]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/kernel/setup_64.c
Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / kernel / setup_64.c
1 /*
2 *
3 * Common boot and setup code.
4 *
5 * Copyright (C) 2001 PPC64 Team, IBM Corp
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #undef DEBUG
14
15 #include <linux/module.h>
16 #include <linux/string.h>
17 #include <linux/sched.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/reboot.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/ide.h>
24 #include <linux/seq_file.h>
25 #include <linux/ioport.h>
26 #include <linux/console.h>
27 #include <linux/utsname.h>
28 #include <linux/tty.h>
29 #include <linux/root_dev.h>
30 #include <linux/notifier.h>
31 #include <linux/cpu.h>
32 #include <linux/unistd.h>
33 #include <linux/serial.h>
34 #include <linux/serial_8250.h>
35 #include <linux/bootmem.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/smp.h>
42 #include <asm/elf.h>
43 #include <asm/machdep.h>
44 #include <asm/paca.h>
45 #include <asm/time.h>
46 #include <asm/cputable.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/system.h>
52 #include <asm/rtas.h>
53 #include <asm/iommu.h>
54 #include <asm/serial.h>
55 #include <asm/cache.h>
56 #include <asm/page.h>
57 #include <asm/mmu.h>
58 #include <asm/lmb.h>
59 #include <asm/iseries/it_lp_naca.h>
60 #include <asm/firmware.h>
61 #include <asm/xmon.h>
62 #include <asm/udbg.h>
63 #include <asm/kexec.h>
64
65 #include "setup.h"
66
67 #ifdef DEBUG
68 #define DBG(fmt...) udbg_printf(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 int have_of = 1;
74 int boot_cpuid = 0;
75 dev_t boot_dev;
76 u64 ppc64_pft_size;
77
78 /* Pick defaults since we might want to patch instructions
79 * before we've read this from the device tree.
80 */
81 struct ppc64_caches ppc64_caches = {
82 .dline_size = 0x80,
83 .log_dline_size = 7,
84 .iline_size = 0x80,
85 .log_iline_size = 7
86 };
87 EXPORT_SYMBOL_GPL(ppc64_caches);
88
89 /*
90 * These are used in binfmt_elf.c to put aux entries on the stack
91 * for each elf executable being started.
92 */
93 int dcache_bsize;
94 int icache_bsize;
95 int ucache_bsize;
96
97 #ifdef CONFIG_MAGIC_SYSRQ
98 unsigned long SYSRQ_KEY;
99 #endif /* CONFIG_MAGIC_SYSRQ */
100
101
102 #ifdef CONFIG_SMP
103
104 static int smt_enabled_cmdline;
105
106 /* Look for ibm,smt-enabled OF option */
107 static void check_smt_enabled(void)
108 {
109 struct device_node *dn;
110 char *smt_option;
111
112 /* Allow the command line to overrule the OF option */
113 if (smt_enabled_cmdline)
114 return;
115
116 dn = of_find_node_by_path("/options");
117
118 if (dn) {
119 smt_option = (char *)get_property(dn, "ibm,smt-enabled", NULL);
120
121 if (smt_option) {
122 if (!strcmp(smt_option, "on"))
123 smt_enabled_at_boot = 1;
124 else if (!strcmp(smt_option, "off"))
125 smt_enabled_at_boot = 0;
126 }
127 }
128 }
129
130 /* Look for smt-enabled= cmdline option */
131 static int __init early_smt_enabled(char *p)
132 {
133 smt_enabled_cmdline = 1;
134
135 if (!p)
136 return 0;
137
138 if (!strcmp(p, "on") || !strcmp(p, "1"))
139 smt_enabled_at_boot = 1;
140 else if (!strcmp(p, "off") || !strcmp(p, "0"))
141 smt_enabled_at_boot = 0;
142
143 return 0;
144 }
145 early_param("smt-enabled", early_smt_enabled);
146
147 #else
148 #define check_smt_enabled()
149 #endif /* CONFIG_SMP */
150
151 /* Put the paca pointer into r13 and SPRG3 */
152 void __init setup_paca(int cpu)
153 {
154 local_paca = &paca[cpu];
155 mtspr(SPRN_SPRG3, local_paca);
156 }
157
158 /*
159 * Early initialization entry point. This is called by head.S
160 * with MMU translation disabled. We rely on the "feature" of
161 * the CPU that ignores the top 2 bits of the address in real
162 * mode so we can access kernel globals normally provided we
163 * only toy with things in the RMO region. From here, we do
164 * some early parsing of the device-tree to setup out LMB
165 * data structures, and allocate & initialize the hash table
166 * and segment tables so we can start running with translation
167 * enabled.
