]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/setup_64.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / setup_64.c
1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #undef DEBUG
14
15 #include <linux/config.h>
16 #include <linux/module.h>
17 #include <linux/string.h>
18 #include <linux/sched.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/reboot.h>
22 #include <linux/delay.h>
23 #include <linux/initrd.h>
24 #include <linux/ide.h>
25 #include <linux/seq_file.h>
26 #include <linux/ioport.h>
27 #include <linux/console.h>
28 #include <linux/utsname.h>
29 #include <linux/tty.h>
30 #include <linux/root_dev.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/unistd.h>
34 #include <linux/serial.h>
35 #include <linux/serial_8250.h>
36 #include <linux/bootmem.h>
37 #include <asm/io.h>
38 #include <asm/kdump.h>
39 #include <asm/prom.h>
40 #include <asm/processor.h>
41 #include <asm/pgtable.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/paca.h>
46 #include <asm/time.h>
47 #include <asm/cputable.h>
48 #include <asm/sections.h>
49 #include <asm/btext.h>
50 #include <asm/nvram.h>
51 #include <asm/setup.h>
52 #include <asm/system.h>
53 #include <asm/rtas.h>
54 #include <asm/iommu.h>
55 #include <asm/serial.h>
56 #include <asm/cache.h>
57 #include <asm/page.h>
58 #include <asm/mmu.h>
59 #include <asm/lmb.h>
60 #include <asm/iseries/it_lp_naca.h>
61 #include <asm/firmware.h>
62 #include <asm/xmon.h>
63 #include <asm/udbg.h>
64 #include <asm/kexec.h>
65
66 #include "setup.h"
67
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73
74 int have_of = 1;
75 int boot_cpuid = 0;
76 dev_t boot_dev;
77 u64 ppc64_pft_size;
78
79 /* Pick defaults since we might want to patch instructions
80 * before we've read this from the device tree.
81 */
82 struct ppc64_caches ppc64_caches = {
83 .dline_size = 0x80,
84 .log_dline_size = 7,
85 .iline_size = 0x80,
86 .log_iline_size = 7
87 };
88 EXPORT_SYMBOL_GPL(ppc64_caches);
89
90 /*
91 * These are used in binfmt_elf.c to put aux entries on the stack
92 * for each elf executable being started.
93 */
94 int dcache_bsize;
95 int icache_bsize;
96 int ucache_bsize;
97
98 #ifdef CONFIG_MAGIC_SYSRQ
99 unsigned long SYSRQ_KEY;
100 #endif /* CONFIG_MAGIC_SYSRQ */
101
102
103 #ifdef CONFIG_SMP
104
105 static int smt_enabled_cmdline;
106
107 /* Look for ibm,smt-enabled OF option */
108 static void check_smt_enabled(void)
109 {
110 struct device_node *dn;
111 char *smt_option;
112
113 /* Allow the command line to overrule the OF option */
114 if (smt_enabled_cmdline)
115 return;
116
117 dn = of_find_node_by_path("/options");
118
119 if (dn) {
120 smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
121
122 if (smt_option) {
123 if (!strcmp(smt_option, "on"))
124 smt_enabled_at_boot = 1;
125 else if (!strcmp(smt_option, "off"))
126 smt_enabled_at_boot = 0;
127 }
128 }
129 }
130
131 /* Look for smt-enabled= cmdline option */
132 static int __init early_smt_enabled(char *p)
133 {
134 smt_enabled_cmdline = 1;
135
136 if (!p)
137 return 0;
138
139 if (!strcmp(p, "on") || !strcmp(p, "1"))
140 smt_enabled_at_boot = 1;
141 else if (!strcmp(p, "off") || !strcmp(p, "0"))
142 smt_enabled_at_boot = 0;
143
144 return 0;
145 }
146 early_param("smt-enabled", early_smt_enabled);
147
148 #else
149 #define check_smt_enabled()
150 #endif /* CONFIG_SMP */
151
152 /*
153 * Early initialization entry point. This is called by head.S
154 * with MMU translation disabled. We rely on the "feature" of
155 * the CPU that ignores the top 2 bits of the address in real
156 * mode so we can access kernel globals normally provided we
157 * only toy with things in the RMO region. From here, we do
158 * some early parsing of the device-tree to setup out LMB
159 * data structures, and allocate & initialize the hash table
160 * and segment tables so we can start running with translation
161 * enabled.
162 *
163 * It is this function which will call the probe() callback of
164 * the various platform types and copy the matching one to the
165 * global ppc_md structure. Your platform can eventually do
166 * some very early initializations from the probe() routine, but
167 * this is not recommended, be very careful as, for example, the
168 * device-tree is not accessible via normal means at this point.
