]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/setup_64.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / setup_64.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34
35 #include <asm/debugfs.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69 #include <asm/pgalloc.h>
70
71 #include "setup.h"
72
73 int spinning_secondaries;
74 u64 ppc64_pft_size;
75
76 struct ppc64_caches ppc64_caches = {
77 .l1d = {
78 .block_size = 0x40,
79 .log_block_size = 6,
80 },
81 .l1i = {
82 .block_size = 0x40,
83 .log_block_size = 6
84 },
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87
88 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
89 void __init setup_tlb_core_data(void)
90 {
91 int cpu;
92
93 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
94
95 for_each_possible_cpu(cpu) {
96 int first = cpu_first_thread_sibling(cpu);
97
98 /*
99 * If we boot via kdump on a non-primary thread,
100 * make sure we point at the thread that actually
101 * set up this TLB.
102 */
103 if (cpu_first_thread_sibling(boot_cpuid) == first)
104 first = boot_cpuid;
105
106 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
107
108 /*
109 * If we have threads, we need either tlbsrx.
110 * or e6500 tablewalk mode, or else TLB handlers
111 * will be racy and could produce duplicate entries.
112 * Should we panic instead?
113 */
114 WARN_ONCE(smt_enabled_at_boot >= 2 &&
115 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
116 book3e_htw_mode != PPC_HTW_E6500,
117 "%s: unsupported MMU configuration\n", __func__);
118 }
119 }
120 #endif
121
122 #ifdef CONFIG_SMP
123
124 static char *smt_enabled_cmdline;
125
126 /* Look for ibm,smt-enabled OF option */
127 void __init check_smt_enabled(void)
128 {
129 struct device_node *dn;
130 const char *smt_option;
131
132 /* Default to enabling all threads */
133 smt_enabled_at_boot = threads_per_core;
134
135 /* Allow the command line to overrule the OF option */
136 if (smt_enabled_cmdline) {
137 if (!strcmp(smt_enabled_cmdline, "on"))
138 smt_enabled_at_boot = threads_per_core;
139 else if (!strcmp(smt_enabled_cmdline, "off"))
140 smt_enabled_at_boot = 0;
141 else {
142 int smt;
143 int rc;
144
145 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
146 if (!rc)
147 smt_enabled_at_boot =
148 min(threads_per_core, smt);
149 }
150 } else {
151 dn = of_find_node_by_path("/options");
152 if (dn) {
153 smt_option = of_get_property(dn, "ibm,smt-enabled",
154 NULL);
155
156 if (smt_option) {
157 if (!strcmp(smt_option, "on"))
158 smt_enabled_at_boot = threads_per_core;
159 else if (!strcmp(smt_option, "off"))
160 smt_enabled_at_boot = 0;
161 }
162
163 of_node_put(dn);
164 }
165 }
166 }
167
168 /* Look for smt-enabled= cmdline option */
169 static int __init early_smt_enabled(char *p)
170 {
171 smt_enabled_cmdline = p;
172 return 0;
173 }
174 early_param("smt-enabled", early_smt_enabled);
175
176 #endif /* CONFIG_SMP */
177
178 /** Fix up paca fields required for the boot cpu */
179 static void __init fixup_boot_paca(void)
180 {
181 /* The boot cpu is started */
182 get_paca()->cpu_start = 1;
183 /* Allow percpu accesses to work until we setup percpu data */
184 get_paca()->data_offset = 0;
185 /* Mark interrupts disabled in PACA */
186 irq_soft_mask_set(IRQS_DISABLED);
187 }
188
189 static void __init configure_exceptions(void)
190 {
191 /*
192 * Setup the trampolines from the lowmem exception vectors
193 * to the kdump kernel when not using a relocatable kernel.
194 */
195 setup_kdump_trampoline();
196
197 /* Under a PAPR hypervisor, we need hypercalls */
198 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
199 /* Enable AIL if possible */
200 if (!pseries_enable_reloc_on_exc()) {
201 init_task.thread.fscr &= ~FSCR_SCV;
202 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
203 }
204
205 /*
206 * Tell the hypervisor that we want our exceptions to
207 * be taken in little endian mode.
208 *
209 * We don't call this for big endian as our calling convention
210 * makes us always enter in BE, and the call may fail under
211 * some circumstances with kdump.