168 *
169 * It is this function which will call the probe() callback of
170 * the various platform types and copy the matching one to the
171 * global ppc_md structure. Your platform can eventually do
172 * some very early initializations from the probe() routine, but
173 * this is not recommended, be very careful as, for example, the
174 * device-tree is not accessible via normal means at this point.
175 */
176
177 void __init early_setup(unsigned long dt_ptr)
178 {
179 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */
180 setup_paca(0);
181
182 /* Enable early debugging if any specified (see udbg.h) */
183 udbg_early_init();
184
185 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
186
187 /*
188 * Do early initializations using the flattened device
189 * tree, like retreiving the physical memory map or
190 * calculating/retreiving the hash table size
191 */
192 early_init_devtree(__va(dt_ptr));
193
194 /* Now we know the logical id of our boot cpu, setup the paca. */
195 setup_paca(boot_cpuid);
196
197 /* Fix up paca fields required for the boot cpu */
198 get_paca()->cpu_start = 1;
199 get_paca()->stab_real = __pa((u64)&initial_stab);
200 get_paca()->stab_addr = (u64)&initial_stab;
201
202 /* Probe the machine type */
203 probe_machine();
204
205 setup_kdump_trampoline();
206
207 DBG("Found, Initializing memory management...\n");
208
209 /*
210 * Initialize the MMU Hash table and create the linear mapping
211 * of memory. Has to be done before stab/slb initialization as
212 * this is currently where the page size encoding is obtained
213 */
214 htab_initialize();
215
216 /*
217 * Initialize stab / SLB management except on iSeries
218 */
219 if (cpu_has_feature(CPU_FTR_SLB))
220 slb_initialize();
221 else if (!firmware_has_feature(FW_FEATURE_ISERIES))
222 stab_initialize(get_paca()->stab_real);
223
224 DBG(" <- early_setup()\n");
225 }
226
227 #ifdef CONFIG_SMP
228 void early_setup_secondary(void)
229 {
230 struct paca_struct *lpaca = get_paca();
231
232 /* Mark enabled in PACA */
233 lpaca->proc_enabled = 0;
234
235 /* Initialize hash table for that CPU */
236 htab_initialize_secondary();
237
238 /* Initialize STAB/SLB. We use a virtual address as it works
239 * in real mode on pSeries and we want a virutal address on
240 * iSeries anyway
241 */
242 if (cpu_has_feature(CPU_FTR_SLB))
243 slb_initialize();
244 else
245 stab_initialize(lpaca->stab_addr);
246 }
247
248 #endif /* CONFIG_SMP */
249
250 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC)
251 void smp_release_cpus(void)
252 {
253 extern unsigned long __secondary_hold_spinloop;
254 unsigned long *ptr;
255
256 DBG(" -> smp_release_cpus()\n");
257
258 /* All secondary cpus are spinning on a common spinloop, release them
259 * all now so they can start to spin on their individual paca
260 * spinloops. For non SMP kernels, the secondary cpus never get out
261 * of the common spinloop.
262 * This is useless but harmless on iSeries, secondaries are already
263 * waiting on their paca spinloops. */
264
265 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
266 - PHYSICAL_START);
267 *ptr = 1;
268 mb();
269
270 DBG(" <- smp_release_cpus()\n");
271 }
272 #endif /* CONFIG_SMP || CONFIG_KEXEC */
273
274 /*
275 * Initialize some remaining members of the ppc64_caches and systemcfg
276 * structures
277 * (at least until we get rid of them completely). This is mostly some
278 * cache informations about the CPU that will be used by cache flush
279 * routines and/or provided to userland
280 */
281 static void __init initialize_cache_info(void)
282 {
283 struct device_node *np;
284 unsigned long num_cpus = 0;
285
286 DBG(" -> initialize_cache_info()\n");
287
288 for (np = NULL; (np = of_find_node_by_type(np, "cpu"));) {
289 num_cpus += 1;
290
291 /* We're assuming *all* of the CPUs have the same
292 * d-cache and i-cache sizes... -Peter
293 */
294
295 if ( num_cpus == 1 ) {
296 u32 *sizep, *lsizep;
297 u32 size, lsize;
298 const char *dc, *ic;
299
300 /* Then read cache informations */
301 if (machine_is(powermac)) {