169 */
170
171 void __init early_setup(unsigned long dt_ptr)
172 {
173 /* Enable early debugging if any specified (see udbg.h) */
174 udbg_early_init();
175
176 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
177
178 /*
179 * Do early initializations using the flattened device
180 * tree, like retreiving the physical memory map or
181 * calculating/retreiving the hash table size
182 */
183 early_init_devtree(__va(dt_ptr));
184
185 /* Now we know the logical id of our boot cpu, setup the paca. */
186 setup_boot_paca();
187
188 /* Fix up paca fields required for the boot cpu */
189 get_paca()->cpu_start = 1;
190 get_paca()->stab_real = __pa((u64)&initial_stab);
191 get_paca()->stab_addr = (u64)&initial_stab;
192
193 /* Probe the machine type */
194 probe_machine();
195
196 setup_kdump_trampoline();
197
198 DBG("Found, Initializing memory management...\n");
199
200 /*
201 * Initialize the MMU Hash table and create the linear mapping
202 * of memory. Has to be done before stab/slb initialization as
203 * this is currently where the page size encoding is obtained
204 */
205 htab_initialize();
206
207 /*
208 * Initialize stab / SLB management except on iSeries
209 */
210 if (cpu_has_feature(CPU_FTR_SLB))
211 slb_initialize();
212 else if (!firmware_has_feature(FW_FEATURE_ISERIES))
213 stab_initialize(get_paca()->stab_real);
214
215 DBG(" <- early_setup()\n");
216 }
217
218 #ifdef CONFIG_SMP
219 void early_setup_secondary(void)
220 {
221 struct paca_struct *lpaca = get_paca();
222
223 /* Mark enabled in PACA */
224 lpaca->proc_enabled = 0;
225
226 /* Initialize hash table for that CPU */
227 htab_initialize_secondary();
228
229 /* Initialize STAB/SLB. We use a virtual address as it works
230 * in real mode on pSeries and we want a virutal address on
231 * iSeries anyway
232 */
233 if (cpu_has_feature(CPU_FTR_SLB))
234 slb_initialize();
235 else
236 stab_initialize(lpaca->stab_addr);
237 }
238
239 #endif /* CONFIG_SMP */
240
241 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
242 void smp_release_cpus(void)
243 {
244 extern unsigned long __secondary_hold_spinloop;
245 unsigned long *ptr;
246
247 DBG(" -> smp_release_cpus()\n");
248
249 /* All secondary cpus are spinning on a common spinloop, release them
250 * all now so they can start to spin on their individual paca
251 * spinloops. For non SMP kernels, the secondary cpus never get out
252 * of the common spinloop.
253 * This is useless but harmless on iSeries, secondaries are already
254 * waiting on their paca spinloops. */
255
256 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
257 - PHYSICAL_START);
258 *ptr = 1;
259 mb();
260
261 DBG(" <- smp_release_cpus()\n");
262 }
263 #endif /* CONFIG_SMP || CONFIG_KEXEC */
264
265 /*
266 * Initialize some remaining members of the ppc64_caches and systemcfg
267 * structures
268 * (at least until we get rid of them completely). This is mostly some
269 * cache informations about the CPU that will be used by cache flush
270 * routines and/or provided to userland
271 */
272 static void __init initialize_cache_info(void)
273 {
274 struct device_node *np;
275 unsigned long num_cpus = 0;
276
277 DBG(" -> initialize_cache_info()\n");
278
279 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
280 num_cpus += 1;
281
282 /* We're assuming *all* of the CPUs have the same
283 * d-cache and i-cache sizes... -Peter
284 */
285
286 if ( num_cpus == 1 ) {
287 u32 *sizep, *lsizep;
288 u32 size, lsize;
289 const char *dc, *ic;
290
291 /* Then read cache informations */
292 if (machine_is(powermac)) {
293 dc = "d-cache-block-size";
294 ic = "i-cache-block-size";
295 } else {
296 dc = "d-cache-line-size";
297 ic = "i-cache-line-size";
298 }
299
300 size = 0;
301 lsize = cur_cpu_spec->dcache_bsize;
302 sizep = (u32 *)get_property(np, "d-cache-size", NULL);
303 if (sizep != NULL)
304 size = *sizep;
305 lsizep = (u32 *) get_property(np, dc, NULL);
306 if (lsizep != NULL)
307 lsize = *lsizep;
308 if (sizep == 0 || lsizep == 0)
309 DBG("Argh, can't find dcache properties ! "
310 "sizep: %p, lsizep: %p\n", sizep, lsizep);
311
312 ppc64_caches.dsize = size;
313 ppc64_caches.dline_size = lsize;
314 ppc64_caches.log_dline_size = __ilog2(lsize);
315 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
316
317 size = 0;
318 lsize = cur_cpu_spec->icache_bsize;
319 sizep = (u32 *)get_property(np, "i-cache-size", NULL);
320 if (sizep != NULL)
321 size = *sizep;
322 lsizep = (u32 *)get_property(np, ic, NULL);
323 if (lsizep != NULL)
324 lsize = *lsizep;
325 if (sizep == 0 || lsizep == 0)
326 DBG("Argh, can't find icache properties ! "
327 "sizep: %p, lsizep: %p\n", sizep, lsizep);
328
329 ppc64_caches.isize = size;
330 ppc64_caches.iline_size = lsize;
331 ppc64_caches.log_iline_size = __ilog2(lsize);
332 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
333 }
334 }
335
336 DBG(" <- initialize_cache_info()\n");
337 }
338
339
340 /*
341 * Do some initial setup of the system. The parameters are those which
342 * were passed in from the bootloader.
