]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/setup_64.c
b9855f1b290af32b4392cf8ad35e0c13d8e1db54
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / setup_64.c
1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #define DEBUG
14
15 #include <linux/export.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/seq_file.h>
24 #include <linux/ioport.h>
25 #include <linux/console.h>
26 #include <linux/utsname.h>
27 #include <linux/tty.h>
28 #include <linux/root_dev.h>
29 #include <linux/notifier.h>
30 #include <linux/cpu.h>
31 #include <linux/unistd.h>
32 #include <linux/serial.h>
33 #include <linux/serial_8250.h>
34 #include <linux/bootmem.h>
35 #include <linux/pci.h>
36 #include <linux/lockdep.h>
37 #include <linux/memblock.h>
38 #include <linux/memory.h>
39 #include <linux/nmi.h>
40
41 #include <asm/io.h>
42 #include <asm/kdump.h>
43 #include <asm/prom.h>
44 #include <asm/processor.h>
45 #include <asm/pgtable.h>
46 #include <asm/smp.h>
47 #include <asm/elf.h>
48 #include <asm/machdep.h>
49 #include <asm/paca.h>
50 #include <asm/time.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/btext.h>
54 #include <asm/nvram.h>
55 #include <asm/setup.h>
56 #include <asm/rtas.h>
57 #include <asm/iommu.h>
58 #include <asm/serial.h>
59 #include <asm/cache.h>
60 #include <asm/page.h>
61 #include <asm/mmu.h>
62 #include <asm/firmware.h>
63 #include <asm/xmon.h>
64 #include <asm/udbg.h>
65 #include <asm/kexec.h>
66 #include <asm/code-patching.h>
67 #include <asm/livepatch.h>
68 #include <asm/opal.h>
69 #include <asm/cputhreads.h>
70
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79
80 struct ppc64_caches ppc64_caches = {
81 .l1d = {
82 .block_size = 0x40,
83 .log_block_size = 6,
84 },
85 .l1i = {
86 .block_size = 0x40,
87 .log_block_size = 6
88 },
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
93 void __init setup_tlb_core_data(void)
94 {
95 int cpu;
96
97 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98
99 for_each_possible_cpu(cpu) {
100 int first = cpu_first_thread_sibling(cpu);
101
102 /*
103 * If we boot via kdump on a non-primary thread,
104 * make sure we point at the thread that actually
105 * set up this TLB.
106 */
107 if (cpu_first_thread_sibling(boot_cpuid) == first)
108 first = boot_cpuid;
109
110 paca[cpu].tcd_ptr = &paca[first].tcd;
111
112 /*
113 * If we have threads, we need either tlbsrx.
114 * or e6500 tablewalk mode, or else TLB handlers
115 * will be racy and could produce duplicate entries.
116 */
117 if (smt_enabled_at_boot >= 2 &&
118 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
119 book3e_htw_mode != PPC_HTW_E6500) {
120 /* Should we panic instead? */
121 WARN_ONCE("%s: unsupported MMU configuration -- expect problems\n",
122 __func__);
123 }
124 }
125 }
126 #endif
127
128 #ifdef CONFIG_SMP
129
130 static char *smt_enabled_cmdline;
131
132 /* Look for ibm,smt-enabled OF option */
133 void __init check_smt_enabled(void)
134 {
135 struct device_node *dn;
136 const char *smt_option;
137
138 /* Default to enabling all threads */
139 smt_enabled_at_boot = threads_per_core;
140
141 /* Allow the command line to overrule the OF option */
142 if (smt_enabled_cmdline) {
143 if (!strcmp(smt_enabled_cmdline, "on"))
144 smt_enabled_at_boot = threads_per_core;
145 else if (!strcmp(smt_enabled_cmdline, "off"))
146 smt_enabled_at_boot = 0;
147 else {
148 int smt;
149 int rc;
150
151 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
152 if (!rc)
153 smt_enabled_at_boot =
154 min(threads_per_core, smt);
155 }
156 } else {
157 dn = of_find_node_by_path("/options");
158 if (dn) {
159 smt_option = of_get_property(dn, "ibm,smt-enabled",
160 NULL);
161
162 if (smt_option) {
163 if (!strcmp(smt_option, "on"))
164 smt_enabled_at_boot = threads_per_core;
165 else if (!strcmp(smt_option, "off"))
166 smt_enabled_at_boot = 0;
167 }
168
169 of_node_put(dn);
170 }
171 }
172 }
173
174 /* Look for smt-enabled= cmdline option */
175 static int __init early_smt_enabled(char *p)
176 {
177 smt_enabled_cmdline = p;
178 return 0;
179 }
180 early_param("smt-enabled", early_smt_enabled);
181
182 #endif /* CONFIG_SMP */
183
184 /** Fix up paca fields required for the boot cpu */
185 static void __init fixup_boot_paca(void)
186 {
187 /* The boot cpu is started */
188 get_paca()->cpu_start = 1;
189 /* Allow percpu accesses to work until we setup percpu data */
190 get_paca()->data_offset = 0;
191 }
192
193 static void __init configure_exceptions(void)
194 {
195 /*
196 * Setup the trampolines from the lowmem exception vectors
197 * to the kdump kernel when not using a relocatable kernel.
