]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/signal_32.c
Merge tag 'trace-v4.4-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / signal_32.c
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
54
55 #include "signal.h"
56
57
58 #ifdef CONFIG_PPC64
59 #define sys_rt_sigreturn compat_sys_rt_sigreturn
60 #define sys_swapcontext compat_sys_swapcontext
61 #define sys_sigreturn compat_sys_sigreturn
62
63 #define old_sigaction old_sigaction32
64 #define sigcontext sigcontext32
65 #define mcontext mcontext32
66 #define ucontext ucontext32
67
68 #define __save_altstack __compat_save_altstack
69
70 /*
71 * Userspace code may pass a ucontext which doesn't include VSX added
72 * at the end. We need to check for this case.
73 */
74 #define UCONTEXTSIZEWITHOUTVSX \
75 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
76
77 /*
78 * Returning 0 means we return to userspace via
79 * ret_from_except and thus restore all user
80 * registers from *regs. This is what we need
81 * to do when a signal has been delivered.
82 */
83
84 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
85 #undef __SIGNAL_FRAMESIZE
86 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
87 #undef ELF_NVRREG
88 #define ELF_NVRREG ELF_NVRREG32
89
90 /*
91 * Functions for flipping sigsets (thanks to brain dead generic
92 * implementation that makes things simple for little endian only)
93 */
94 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
95 {
96 compat_sigset_t cset;
97
98 switch (_NSIG_WORDS) {
99 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
100 cset.sig[7] = set->sig[3] >> 32;
101 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
102 cset.sig[5] = set->sig[2] >> 32;
103 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
104 cset.sig[3] = set->sig[1] >> 32;
105 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
106 cset.sig[1] = set->sig[0] >> 32;
107 }
108 return copy_to_user(uset, &cset, sizeof(*uset));
109 }
110
111 static inline int get_sigset_t(sigset_t *set,
112 const compat_sigset_t __user *uset)
113 {
114 compat_sigset_t s32;
115
116 if (copy_from_user(&s32, uset, sizeof(*uset)))
117 return -EFAULT;
118
119 /*
120 * Swap the 2 words of the 64-bit sigset_t (they are stored
121 * in the "wrong" endian in 32-bit user storage).
122 */
123 switch (_NSIG_WORDS) {
124 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
125 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
126 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
127 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
128 }
129 return 0;
130 }
131
132 #define to_user_ptr(p) ptr_to_compat(p)
133 #define from_user_ptr(p) compat_ptr(p)
134
135 static inline int save_general_regs(struct pt_regs *regs,
136 struct mcontext __user *frame)
137 {
138 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
139 int i;
140
141 WARN_ON(!FULL_REGS(regs));
142
143 for (i = 0; i <= PT_RESULT; i ++) {
144 if (i == 14 && !FULL_REGS(regs))
145 i = 32;
146 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
147 return -EFAULT;
148 }
149 return 0;
150 }
151
152 static inline int restore_general_regs(struct pt_regs *regs,
153 struct mcontext __user *sr)
154 {
155 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
156 int i;
157
158 for (i = 0; i <= PT_RESULT; i++) {
159 if ((i == PT_MSR) || (i == PT_SOFTE))
160 continue;
161 if (__get_user(gregs[i], &sr->mc_gregs[i]))
162 return -EFAULT;
163 }
164 return 0;
165 }
166
167 #else /* CONFIG_PPC64 */
168
169 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
170
171 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
172 {
173 return copy_to_user(uset, set, sizeof(*uset));
174 }
175
176 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
177 {
178 return copy_from_user(set, uset, sizeof(*uset));
179 }
180
181 #define to_user_ptr(p) ((unsigned long)(p))
182 #define from_user_ptr(p) ((void __user *)(p))
183
184 static inline int save_general_regs(struct pt_regs *regs,
185 struct mcontext __user *frame)
186 {
187 WARN_ON(!FULL_REGS(regs));
188 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
189 }
190
191 static inline int restore_general_regs(struct pt_regs *regs,
192 struct mcontext __user *sr)
193 {
194 /* copy up to but not including MSR */
195 if (__copy_from_user(regs, &sr->mc_gregs,
196 PT_MSR * sizeof(elf_greg_t)))
197 return -EFAULT;
198 /* copy from orig_r3 (the word after the MSR) up to the end */
199 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
200 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
201 return -EFAULT;
202 return 0;
203 }
204 #endif
205
206 /*
207 * When we have signals to deliver, we set up on the
208 * user stack, going down from the original stack pointer:
209 * an ABI gap of 56 words
210 * an mcontext struct
211 * a sigcontext struct
212 * a gap of __SIGNAL_FRAMESIZE bytes
213 *
214 * Each of these things must be a multiple of 16 bytes in size. The following
215 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
216 *
217 */
218 struct sigframe {
219 struct sigcontext sctx; /* the sigcontext */
220 struct mcontext mctx; /* all the register values */
221 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
222 struct sigcontext sctx_transact;
223 struct mcontext mctx_transact;
224 #endif
225 /*
226 * Programs using the rs6000/xcoff abi can save up to 19 gp
227 * regs and 18 fp regs below sp before decrementing it.