212 */
213 #ifdef __LITTLE_ENDIAN__
214 pseries_little_endian_exceptions();
215 #endif
216 } else {
217 /* Set endian mode using OPAL */
218 if (firmware_has_feature(FW_FEATURE_OPAL))
219 opal_configure_cores();
220
221 /* AIL on native is done in cpu_ready_for_interrupts() */
222 }
223 }
224
225 static void cpu_ready_for_interrupts(void)
226 {
227 /*
228 * Enable AIL if supported, and we are in hypervisor mode. This
229 * is called once for every processor.
230 *
231 * If we are not in hypervisor mode the job is done once for
232 * the whole partition in configure_exceptions().
233 */
234 if (cpu_has_feature(CPU_FTR_HVMODE)) {
235 unsigned long lpcr = mfspr(SPRN_LPCR);
236 unsigned long new_lpcr = lpcr;
237
238 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
239 /* P10 DD1 does not have HAIL */
240 if (pvr_version_is(PVR_POWER10) &&
241 (mfspr(SPRN_PVR) & 0xf00) == 0x100)
242 new_lpcr |= LPCR_AIL_3;
243 else
244 new_lpcr |= LPCR_HAIL;
245 } else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
246 new_lpcr |= LPCR_AIL_3;
247 }
248
249 if (new_lpcr != lpcr)
250 mtspr(SPRN_LPCR, new_lpcr);
251 }
252
253 /*
254 * Set HFSCR:TM based on CPU features:
255 * In the special case of TM no suspend (P9N DD2.1), Linux is
256 * told TM is off via the dt-ftrs but told to (partially) use
257 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
258 * will be off from dt-ftrs but we need to turn it on for the
259 * no suspend case.
260 */
261 if (cpu_has_feature(CPU_FTR_HVMODE)) {
262 if (cpu_has_feature(CPU_FTR_TM_COMP))
263 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
264 else
265 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
266 }
267
268 /* Set IR and DR in PACA MSR */
269 get_paca()->kernel_msr = MSR_KERNEL;
270 }
271
272 unsigned long spr_default_dscr = 0;
273
274 void __init record_spr_defaults(void)
275 {
276 if (early_cpu_has_feature(CPU_FTR_DSCR))
277 spr_default_dscr = mfspr(SPRN_DSCR);
278 }
279
280 /*
281 * Early initialization entry point. This is called by head.S
282 * with MMU translation disabled. We rely on the "feature" of
283 * the CPU that ignores the top 2 bits of the address in real
284 * mode so we can access kernel globals normally provided we
285 * only toy with things in the RMO region. From here, we do
286 * some early parsing of the device-tree to setup out MEMBLOCK
287 * data structures, and allocate & initialize the hash table
288 * and segment tables so we can start running with translation
289 * enabled.
290 *
291 * It is this function which will call the probe() callback of
292 * the various platform types and copy the matching one to the
293 * global ppc_md structure. Your platform can eventually do
294 * some very early initializations from the probe() routine, but
295 * this is not recommended, be very careful as, for example, the
296 * device-tree is not accessible via normal means at this point.
297 */
298
299 void __init early_setup(unsigned long dt_ptr)
300 {
301 static __initdata struct paca_struct boot_paca;
302
303 /* -------- printk is _NOT_ safe to use here ! ------- */
304
305 /*
306 * Assume we're on cpu 0 for now.
307 *
308 * We need to load a PACA very early for a few reasons.
309 *
310 * The stack protector canary is stored in the paca, so as soon as we
311 * call any stack protected code we need r13 pointing somewhere valid.
312 *
313 * If we are using kcov it will call in_task() in its instrumentation,
314 * which relies on the current task from the PACA.
315 *
316 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
317 * printk(), which can trigger both stack protector and kcov.
318 *
319 * percpu variables and spin locks also use the paca.
320 *
321 * So set up a temporary paca. It will be replaced below once we know
322 * what CPU we are on.
323 */
324 initialise_paca(&boot_paca, 0);
325 setup_paca(&boot_paca);
326 fixup_boot_paca();
327
328 /* -------- printk is now safe to use ------- */
329
330 /* Try new device tree based feature discovery ... */
331 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
332 /* Otherwise use the old style CPU table */
333 identify_cpu(0, mfspr(SPRN_PVR));
334
335 /* Enable early debugging if any specified (see udbg.h) */
336 udbg_early_init();
337
338 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
339
340 /*
341 * Do early initialization using the flattened device
342 * tree, such as retrieving the physical memory map or
343 * calculating/retrieving the hash table size.