198 */
199 setup_kdump_trampoline();
200
201 /* Under a PAPR hypervisor, we need hypercalls */
202 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 /* Enable AIL if possible */
204 pseries_enable_reloc_on_exc();
205
206 /*
207 * Tell the hypervisor that we want our exceptions to
208 * be taken in little endian mode.
209 *
210 * We don't call this for big endian as our calling convention
211 * makes us always enter in BE, and the call may fail under
212 * some circumstances with kdump.
213 */
214 #ifdef __LITTLE_ENDIAN__
215 pseries_little_endian_exceptions();
216 #endif
217 } else {
218 /* Set endian mode using OPAL */
219 if (firmware_has_feature(FW_FEATURE_OPAL))
220 opal_configure_cores();
221
222 /* AIL on native is done in cpu_ready_for_interrupts() */
223 }
224 }
225
226 static void cpu_ready_for_interrupts(void)
227 {
228 /*
229 * Enable AIL if supported, and we are in hypervisor mode. This
230 * is called once for every processor.
231 *
232 * If we are not in hypervisor mode the job is done once for
233 * the whole partition in configure_exceptions().
234 */
235 if (early_cpu_has_feature(CPU_FTR_HVMODE) &&
236 early_cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 unsigned long lpcr = mfspr(SPRN_LPCR);
238 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 }
240
241 /* Set IR and DR in PACA MSR */
242 get_paca()->kernel_msr = MSR_KERNEL;
243 }
244
245 /*
246 * Early initialization entry point. This is called by head.S
247 * with MMU translation disabled. We rely on the "feature" of
248 * the CPU that ignores the top 2 bits of the address in real
249 * mode so we can access kernel globals normally provided we
250 * only toy with things in the RMO region. From here, we do
251 * some early parsing of the device-tree to setup out MEMBLOCK
252 * data structures, and allocate & initialize the hash table
253 * and segment tables so we can start running with translation
254 * enabled.
255 *
256 * It is this function which will call the probe() callback of
257 * the various platform types and copy the matching one to the
258 * global ppc_md structure. Your platform can eventually do
259 * some very early initializations from the probe() routine, but
260 * this is not recommended, be very careful as, for example, the
261 * device-tree is not accessible via normal means at this point.
262 */
263
264 void __init early_setup(unsigned long dt_ptr)
265 {
266 static __initdata struct paca_struct boot_paca;
267
268 /* -------- printk is _NOT_ safe to use here ! ------- */
269
270 /* Identify CPU type */
271 identify_cpu(0, mfspr(SPRN_PVR));
272
273 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
274 initialise_paca(&boot_paca, 0);
275 setup_paca(&boot_paca);
276 fixup_boot_paca();
277
278 /* -------- printk is now safe to use ------- */
279
280 /* Enable early debugging if any specified (see udbg.h) */
281 udbg_early_init();
282
283 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
284
285 /*
286 * Do early initialization using the flattened device
287 * tree, such as retrieving the physical memory map or
288 * calculating/retrieving the hash table size.
289 */
290 early_init_devtree(__va(dt_ptr));
291
292 /* Now we know the logical id of our boot cpu, setup the paca. */
293 setup_paca(&paca[boot_cpuid]);
294 fixup_boot_paca();
295
296 /*
297 * Configure exception handlers. This include setting up trampolines
298 * if needed, setting exception endian mode, etc...