302 dc = "d-cache-block-size";
303 ic = "i-cache-block-size";
304 } else {
305 dc = "d-cache-line-size";
306 ic = "i-cache-line-size";
307 }
308
309 size = 0;
310 lsize = cur_cpu_spec->dcache_bsize;
311 sizep = (u32 *)get_property(np, "d-cache-size", NULL);
312 if (sizep != NULL)
313 size = *sizep;
314 lsizep = (u32 *) get_property(np, dc, NULL);
315 if (lsizep != NULL)
316 lsize = *lsizep;
317 if (sizep == 0 || lsizep == 0)
318 DBG("Argh, can't find dcache properties ! "
319 "sizep: %p, lsizep: %p\n", sizep, lsizep);
320
321 ppc64_caches.dsize = size;
322 ppc64_caches.dline_size = lsize;
323 ppc64_caches.log_dline_size = __ilog2(lsize);
324 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize;
325
326 size = 0;
327 lsize = cur_cpu_spec->icache_bsize;
328 sizep = (u32 *)get_property(np, "i-cache-size", NULL);
329 if (sizep != NULL)
330 size = *sizep;
331 lsizep = (u32 *)get_property(np, ic, NULL);
332 if (lsizep != NULL)
333 lsize = *lsizep;
334 if (sizep == 0 || lsizep == 0)
335 DBG("Argh, can't find icache properties ! "
336 "sizep: %p, lsizep: %p\n", sizep, lsizep);
337
338 ppc64_caches.isize = size;
339 ppc64_caches.iline_size = lsize;
340 ppc64_caches.log_iline_size = __ilog2(lsize);
341 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize;
342 }
343 }
344
345 DBG(" <- initialize_cache_info()\n");
346 }
347
348
349 /*
350 * Do some initial setup of the system. The parameters are those which
351 * were passed in from the bootloader.
352 */
353 void __init setup_system(void)
354 {
355 DBG(" -> setup_system()\n");
356
357 /*
358 * Unflatten the device-tree passed by prom_init or kexec
359 */
360 unflatten_device_tree();
361
362 /*
363 * Fill the ppc64_caches & systemcfg structures with informations
364 * retrieved from the device-tree.
365 */
366 initialize_cache_info();
367
368 /*
369 * Initialize irq remapping subsystem
370 */
371 irq_early_init();
372
373 #ifdef CONFIG_PPC_RTAS
374 /*
375 * Initialize RTAS if available
376 */
377 rtas_initialize();
378 #endif /* CONFIG_PPC_RTAS */
379
380 /*
381 * Check if we have an initrd provided via the device-tree
382 */
383 check_for_initrd();
384
385 /*
386 * Do some platform specific early initializations, that includes
387 * setting up the hash table pointers. It also sets up some interrupt-mapping
388 * related options that will be used by finish_device_tree()
389 */
390 ppc_md.init_early();
391
392 /*
393 * We can discover serial ports now since the above did setup the
394 * hash table management for us, thus ioremap works. We do that early
395 * so that further code can be debugged
396 */
397 find_legacy_serial_ports();
398
399 /*
400 * Initialize xmon
401 */
402 #ifdef CONFIG_XMON_DEFAULT
403 xmon_init(1);
404 #endif
405 /*
406 * Register early console
407 */
408 register_early_udbg_console();
409
410 if (do_early_xmon)
411 debugger(NULL);
412
413 check_smt_enabled();
414 smp_setup_cpu_maps();
415
416 #ifdef CONFIG_SMP
417 /* Release secondary cpus out of their spinloops at 0x60 now that
418 * we can map physical -> logical CPU ids
419 */
420 smp_release_cpus();
421 #endif
422
423 printk("Starting Linux PPC64 %s\n", system_utsname.version);
424
425 printk("-----------------------------------------------------\n");
426 printk("ppc64_pft_size = 0x%lx\n", ppc64_pft_size);
427 printk("physicalMemorySize = 0x%lx\n", lmb_phys_mem_size());
428 printk("ppc64_caches.dcache_line_size = 0x%x\n",
429 ppc64_caches.dline_size);
430 printk("ppc64_caches.icache_line_size = 0x%x\n",
431 ppc64_caches.iline_size);
432 printk("htab_address = 0x%p\n", htab_address);
433 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask);
434 #if PHYSICAL_START > 0
435 printk("physical_start = 0x%x\n", PHYSICAL_START);
436 #endif
437 printk("-----------------------------------------------------\n");
438
439 DBG(" <- setup_system()\n");
440 }
441
442 #ifdef CONFIG_IRQSTACKS
443 static void __init irqstack_early_init(void)
444 {
445 unsigned int i;
446
447 /*
448 * interrupt stacks must be under 256MB, we cannot afford to take
449 * SLB misses on them.