344 */
345 early_init_devtree(__va(dt_ptr));
346
347 /* Now we know the logical id of our boot cpu, setup the paca. */
348 if (boot_cpuid != 0) {
349 /* Poison paca_ptrs[0] again if it's not the boot cpu */
350 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
351 }
352 setup_paca(paca_ptrs[boot_cpuid]);
353 fixup_boot_paca();
354
355 /*
356 * Configure exception handlers. This include setting up trampolines
357 * if needed, setting exception endian mode, etc...
358 */
359 configure_exceptions();
360
361 /*
362 * Configure Kernel Userspace Protection. This needs to happen before
363 * feature fixups for platforms that implement this using features.
364 */
365 setup_kup();
366
367 /* Apply all the dynamic patching */
368 apply_feature_fixups();
369 setup_feature_keys();
370
371 early_ioremap_setup();
372
373 /* Initialize the hash table or TLB handling */
374 early_init_mmu();
375
376 /*
377 * After firmware and early platform setup code has set things up,
378 * we note the SPR values for configurable control/performance
379 * registers, and use those as initial defaults.
380 */
381 record_spr_defaults();
382
383 /*
384 * At this point, we can let interrupts switch to virtual mode
385 * (the MMU has been setup), so adjust the MSR in the PACA to
386 * have IR and DR set and enable AIL if it exists
387 */
388 cpu_ready_for_interrupts();
389
390 /*
391 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
392 * will only actually get enabled on the boot cpu much later once
393 * ftrace itself has been initialized.
394 */
395 this_cpu_enable_ftrace();
396
397 udbg_printf(" <- %s()\n", __func__);
398
399 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
400 /*
401 * This needs to be done *last* (after the above udbg_printf() even)
402 *
403 * Right after we return from this function, we turn on the MMU
404 * which means the real-mode access trick that btext does will
405 * no longer work, it needs to switch to using a real MMU
406 * mapping. This call will ensure that it does
407 */
408 btext_map();
409 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
410 }
411
412 #ifdef CONFIG_SMP
413 void early_setup_secondary(void)
414 {
415 /* Mark interrupts disabled in PACA */
416 irq_soft_mask_set(IRQS_DISABLED);
417
418 /* Initialize the hash table or TLB handling */
419 early_init_mmu_secondary();
420
421 /* Perform any KUP setup that is per-cpu */
422 setup_kup();
423
424 /*
425 * At this point, we can let interrupts switch to virtual mode
426 * (the MMU has been setup), so adjust the MSR in the PACA to
427 * have IR and DR set.
428 */
429 cpu_ready_for_interrupts();
430 }
431
432 #endif /* CONFIG_SMP */
433
434 void panic_smp_self_stop(void)
435 {
436 hard_irq_disable();
437 spin_begin();
438 while (1)
439 spin_cpu_relax();
440 }
441
442 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
443 static bool use_spinloop(void)
444 {
445 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
446 /*
447 * See comments in head_64.S -- not all platforms insert
448 * secondaries at __secondary_hold and wait at the spin
449 * loop.
450 */
451 if (firmware_has_feature(FW_FEATURE_OPAL))
452 return false;
453 return true;
454 }
455
456 /*
457 * When book3e boots from kexec, the ePAPR spin table does
458 * not get used.
459 */
460 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
461 }
462
463 void smp_release_cpus(void)
464 {
465 unsigned long *ptr;
466 int i;
467
468 if (!use_spinloop())
469 return;
470
471 /* All secondary cpus are spinning on a common spinloop, release them
472 * all now so they can start to spin on their individual paca
473 * spinloops. For non SMP kernels, the secondary cpus never get out
474 * of the common spinloop.