299 */
300 configure_exceptions();
301
302 /* Apply all the dynamic patching */
303 apply_feature_fixups();
304 setup_feature_keys();
305
306 /* Initialize the hash table or TLB handling */
307 early_init_mmu();
308
309 /*
310 * At this point, we can let interrupts switch to virtual mode
311 * (the MMU has been setup), so adjust the MSR in the PACA to
312 * have IR and DR set and enable AIL if it exists
313 */
314 cpu_ready_for_interrupts();
315
316 DBG(" <- early_setup()\n");
317
318 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
319 /*
320 * This needs to be done *last* (after the above DBG() even)
321 *
322 * Right after we return from this function, we turn on the MMU
323 * which means the real-mode access trick that btext does will
324 * no longer work, it needs to switch to using a real MMU
325 * mapping. This call will ensure that it does
326 */
327 btext_map();
328 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
329 }
330
331 #ifdef CONFIG_SMP
332 void early_setup_secondary(void)
333 {
334 /* Mark interrupts disabled in PACA */
335 get_paca()->soft_enabled = 0;
336
337 /* Initialize the hash table or TLB handling */
338 early_init_mmu_secondary();
339
340 /*
341 * At this point, we can let interrupts switch to virtual mode
342 * (the MMU has been setup), so adjust the MSR in the PACA to
343 * have IR and DR set.
344 */
345 cpu_ready_for_interrupts();
346 }
347
348 #endif /* CONFIG_SMP */
349
350 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
351 static bool use_spinloop(void)
352 {
353 if (!IS_ENABLED(CONFIG_PPC_BOOK3E))
354 return true;
355
356 /*
357 * When book3e boots from kexec, the ePAPR spin table does
358 * not get used.
359 */
360 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
361 }
362
363 void smp_release_cpus(void)
364 {
365 unsigned long *ptr;
366 int i;
367
368 if (!use_spinloop())
369 return;
370
371 DBG(" -> smp_release_cpus()\n");
372
373 /* All secondary cpus are spinning on a common spinloop, release them
374 * all now so they can start to spin on their individual paca
375 * spinloops. For non SMP kernels, the secondary cpus never get out
376 * of the common spinloop.
377 */
378
379 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
380 - PHYSICAL_START);
381 *ptr = ppc_function_entry(generic_secondary_smp_init);
382
383 /* And wait a bit for them to catch up */
384 for (i = 0; i < 100000; i++) {
385 mb();
386 HMT_low();
387 if (spinning_secondaries == 0)
388 break;
389 udelay(1);
390 }
391 DBG("spinning_secondaries = %d\n", spinning_secondaries);
392
393 DBG(" <- smp_release_cpus()\n");
394 }
395 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
396
397 /*
398 * Initialize some remaining members of the ppc64_caches and systemcfg
399 * structures
400 * (at least until we get rid of them completely). This is mostly some
401 * cache informations about the CPU that will be used by cache flush
402 * routines and/or provided to userland
403 */
404
405 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
406 u32 bsize, u32 sets)
407 {
408 info->size = size;
409 info->sets = sets;
410 info->line_size = lsize;
411 info->block_size = bsize;
412 info->log_block_size = __ilog2(bsize);
413 info->blocks_per_page = PAGE_SIZE / bsize;
414
415 if (sets == 0)
416 info->assoc = 0xffff;
417 else
418 info->assoc = size / (sets * lsize);
419 }
420
421 static bool __init parse_cache_info(struct device_node *np,
422 bool icache,
423 struct ppc_cache_info *info)
424 {
425 static const char *ipropnames[] __initdata = {
426 "i-cache-size",
427 "i-cache-sets",
428 "i-cache-block-size",
429 "i-cache-line-size",
430 };
431 static const char *dpropnames[] __initdata = {
432 "d-cache-size",
433 "d-cache-sets",
434 "d-cache-block-size",
435 "d-cache-line-size",
436 };
437 const char **propnames = icache ? ipropnames : dpropnames;
438 const __be32 *sizep, *lsizep, *bsizep, *setsp;
439 u32 size, lsize, bsize, sets;
440 bool success = true;
441
442 size = 0;
443 sets = -1u;
444 lsize = bsize = cur_cpu_spec->dcache_bsize;
445 sizep = of_get_property(np, propnames[0], NULL);
446 if (sizep != NULL)
447 size = be32_to_cpu(*sizep);
448 setsp = of_get_property(np, propnames[1], NULL);
449 if (setsp != NULL)
450 sets = be32_to_cpu(*setsp);
451 bsizep = of_get_property(np, propnames[2], NULL);
452 lsizep = of_get_property(np, propnames[3], NULL);
453 if (bsizep == NULL)
454 bsizep = lsizep;
455 if (lsizep != NULL)
456 lsize = be32_to_cpu(*lsizep);
457 if (bsizep != NULL)
458 bsize = be32_to_cpu(*bsizep);
459 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
460 success = false;
461
462 /*
463 * OF is weird .. it represents fully associative caches
464 * as "1 way" which doesn't make much sense and doesn't
465 * leave room for direct mapped. We'll assume that 0
466 * in OF means direct mapped for that reason.