343 */
344 void __init setup_system(void)
345 {
346 DBG(" -> setup_system()\n");
347
348 /*
349 * Unflatten the device-tree passed by prom_init or kexec
350 */
351 unflatten_device_tree();
352
353 #ifdef CONFIG_KEXEC
354 kexec_setup(); /* requires unflattened device tree. */
355 #endif
356
357 /*
358 * Fill the ppc64_caches & systemcfg structures with informations
359 * retrieved from the device-tree. Need to be called before
360 * finish_device_tree() since the later requires some of the
361 * informations filled up here to properly parse the interrupt
362 * tree.
363 * It also sets up the cache line sizes which allows to call
364 * routines like flush_icache_range (used by the hash init
365 * later on).
366 */
367 initialize_cache_info();
368
369 #ifdef CONFIG_PPC_RTAS
370 /*
371 * Initialize RTAS if available
372 */
373 rtas_initialize();
374 #endif /* CONFIG_PPC_RTAS */
375
376 /*
377 * Check if we have an initrd provided via the device-tree
378 */
379 check_for_initrd();
380
381 /*
382 * Do some platform specific early initializations, that includes
383 * setting up the hash table pointers. It also sets up some interrupt-mapping
384 * related options that will be used by finish_device_tree()
385 */
386 ppc_md.init_early();
387
388 /*
389 * We can discover serial ports now since the above did setup the
390 * hash table management for us, thus ioremap works. We do that early
391 * so that further code can be debugged
392 */
393 find_legacy_serial_ports();
394
395 /*
396 * "Finish" the device-tree, that is do the actual parsing of
397 * some of the properties like the interrupt map
398 */
399 finish_device_tree();
400
401 /*
402 * Initialize xmon
403 */
404 #ifdef CONFIG_XMON_DEFAULT
405 xmon_init(1);
406 #endif
407 /*
408 * Register early console
409 */
410 register_early_udbg_console();
411
412 if (do_early_xmon)
413 debugger(NULL);
414
415 check_smt_enabled();
416 smp_setup_cpu_maps();
417
418 #ifdef CONFIG_SMP
419 /* Release secondary cpus out of their spinloops at 0x60 now that
420 * we can map physical -> logical CPU ids
421 */
422 smp_release_cpus();
423 #endif
424
425 printk("Starting Linux PPC64 %s\n", system_utsname.version);
426
427 printk("-----------------------------------------------------\n");
428 printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
429 printk("ppc64_interrupt_controller = 0x%ld\n",
430 ppc64_interrupt_controller);
431 printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size());
432 printk("ppc64_caches.dcache_line_size = 0x%x\n",
433 ppc64_caches.dline_size);
434 printk("ppc64_caches.icache_line_size = 0x%x\n",
435 ppc64_caches.iline_size);
436 printk("htab_address = 0x%p\n", htab_address);
437 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
438 #if PHYSICAL_START > 0
439 printk("physical_start = 0x%x\n", PHYSICAL_START);
440 #endif
441 printk("-----------------------------------------------------\n");
442
443 DBG(" <- setup_system()\n");
444 }
445
446 #ifdef CONFIG_IRQSTACKS
447 static void __init irqstack_early_init(void)
448 {
449 unsigned int i;
450
451 /*
452 * interrupt stacks must be under 256MB, we cannot afford to take
453 * SLB misses on them.