475 */
476
477 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
478 - PHYSICAL_START);
479 *ptr = ppc_function_entry(generic_secondary_smp_init);
480
481 /* And wait a bit for them to catch up */
482 for (i = 0; i < 100000; i++) {
483 mb();
484 HMT_low();
485 if (spinning_secondaries == 0)
486 break;
487 udelay(1);
488 }
489 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
490 }
491 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
492
493 /*
494 * Initialize some remaining members of the ppc64_caches and systemcfg
495 * structures
496 * (at least until we get rid of them completely). This is mostly some
497 * cache informations about the CPU that will be used by cache flush
498 * routines and/or provided to userland
499 */
500
501 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
502 u32 bsize, u32 sets)
503 {
504 info->size = size;
505 info->sets = sets;
506 info->line_size = lsize;
507 info->block_size = bsize;
508 info->log_block_size = __ilog2(bsize);
509 if (bsize)
510 info->blocks_per_page = PAGE_SIZE / bsize;
511 else
512 info->blocks_per_page = 0;
513
514 if (sets == 0)
515 info->assoc = 0xffff;
516 else
517 info->assoc = size / (sets * lsize);
518 }
519
520 static bool __init parse_cache_info(struct device_node *np,
521 bool icache,
522 struct ppc_cache_info *info)
523 {
524 static const char *ipropnames[] __initdata = {
525 "i-cache-size",
526 "i-cache-sets",
527 "i-cache-block-size",
528 "i-cache-line-size",
529 };
530 static const char *dpropnames[] __initdata = {
531 "d-cache-size",
532 "d-cache-sets",
533 "d-cache-block-size",
534 "d-cache-line-size",
535 };
536 const char **propnames = icache ? ipropnames : dpropnames;
537 const __be32 *sizep, *lsizep, *bsizep, *setsp;
538 u32 size, lsize, bsize, sets;
539 bool success = true;
540
541 size = 0;
542 sets = -1u;
543 lsize = bsize = cur_cpu_spec->dcache_bsize;
544 sizep = of_get_property(np, propnames[0], NULL);
545 if (sizep != NULL)
546 size = be32_to_cpu(*sizep);
547 setsp = of_get_property(np, propnames[1], NULL);
548 if (setsp != NULL)
549 sets = be32_to_cpu(*setsp);
550 bsizep = of_get_property(np, propnames[2], NULL);
551 lsizep = of_get_property(np, propnames[3], NULL);
552 if (bsizep == NULL)
553 bsizep = lsizep;
554 if (lsizep == NULL)
555 lsizep = bsizep;
556 if (lsizep != NULL)
557 lsize = be32_to_cpu(*lsizep);
558 if (bsizep != NULL)
559 bsize = be32_to_cpu(*bsizep);
560 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
561 success = false;
562
563 /*
564 * OF is weird .. it represents fully associative caches
565 * as "1 way" which doesn't make much sense and doesn't
566 * leave room for direct mapped. We'll assume that 0
567 * in OF means direct mapped for that reason.
568 */
569 if (sets == 1)
570 sets = 0;
571 else if (sets == 0)
572 sets = 1;
573
574 init_cache_info(info, size, lsize, bsize, sets);
575
576 return success;
577 }
578
579 void __init initialize_cache_info(void)
580 {
581 struct device_node *cpu = NULL, *l2, *l3 = NULL;
582 u32 pvr;
583
584 /*
585 * All shipping POWER8 machines have a firmware bug that
586 * puts incorrect information in the device-tree. This will
587 * be (hopefully) fixed for future chips but for now hard
588 * code the values if we are running on one of these
589 */
590 pvr = PVR_VER(mfspr(SPRN_PVR));
591 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
592 pvr == PVR_POWER8NVL) {
593 /* size lsize blk sets */
594 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
595 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
596 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
597 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
598 } else
599 cpu = of_find_node_by_type(NULL, "cpu");
600
601 /*
602 * We're assuming *all* of the CPUs have the same
603 * d-cache and i-cache sizes... -Peter
604 */
605 if (cpu) {
606 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
607 pr_warn("Argh, can't find dcache properties !\n");
608
609 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
610 pr_warn("Argh, can't find icache properties !\n");
611
612 /*
613 * Try to find the L2 and L3 if any. Assume they are
614 * unified and use the D-side properties.
615 */
616 l2 = of_find_next_cache_node(cpu);
617 of_node_put(cpu);
618 if (l2) {
619 parse_cache_info(l2, false, &ppc64_caches.l2);
620 l3 = of_find_next_cache_node(l2);
621 of_node_put(l2);
622 }
623 if (l3) {
624 parse_cache_info(l3, false, &ppc64_caches.l3);
625 of_node_put(l3);
626 }
627 }
628
629 /* For use by binfmt_elf */
630 dcache_bsize = ppc64_caches.l1d.block_size;
631 icache_bsize = ppc64_caches.l1i.block_size;
632
633 cur_cpu_spec->dcache_bsize = dcache_bsize;
634 cur_cpu_spec->icache_bsize = icache_bsize;
635 }
636
637 /*
638 * This returns the limit below which memory accesses to the linear
639 * mapping are guarnateed not to cause an architectural exception (e.g.,
640 * TLB or SLB miss fault).