467 */
468 if (sets == 1)
469 sets = 0;
470 else if (sets == 0)
471 sets = 1;
472
473 init_cache_info(info, size, lsize, bsize, sets);
474
475 return success;
476 }
477
478 void __init initialize_cache_info(void)
479 {
480 struct device_node *cpu = NULL, *l2, *l3 = NULL;
481 u32 pvr;
482
483 DBG(" -> initialize_cache_info()\n");
484
485 /*
486 * All shipping POWER8 machines have a firmware bug that
487 * puts incorrect information in the device-tree. This will
488 * be (hopefully) fixed for future chips but for now hard
489 * code the values if we are running on one of these
490 */
491 pvr = PVR_VER(mfspr(SPRN_PVR));
492 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
493 pvr == PVR_POWER8NVL) {
494 /* size lsize blk sets */
495 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
496 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
497 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
498 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
499 } else
500 cpu = of_find_node_by_type(NULL, "cpu");
501
502 /*
503 * We're assuming *all* of the CPUs have the same
504 * d-cache and i-cache sizes... -Peter
505 */
506 if (cpu) {
507 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
508 DBG("Argh, can't find dcache properties !\n");
509
510 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
511 DBG("Argh, can't find icache properties !\n");
512
513 /*
514 * Try to find the L2 and L3 if any. Assume they are
515 * unified and use the D-side properties.
516 */
517 l2 = of_find_next_cache_node(cpu);
518 of_node_put(cpu);
519 if (l2) {
520 parse_cache_info(l2, false, &ppc64_caches.l2);
521 l3 = of_find_next_cache_node(l2);
522 of_node_put(l2);
523 }
524 if (l3) {
525 parse_cache_info(l3, false, &ppc64_caches.l3);
526 of_node_put(l3);
527 }
528 }
529
530 /* For use by binfmt_elf */
531 dcache_bsize = ppc64_caches.l1d.block_size;
532 icache_bsize = ppc64_caches.l1i.block_size;
533
534 DBG(" <- initialize_cache_info()\n");
535 }
536
537 /* This returns the limit below which memory accesses to the linear
538 * mapping are guarnateed not to cause a TLB or SLB miss. This is
539 * used to allocate interrupt or emergency stacks for which our
540 * exception entry path doesn't deal with being interrupted.
541 */
542 static __init u64 safe_stack_limit(void)
543 {
544 #ifdef CONFIG_PPC_BOOK3E
545 /* Freescale BookE bolts the entire linear mapping */
546 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
547 return linear_map_top;
548 /* Other BookE, we assume the first GB is bolted */
549 return 1ul << 30;
550 #else
551 /* BookS, the first segment is bolted */
552 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
553 return 1UL << SID_SHIFT_1T;
554 return 1UL << SID_SHIFT;
555 #endif
556 }
557
558 void __init irqstack_early_init(void)
559 {
560 u64 limit = safe_stack_limit();
561 unsigned int i;
562
563 /*
564 * Interrupt stacks must be in the first segment since we
565 * cannot afford to take SLB misses on them.