454 */
455 for_each_possible_cpu(i) {
456 softirq_ctx[i] = (struct thread_info *)
457 __va(lmb_alloc_base(THREAD_SIZE,
458 THREAD_SIZE, 0x10000000));
459 hardirq_ctx[i] = (struct thread_info *)
460 __va(lmb_alloc_base(THREAD_SIZE,
461 THREAD_SIZE, 0x10000000));
462 }
463 }
464 #else
465 #define irqstack_early_init()
466 #endif
467
468 /*
469 * Stack space used when we detect a bad kernel stack pointer, and
470 * early in SMP boots before relocation is enabled.
471 */
472 static void __init emergency_stack_init(void)
473 {
474 unsigned long limit;
475 unsigned int i;
476
477 /*
478 * Emergency stacks must be under 256MB, we cannot afford to take
479 * SLB misses on them. The ABI also requires them to be 128-byte
480 * aligned.
481 *
482 * Since we use these as temporary stacks during secondary CPU
483 * bringup, we need to get at them in real mode. This means they
484 * must also be within the RMO region.
485 */
486 limit = min(0x10000000UL, lmb.rmo_size);
487
488 for_each_possible_cpu(i)
489 paca[i].emergency_sp =
490 __va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
491 }
492
493 /*
494 * Called into from start_kernel, after lock_kernel has been called.
495 * Initializes bootmem, which is unsed to manage page allocation until
496 * mem_init is called.
497 */
498 void __init setup_arch(char **cmdline_p)
499 {
500 ppc64_boot_msg(0x12, "Setup Arch");
501
502 *cmdline_p = cmd_line;
503
504 /*
505 * Set cache line size based on type of cpu as a default.
506 * Systems with OF can look in the properties on the cpu node(s)
507 * for a possibly more accurate value.
508 */
509 dcache_bsize = ppc64_caches.dline_size;
510 icache_bsize = ppc64_caches.iline_size;
511
512 /* reboot on panic */
513 panic_timeout = 180;
514
515 if (ppc_md.panic)
516 setup_panic();
517
518 init_mm.start_code = PAGE_OFFSET;
519 init_mm.end_code = (unsigned long) _etext;
520 init_mm.end_data = (unsigned long) _edata;
521 init_mm.brk = klimit;
522
523 irqstack_early_init();
524 emergency_stack_init();
525
526 stabs_alloc();
527
528 /* set up the bootmem stuff with available memory */
529 do_init_bootmem();
530 sparse_init();
531
532 #ifdef CONFIG_DUMMY_CONSOLE
533 conswitchp = &dummy_con;
534 #endif
535
536 ppc_md.setup_arch();
537
538 paging_init();
539 ppc64_boot_msg(0x15, "Setup Done");
540 }
541
542
543 /* ToDo: do something useful if ppc_md is not yet setup. */
544 #define PPC64_LINUX_FUNCTION 0x0f000000
545 #define PPC64_IPL_MESSAGE 0xc0000000
546 #define PPC64_TERM_MESSAGE 0xb0000000
547
548 static void ppc64_do_msg(unsigned int src, const char *msg)
549 {
550 if (ppc_md.progress) {
551 char buf[128];
552
553 sprintf(buf, "%08X\n", src);
554 ppc_md.progress(buf, 0);
555 snprintf(buf, 128, "%s", msg);
556 ppc_md.progress(buf, 0);
557 }
558 }
559
560 /* Print a boot progress message. */
561 void ppc64_boot_msg(unsigned int src, const char *msg)
562 {
563 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
564 printk("[boot]%04x %s\n", src, msg);
565 }
566
567 /* Print a termination message (print only -- does not stop the kernel) */
568 void ppc64_terminate_msg(unsigned int src, const char *msg)
569 {
570 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
571 printk("[terminate]%04x %s\n", src, msg);
572 }
573
574 void cpu_die(void)
575 {
576 if (ppc_md.cpu_die)
577 ppc_md.cpu_die();
578 }
579
580 #ifdef CONFIG_SMP
581 void __init setup_per_cpu_areas(void)
582 {
583 int i;
584 unsigned long size;
585 char *ptr;
586
587 /* Copy section for each CPU (we discard the original) */
588 size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
589 #ifdef CONFIG_MODULES
590 if (size < PERCPU_ENOUGH_ROOM)
591 size = PERCPU_ENOUGH_ROOM;
592 #endif
593
594 for_each_possible_cpu(i) {
595 ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
596 if (!ptr)
597 panic("Cannot allocate cpu data for CPU %d\n", i);
598
599 paca[i].data_offset = ptr - __per_cpu_start;
600 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
601 }
602 }
603 #endif