641 *
642 * This is used to allocate PACAs and various interrupt stacks that
643 * that are accessed early in interrupt handlers that must not cause
644 * re-entrant interrupts.
645 */
646 __init u64 ppc64_bolted_size(void)
647 {
648 #ifdef CONFIG_PPC_BOOK3E
649 /* Freescale BookE bolts the entire linear mapping */
650 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
651 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
652 return linear_map_top;
653 /* Other BookE, we assume the first GB is bolted */
654 return 1ul << 30;
655 #else
656 /* BookS radix, does not take faults on linear mapping */
657 if (early_radix_enabled())
658 return ULONG_MAX;
659
660 /* BookS hash, the first segment is bolted */
661 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
662 return 1UL << SID_SHIFT_1T;
663 return 1UL << SID_SHIFT;
664 #endif
665 }
666
667 static void *__init alloc_stack(unsigned long limit, int cpu)
668 {
669 void *ptr;
670
671 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
672
673 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
674 MEMBLOCK_LOW_LIMIT, limit,
675 early_cpu_to_node(cpu));
676 if (!ptr)
677 panic("cannot allocate stacks");
678
679 return ptr;
680 }
681
682 void __init irqstack_early_init(void)
683 {
684 u64 limit = ppc64_bolted_size();
685 unsigned int i;
686
687 /*
688 * Interrupt stacks must be in the first segment since we
689 * cannot afford to take SLB misses on them. They are not
690 * accessed in realmode.
691 */
692 for_each_possible_cpu(i) {
693 softirq_ctx[i] = alloc_stack(limit, i);
694 hardirq_ctx[i] = alloc_stack(limit, i);
695 }
696 }
697
698 #ifdef CONFIG_PPC_BOOK3E
699 void __init exc_lvl_early_init(void)
700 {
701 unsigned int i;
702
703 for_each_possible_cpu(i) {
704 void *sp;
705
706 sp = alloc_stack(ULONG_MAX, i);
707 critirq_ctx[i] = sp;
708 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
709
710 sp = alloc_stack(ULONG_MAX, i);
711 dbgirq_ctx[i] = sp;
712 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
713
714 sp = alloc_stack(ULONG_MAX, i);
715 mcheckirq_ctx[i] = sp;
716 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
717 }
718
719 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
720 patch_exception(0x040, exc_debug_debug_book3e);
721 }
722 #endif
723
724 /*
725 * Stack space used when we detect a bad kernel stack pointer, and
726 * early in SMP boots before relocation is enabled. Exclusive emergency
727 * stack for machine checks.
728 */
729 void __init emergency_stack_init(void)
730 {
731 u64 limit, mce_limit;
732 unsigned int i;
733
734 /*
735 * Emergency stacks must be under 256MB, we cannot afford to take
736 * SLB misses on them. The ABI also requires them to be 128-byte
737 * aligned.
738 *
739 * Since we use these as temporary stacks during secondary CPU
740 * bringup, machine check, system reset, and HMI, we need to get
741 * at them in real mode. This means they must also be within the RMO
742 * region.
743 *
744 * The IRQ stacks allocated elsewhere in this file are zeroed and
745 * initialized in kernel/irq.c. These are initialized here in order
746 * to have emergency stacks available as early as possible.
747 */
748 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
749
750 /*
751 * Machine check on pseries calls rtas, but can't use the static
752 * rtas_args due to a machine check hitting while the lock is held.
753 * rtas args have to be under 4GB, so the machine check stack is
754 * limited to 4GB so args can be put on stack.
755 */
756 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
757 mce_limit = SZ_4G;
758
759 for_each_possible_cpu(i) {
760 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
761
762 #ifdef CONFIG_PPC_BOOK3S_64
763 /* emergency stack for NMI exception handling. */
764 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
765
766 /* emergency stack for machine check exception handling. */
767 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
768 #endif
769 }
770 }
771
772 #ifdef CONFIG_SMP
773 /**
774 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
775 * @cpu: cpu to allocate for
776 * @size: size allocation in bytes
777 * @align: alignment
778 *
779 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
780 * does the right thing for NUMA regardless of the current
781 * configuration.