450 */
451 for_each_possible_cpu(i) {
452 softirq_ctx[i] = (struct thread_info *)
453 __va(lmb_alloc_base(THREAD_SIZE,
454 THREAD_SIZE, 0x10000000));
455 hardirq_ctx[i] = (struct thread_info *)
456 __va(lmb_alloc_base(THREAD_SIZE,
457 THREAD_SIZE, 0x10000000));
458 }
459 }
460 #else
461 #define irqstack_early_init()
462 #endif
463
464 /*
465 * Stack space used when we detect a bad kernel stack pointer, and
466 * early in SMP boots before relocation is enabled.
467 */
468 static void __init emergency_stack_init(void)
469 {
470 unsigned long limit;
471 unsigned int i;
472
473 /*
474 * Emergency stacks must be under 256MB, we cannot afford to take
475 * SLB misses on them. The ABI also requires them to be 128-byte
476 * aligned.
477 *
478 * Since we use these as temporary stacks during secondary CPU
479 * bringup, we need to get at them in real mode. This means they
480 * must also be within the RMO region.
481 */
482 limit = min(0x10000000UL, lmb.rmo_size);
483
484 for_each_possible_cpu(i)
485 paca[i].emergency_sp =
486 __va(lmb_alloc_base(HW_PAGE_SIZE, 128, limit)) + HW_PAGE_SIZE;
487 }
488
489 /*
490 * Called into from start_kernel, after lock_kernel has been called.
491 * Initializes bootmem, which is unsed to manage page allocation until
492 * mem_init is called.
493 */
494 void __init setup_arch(char **cmdline_p)
495 {
496 ppc64_boot_msg(0x12, "Setup Arch");
497
498 *cmdline_p = cmd_line;
499
500 /*
501 * Set cache line size based on type of cpu as a default.
502 * Systems with OF can look in the properties on the cpu node(s)
503 * for a possibly more accurate value.
504 */
505 dcache_bsize = ppc64_caches.dline_size;
506 icache_bsize = ppc64_caches.iline_size;
507
508 /* reboot on panic */
509 panic_timeout = 180;
510
511 if (ppc_md.panic)
512 setup_panic();
513
514 init_mm.start_code = PAGE_OFFSET;
515 init_mm.end_code = (unsigned long) _etext;
516 init_mm.end_data = (unsigned long) _edata;
517 init_mm.brk = klimit;
518
519 irqstack_early_init();
520 emergency_stack_init();
521
522 stabs_alloc();
523
524 /* set up the bootmem stuff with available memory */
525 do_init_bootmem();
526 sparse_init();
527
528 #ifdef CONFIG_DUMMY_CONSOLE
529 conswitchp = &dummy_con;
530 #endif
531
532 ppc_md.setup_arch();
533
534 paging_init();
535 ppc64_boot_msg(0x15, "Setup Done");
536 }
537
538
539 /* ToDo: do something useful if ppc_md is not yet setup. */
540 #define PPC64_LINUX_FUNCTION 0x0f000000
541 #define PPC64_IPL_MESSAGE 0xc0000000
542 #define PPC64_TERM_MESSAGE 0xb0000000
543
544 static void ppc64_do_msg(unsigned int src, const char *msg)
545 {
546 if (ppc_md.progress) {
547 char buf[128];
548
549 sprintf(buf, "%08X\n", src);
550 ppc_md.progress(buf, 0);
551 snprintf(buf, 128, "%s", msg);
552 ppc_md.progress(buf, 0);
553 }
554 }
555
556 /* Print a boot progress message. */
557 void ppc64_boot_msg(unsigned int src, const char *msg)
558 {
559 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg);
560 printk("[boot]%04x %s\n", src, msg);
561 }
562
563 /* Print a termination message (print only -- does not stop the kernel) */
564 void ppc64_terminate_msg(unsigned int src, const char *msg)
565 {
566 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_TERM_MESSAGE|src, msg);
567 printk("[terminate]%04x %s\n", src, msg);
568 }
569
570 void cpu_die(void)
571 {
572 if (ppc_md.cpu_die)
573 ppc_md.cpu_die();
574 }
575
576 #ifdef CONFIG_SMP
577 void __init setup_per_cpu_areas(void)
578 {
579 int i;
580 unsigned long size;
581 char *ptr;
582
583 /* Copy section for each CPU (we discard the original) */
584 size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
585 #ifdef CONFIG_MODULES
586 if (size < PERCPU_ENOUGH_ROOM)
587 size = PERCPU_ENOUGH_ROOM;
588 #endif
589
590 for_each_possible_cpu(i) {
591 ptr = alloc_bootmem_node(NODE_DATA(cpu_to_node(i)), size);
592 if (!ptr)
593 panic("Cannot allocate cpu data for CPU %d\n", i);
594
595 paca[i].data_offset = ptr - __per_cpu_start;
596 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
597 }
598 }
599 #endif