_line;
500
501 /*
502 * Set cache line size based on type of cpu as a default.
503 * Systems with OF can look in the properties on the cpu node(s)
504 * for a possibly more accurate value.
505 */
506 dcache_bsize = ppc64_caches.dline_size;
507 icache_bsize = ppc64_caches.iline_size;
508
509 /* reboot on panic */
510 panic_timeout = 180;
511
512 if (ppc_md.panic)
513 setup_panic();
514
515 init_mm.start_code = (unsigned long)_stext;
516 init_mm.end_code = (unsigned long) _etext;
517 init_mm.end_data = (unsigned long) _edata;
518 init_mm.brk = klimit;
519
520 irqstack_early_init();
521 exc_lvl_early_init();
522 emergency_stack_init();
523
524 #ifdef CONFIG_PPC_STD_MMU_64
525 stabs_alloc();
526 #endif
527 /* set up the bootmem stuff with available memory */
528 do_init_bootmem();
529 sparse_init();
530
531 #ifdef CONFIG_DUMMY_CONSOLE
532 conswitchp = &dummy_con;
533 #endif
534
535 if (ppc_md.setup_arch)
536 ppc_md.setup_arch();
537
538 paging_init();
539
540 /* Initialize the MMU context management stuff */
541 mmu_context_init();
542
543 ppc64_boot_msg(0x15, "Setup Done");
544 }
545
546
547 /* ToDo: do something useful if ppc_md is not yet setup. */
548 #define PPC64_LINUX_FUNCTION 0x0f000000
549 #define PPC64_IPL_MESSAGE 0xc0000000
550 #define PPC64_TERM_MESSAGE 0xb0000000
551
552 static void ppc64_do_msg(unsigned int src, const char *msg)
553 {
554 if (ppc_md.progress) {
555 char buf[128];
556
557 sprintf(buf, "%08X\n", src);
558 ppc_md.progress(buf, 0);
559 snprintf(buf, 128, "%s", msg);
560 ppc_md.progress(buf, 0);
561 }
562 }
563
564 /* Print a boot progress message. */
565 void ppc64_boot_msg(unsigned int src, const char *msg)
566 {
567 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
568 printk("[boot]%04x %s\n", src, msg);
569 }
570
571 #ifdef CONFIG_SMP
572 #define PCPU_DYN_SIZE ()
573
574 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
575 {
576 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
577 __pa(MAX_DMA_ADDRESS));
578 }
579
580 static void __init pcpu_fc_free(void *ptr, size_t size)
581 {
582 free_bootmem(__pa(ptr), size);
583 }
584
585 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
586 {
587 if (cpu_to_node(from) == cpu_to_node(to))
588 return LOCAL_DISTANCE;
589 else
590 return REMOTE_DISTANCE;
591 }
592
593 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
594 EXPORT_SYMBOL(__per_cpu_offset);
595
596 void __init setup_per_cpu_areas(void)
597 {
598 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
599 size_t atom_size;
600 unsigned long delta;
601 unsigned int cpu;
602 int rc;
603
604 /*
605 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
606 * to group units. For larger mappings, use 1M atom which
607 * should be large enough to contain a number of units.
608 */
609 if (mmu_linear_psize == MMU_PAGE_4K)
610 atom_size = PAGE_SIZE;
611 else
612 atom_size = 1 << 20;
613
614 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
615 pcpu_fc_alloc, pcpu_fc_free);
616 if (rc < 0)
617 panic("cannot initialize percpu area (err=%d)", rc);
618
619 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
620 for_each_possible_cpu(cpu) {
621 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
622 paca[cpu].data_offset = __per_cpu_offset[cpu];
623 }
624 }
625 #endif
626
627
628 #ifdef CONFIG_PPC_INDIRECT_IO
629 struct ppc_pci_io ppc_pci_io;
630 EXPORT_SYMBOL(ppc_pci_io);
631 #endif /* CONFIG_PPC_INDIRECT_IO */
632