782 *
783 * RETURNS:
784 * Pointer to the allocated area on success, NULL on failure.
785 */
786 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
787 size_t align)
788 {
789 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
790 #ifdef CONFIG_NEED_MULTIPLE_NODES
791 int node = early_cpu_to_node(cpu);
792 void *ptr;
793
794 if (!node_online(node) || !NODE_DATA(node)) {
795 ptr = memblock_alloc_from(size, align, goal);
796 pr_info("cpu %d has no node %d or node-local memory\n",
797 cpu, node);
798 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
799 cpu, size, __pa(ptr));
800 } else {
801 ptr = memblock_alloc_try_nid(size, align, goal,
802 MEMBLOCK_ALLOC_ACCESSIBLE, node);
803 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
804 "%016lx\n", cpu, size, node, __pa(ptr));
805 }
806 return ptr;
807 #else
808 return memblock_alloc_from(size, align, goal);
809 #endif
810 }
811
812 static void __init pcpu_free_bootmem(void *ptr, size_t size)
813 {
814 memblock_free(__pa(ptr), size);
815 }
816
817 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
818 {
819 if (early_cpu_to_node(from) == early_cpu_to_node(to))
820 return LOCAL_DISTANCE;
821 else
822 return REMOTE_DISTANCE;
823 }
824
825 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
826 EXPORT_SYMBOL(__per_cpu_offset);
827
828 static void __init pcpu_populate_pte(unsigned long addr)
829 {
830 pgd_t *pgd = pgd_offset_k(addr);
831 p4d_t *p4d;
832 pud_t *pud;
833 pmd_t *pmd;
834
835 p4d = p4d_offset(pgd, addr);
836 if (p4d_none(*p4d)) {
837 pud_t *new;
838
839 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
840 if (!new)
841 goto err_alloc;
842 p4d_populate(&init_mm, p4d, new);
843 }
844
845 pud = pud_offset(p4d, addr);
846 if (pud_none(*pud)) {
847 pmd_t *new;
848
849 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
850 if (!new)
851 goto err_alloc;
852 pud_populate(&init_mm, pud, new);
853 }
854
855 pmd = pmd_offset(pud, addr);
856 if (!pmd_present(*pmd)) {
857 pte_t *new;
858
859 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
860 if (!new)
861 goto err_alloc;
862 pmd_populate_kernel(&init_mm, pmd, new);
863 }
864
865 return;
866
867 err_alloc:
868 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
869 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
870 }
871
872
873 void __init setup_per_cpu_areas(void)
874 {
875 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
876 size_t atom_size;
877 unsigned long delta;
878 unsigned int cpu;
879 int rc = -EINVAL;
880
881 /*
882 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
883 * to group units. For larger mappings, use 1M atom which
884 * should be large enough to contain a number of units.
885 */
886 if (mmu_linear_psize == MMU_PAGE_4K)
887 atom_size = PAGE_SIZE;
888 else
889 atom_size = 1 << 20;
890
891 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
892 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
893 pcpu_alloc_bootmem, pcpu_free_bootmem);
894 if (rc)
895 pr_warn("PERCPU: %s allocator failed (%d), "
896 "falling back to page size\n",
897 pcpu_fc_names[pcpu_chosen_fc], rc);
898 }
899
900 if (rc < 0)
901 rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
902 pcpu_populate_pte);
903 if (rc < 0)
904 panic("cannot initialize percpu area (err=%d)", rc);
905
906 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
907 for_each_possible_cpu(cpu) {
908 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
909 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
910 }
911 }
912 #endif
913
914 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
915 unsigned long memory_block_size_bytes(void)
916 {
917 if (ppc_md.memory_block_size)
918 return ppc_md.memory_block_size();
919
920 return MIN_MEMORY_BLOCK_SIZE;
921 }
922 #endif
923
924 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
925 struct ppc_pci_io ppc_pci_io;
926 EXPORT_SYMBOL(ppc_pci_io);
927 #endif
928
929 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
930 u64 hw_nmi_get_sample_period(int watchdog_thresh)
931 {
932 return ppc_proc_freq * watchdog_thresh;
933 }
934 #endif
935
936 /*
937 * The perf based hardlockup detector breaks PMU event based branches, so
938 * disable it by default. Book3S has a soft-nmi hardlockup detector based
939 * on the decrementer interrupt, so it does not suffer from this problem.