566 */
567 for_each_possible_cpu(i) {
568 softirq_ctx[i] = (struct thread_info *)
569 __va(memblock_alloc_base(THREAD_SIZE,
570 THREAD_SIZE, limit));
571 hardirq_ctx[i] = (struct thread_info *)
572 __va(memblock_alloc_base(THREAD_SIZE,
573 THREAD_SIZE, limit));
574 }
575 }
576
577 #ifdef CONFIG_PPC_BOOK3E
578 void __init exc_lvl_early_init(void)
579 {
580 unsigned int i;
581 unsigned long sp;
582
583 for_each_possible_cpu(i) {
584 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
585 critirq_ctx[i] = (struct thread_info *)__va(sp);
586 paca[i].crit_kstack = __va(sp + THREAD_SIZE);
587
588 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
589 dbgirq_ctx[i] = (struct thread_info *)__va(sp);
590 paca[i].dbg_kstack = __va(sp + THREAD_SIZE);
591
592 sp = memblock_alloc(THREAD_SIZE, THREAD_SIZE);
593 mcheckirq_ctx[i] = (struct thread_info *)__va(sp);
594 paca[i].mc_kstack = __va(sp + THREAD_SIZE);
595 }
596
597 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
598 patch_exception(0x040, exc_debug_debug_book3e);
599 }
600 #endif
601
602 /*
603 * Stack space used when we detect a bad kernel stack pointer, and
604 * early in SMP boots before relocation is enabled. Exclusive emergency
605 * stack for machine checks.
606 */
607 void __init emergency_stack_init(void)
608 {
609 u64 limit;
610 unsigned int i;
611
612 /*
613 * Emergency stacks must be under 256MB, we cannot afford to take
614 * SLB misses on them. The ABI also requires them to be 128-byte
615 * aligned.
616 *
617 * Since we use these as temporary stacks during secondary CPU
618 * bringup, we need to get at them in real mode. This means they
619 * must also be within the RMO region.
620 */
621 limit = min(safe_stack_limit(), ppc64_rma_size);
622
623 for_each_possible_cpu(i) {
624 struct thread_info *ti;
625 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
626 klp_init_thread_info(ti);
627 paca[i].emergency_sp = (void *)ti + THREAD_SIZE;
628
629 #ifdef CONFIG_PPC_BOOK3S_64
630 /* emergency stack for machine check exception handling. */
631 ti = __va(memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit));
632 klp_init_thread_info(ti);
633 paca[i].mc_emergency_sp = (void *)ti + THREAD_SIZE;
634 #endif
635 }
636 }
637
638 #ifdef CONFIG_SMP
639 #define PCPU_DYN_SIZE ()
640
641 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
642 {
643 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align,
644 __pa(MAX_DMA_ADDRESS));
645 }
646
647 static void __init pcpu_fc_free(void *ptr, size_t size)
648 {
649 free_bootmem(__pa(ptr), size);
650 }
651
652 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
653 {
654 if (cpu_to_node(from) == cpu_to_node(to))
655 return LOCAL_DISTANCE;
656 else
657 return REMOTE_DISTANCE;
658 }
659
660 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
661 EXPORT_SYMBOL(__per_cpu_offset);
662
663 void __init setup_per_cpu_areas(void)
664 {
665 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
666 size_t atom_size;
667 unsigned long delta;
668 unsigned int cpu;
669 int rc;
670
671 /*
672 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
673 * to group units. For larger mappings, use 1M atom which
674 * should be large enough to contain a number of units.
675 */
676 if (mmu_linear_psize == MMU_PAGE_4K)
677 atom_size = PAGE_SIZE;
678 else
679 atom_size = 1 << 20;
680
681 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
682 pcpu_fc_alloc, pcpu_fc_free);
683 if (rc < 0)
684 panic("cannot initialize percpu area (err=%d)", rc);
685
686 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
687 for_each_possible_cpu(cpu) {
688 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
689 paca[cpu].data_offset = __per_cpu_offset[cpu];
690 }
691 }
692 #endif
693
694 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
695 unsigned long memory_block_size_bytes(void)
696 {
697 if (ppc_md.memory_block_size)
698 return ppc_md.memory_block_size();
699
700 return MIN_MEMORY_BLOCK_SIZE;
701 }
702 #endif
703
704 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
705 struct ppc_pci_io ppc_pci_io;
706 EXPORT_SYMBOL(ppc_pci_io);
707 #endif
708
709 #ifdef CONFIG_HARDLOCKUP_DETECTOR
710 u64 hw_nmi_get_sample_period(int watchdog_thresh)
711 {
712 return ppc_proc_freq * watchdog_thresh;
713 }
714
715 /*
716 * The hardlockup detector breaks PMU event based branches and is likely
717 * to get false positives in KVM guests, so disable it by default.
718 */
719 static int __init disable_hardlockup_detector(void)
720 {
721 hardlockup_detector_disable();
722
723 return 0;
724 }
725 early_initcall(disable_hardlockup_detector);
726 #endif