940 *
941 * It is likely to get false positives in VM guests, so disable it there
942 * by default too.
943 */
944 static int __init disable_hardlockup_detector(void)
945 {
946 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
947 hardlockup_detector_disable();
948 #else
949 if (firmware_has_feature(FW_FEATURE_LPAR))
950 hardlockup_detector_disable();
951 #endif
952
953 return 0;
954 }
955 early_initcall(disable_hardlockup_detector);
956
957 #ifdef CONFIG_PPC_BOOK3S_64
958 static enum l1d_flush_type enabled_flush_types;
959 static void *l1d_flush_fallback_area;
960 static bool no_rfi_flush;
961 static bool no_entry_flush;
962 static bool no_uaccess_flush;
963 bool rfi_flush;
964 bool entry_flush;
965 bool uaccess_flush;
966 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
967 EXPORT_SYMBOL(uaccess_flush_key);
968
969 static int __init handle_no_rfi_flush(char *p)
970 {
971 pr_info("rfi-flush: disabled on command line.");
972 no_rfi_flush = true;
973 return 0;
974 }
975 early_param("no_rfi_flush", handle_no_rfi_flush);
976
977 static int __init handle_no_entry_flush(char *p)
978 {
979 pr_info("entry-flush: disabled on command line.");
980 no_entry_flush = true;
981 return 0;
982 }
983 early_param("no_entry_flush", handle_no_entry_flush);
984
985 static int __init handle_no_uaccess_flush(char *p)
986 {
987 pr_info("uaccess-flush: disabled on command line.");
988 no_uaccess_flush = true;
989 return 0;
990 }
991 early_param("no_uaccess_flush", handle_no_uaccess_flush);
992
993 /*
994 * The RFI flush is not KPTI, but because users will see doco that says to use
995 * nopti we hijack that option here to also disable the RFI flush.
996 */
997 static int __init handle_no_pti(char *p)
998 {
999 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
1000 handle_no_rfi_flush(NULL);
1001 return 0;
1002 }
1003 early_param("nopti", handle_no_pti);
1004
1005 static void do_nothing(void *unused)
1006 {
1007 /*
1008 * We don't need to do the flush explicitly, just enter+exit kernel is
1009 * sufficient, the RFI exit handlers will do the right thing.
1010 */
1011 }
1012
1013 void rfi_flush_enable(bool enable)
1014 {
1015 if (enable) {
1016 do_rfi_flush_fixups(enabled_flush_types);
1017 on_each_cpu(do_nothing, NULL, 1);
1018 } else
1019 do_rfi_flush_fixups(L1D_FLUSH_NONE);
1020
1021 rfi_flush = enable;
1022 }
1023
1024 void entry_flush_enable(bool enable)
1025 {
1026 if (enable) {
1027 do_entry_flush_fixups(enabled_flush_types);
1028 on_each_cpu(do_nothing, NULL, 1);
1029 } else {
1030 do_entry_flush_fixups(L1D_FLUSH_NONE);
1031 }
1032
1033 entry_flush = enable;
1034 }
1035
1036 void uaccess_flush_enable(bool enable)
1037 {
1038 if (enable) {
1039 do_uaccess_flush_fixups(enabled_flush_types);
1040 static_branch_enable(&uaccess_flush_key);
1041 on_each_cpu(do_nothing, NULL, 1);
1042 } else {
1043 static_branch_disable(&uaccess_flush_key);
1044 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
1045 }
1046
1047 uaccess_flush = enable;
1048 }
1049
1050 static void __ref init_fallback_flush(void)
1051 {
1052 u64 l1d_size, limit;
1053 int cpu;
1054
1055 /* Only allocate the fallback flush area once (at boot time). */
1056 if (l1d_flush_fallback_area)
1057 return;
1058
1059 l1d_size = ppc64_caches.l1d.size;
1060
1061 /*
1062 * If there is no d-cache-size property in the device tree, l1d_size
1063 * could be zero. That leads to the loop in the asm wrapping around to
1064 * 2^64-1, and then walking off the end of the fallback area and
1065 * eventually causing a page fault which is fatal. Just default to
1066 * something vaguely sane.
1067 */
1068 if (!l1d_size)
1069 l1d_size = (64 * 1024);
1070
1071 limit = min(ppc64_bolted_size(), ppc64_rma_size);
1072
1073 /*
1074 * Align to L1d size, and size it at 2x L1d size, to catch possible
1075 * hardware prefetch runoff. We don't have a recipe for load patterns to
1076 * reliably avoid the prefetcher.
1077 */
1078 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
1079 l1d_size, MEMBLOCK_LOW_LIMIT,
1080 limit, NUMA_NO_NODE);
1081 if (!l1d_flush_fallback_area)
1082 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
1083 __func__, l1d_size * 2, l1d_size, &limit);
1084
1085
1086 for_each_possible_cpu(cpu) {
1087 struct paca_struct *paca = paca_ptrs[cpu];
1088 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
1089 paca->l1d_flush_size = l1d_size;
1090 }
1091 }
1092
1093 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
1094 {
1095 if (types & L1D_FLUSH_FALLBACK) {
1096 pr_info("rfi-flush: fallback displacement flush available\n");
1097 init_fallback_flush();
1098 }
1099
1100 if (types & L1D_FLUSH_ORI)
1101 pr_info("rfi-flush: ori type flush available\n");
1102
1103 if (types & L1D_FLUSH_MTTRIG)
1104 pr_info("rfi-flush: mttrig type flush available\n");
1105
1106 enabled_flush_types = types;
1107
1108 if (!cpu_mitigations_off() && !no_rfi_flush)
1109 rfi_flush_enable(enable);
1110 }
1111
1112 void setup_entry_flush(bool enable)
1113 {
1114 if (cpu_mitigations_off())
1115 return;
1116
1117 if (!no_entry_flush)
1118 entry_flush_enable(enable);
1119 }
1120
1121 void setup_uaccess_flush(bool enable)
1122 {
1123 if (cpu_mitigations_off())
1124 return;
1125
1126 if (!no_uaccess_flush)
1127 uaccess_flush_enable(enable);
1128 }
1129
1130 #ifdef CONFIG_DEBUG_FS
1131 static int rfi_flush_set(void *data, u64 val)
1132 {
1133 bool enable;
1134
1135 if (val == 1)
1136 enable = true;
1137 else if (val == 0)
1138 enable = false;
1139 else
1140 return -EINVAL;
1141
1142 /* Only do anything if we're changing state */
1143 if (enable != rfi_flush)
1144 rfi_flush_enable(enable);
1145
1146 return 0;
1147 }
1148
1149 static int rfi_flush_get(void *data, u64 *val)
1150 {
1151 *val = rfi_flush ? 1 : 0;
1152 return 0;
1153 }
1154
1155 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1156
1157 static int entry_flush_set(void *data, u64 val)
1158 {
1159 bool enable;
1160
1161 if (val == 1)
1162 enable = true;
1163 else if (val == 0)
1164 enable = false;
1165 else
1166 return -EINVAL;
1167
1168 /* Only do anything if we're changing state */
1169 if (enable != entry_flush)
1170 entry_flush_enable(enable);
1171
1172 return 0;
1173 }
1174
1175 static int entry_flush_get(void *data, u64 *val)
1176 {
1177 *val = entry_flush ? 1 : 0;
1178 return 0;
1179 }
1180
1181 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1182
1183 static int uaccess_flush_set(void *data, u64 val)
1184 {
1185 bool enable;
1186
1187 if (val == 1)
1188 enable = true;
1189 else if (val == 0)
1190 enable = false;
1191 else
1192 return -EINVAL;
1193
1194 /* Only do anything if we're changing state */
1195 if (enable != uaccess_flush)
1196 uaccess_flush_enable(enable);
1197
1198 return 0;
1199 }
1200
1201 static int uaccess_flush_get(void *data, u64 *val)
1202 {
1203 *val = uaccess_flush ? 1 : 0;
1204 return 0;
1205 }
1206
1207 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1208
1209 static __init int rfi_flush_debugfs_init(void)
1210 {
1211 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1212 debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1213 debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1214 return 0;
1215 }
1216 device_initcall(rfi_flush_debugfs_init);
1217 #endif
1218 #endif /* CONFIG_PPC_BOOK3S_64 */