228 */
229 int abigap[56];
230 };
231
232 /* We use the mc_pad field for the signal return trampoline. */
233 #define tramp mc_pad
234
235 /*
236 * When we have rt signals to deliver, we set up on the
237 * user stack, going down from the original stack pointer:
238 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
239 * a gap of __SIGNAL_FRAMESIZE+16 bytes
240 * (the +16 is to get the siginfo and ucontext in the same
241 * positions as in older kernels).
242 *
243 * Each of these things must be a multiple of 16 bytes in size.
244 *
245 */
246 struct rt_sigframe {
247 #ifdef CONFIG_PPC64
248 compat_siginfo_t info;
249 #else
250 struct siginfo info;
251 #endif
252 struct ucontext uc;
253 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
254 struct ucontext uc_transact;
255 #endif
256 /*
257 * Programs using the rs6000/xcoff abi can save up to 19 gp
258 * regs and 18 fp regs below sp before decrementing it.
259 */
260 int abigap[56];
261 };
262
263 #ifdef CONFIG_VSX
264 unsigned long copy_fpr_to_user(void __user *to,
265 struct task_struct *task)
266 {
267 u64 buf[ELF_NFPREG];
268 int i;
269
270 /* save FPR copy to local buffer then write to the thread_struct */
271 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
272 buf[i] = task->thread.TS_FPR(i);
273 buf[i] = task->thread.fp_state.fpscr;
274 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
275 }
276
277 unsigned long copy_fpr_from_user(struct task_struct *task,
278 void __user *from)
279 {
280 u64 buf[ELF_NFPREG];
281 int i;
282
283 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
284 return 1;
285 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
286 task->thread.TS_FPR(i) = buf[i];
287 task->thread.fp_state.fpscr = buf[i];
288
289 return 0;
290 }
291
292 unsigned long copy_vsx_to_user(void __user *to,
293 struct task_struct *task)
294 {
295 u64 buf[ELF_NVSRHALFREG];
296 int i;
297
298 /* save FPR copy to local buffer then write to the thread_struct */
299 for (i = 0; i < ELF_NVSRHALFREG; i++)
300 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
301 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
302 }
303
304 unsigned long copy_vsx_from_user(struct task_struct *task,
305 void __user *from)
306 {
307 u64 buf[ELF_NVSRHALFREG];
308 int i;
309
310 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
311 return 1;
312 for (i = 0; i < ELF_NVSRHALFREG ; i++)
313 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
314 return 0;
315 }
316
317 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
318 unsigned long copy_transact_fpr_to_user(void __user *to,
319 struct task_struct *task)
320 {
321 u64 buf[ELF_NFPREG];
322 int i;
323
324 /* save FPR copy to local buffer then write to the thread_struct */
325 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
326 buf[i] = task->thread.TS_TRANS_FPR(i);
327 buf[i] = task->thread.transact_fp.fpscr;
328 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
329 }
330
331 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
332 void __user *from)
333 {
334 u64 buf[ELF_NFPREG];
335 int i;
336
337 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
338 return 1;
339 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
340 task->thread.TS_TRANS_FPR(i) = buf[i];
341 task->thread.transact_fp.fpscr = buf[i];
342
343 return 0;
344 }
345
346 unsigned long copy_transact_vsx_to_user(void __user *to,
347 struct task_struct *task)
348 {
349 u64 buf[ELF_NVSRHALFREG];
350 int i;
351
352 /* save FPR copy to local buffer then write to the thread_struct */
353 for (i = 0; i < ELF_NVSRHALFREG; i++)
354 buf[i] = task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET];
355 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
356 }
357
358 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
359 void __user *from)
360 {
361 u64 buf[ELF_NVSRHALFREG];
362 int i;
363
364 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
365 return 1;
366 for (i = 0; i < ELF_NVSRHALFREG ; i++)
367 task->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = buf[i];
368 return 0;
369 }
370 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
371 #else
372 inline unsigned long copy_fpr_to_user(void __user *to,
373 struct task_struct *task)
374 {
375 return __copy_to_user(to, task->thread.fp_state.fpr,
376 ELF_NFPREG * sizeof(double));
377 }
378
379 inline unsigned long copy_fpr_from_user(struct task_struct *task,
380 void __user *from)
381 {
382 return __copy_from_user(task->thread.fp_state.fpr, from,
383 ELF_NFPREG * sizeof(double));
384 }
385
386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
387 inline unsigned long copy_transact_fpr_to_user(void __user *to,
388 struct task_struct *task)
389 {
390 return __copy_to_user(to, task->thread.transact_fp.fpr,
391 ELF_NFPREG * sizeof(double));
392 }
393
394 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
395 void __user *from)
396 {
397 return __copy_from_user(task->thread.transact_fp.fpr, from,
398 ELF_NFPREG * sizeof(double));
399 }
400 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
401 #endif
402
403 /*
404 * Save the current user registers on the user stack.
405 * We only save the altivec/spe registers if the process has used
406 * altivec/spe instructions at some point.
407 */
408 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
409 struct mcontext __user *tm_frame, int sigret,
410 int ctx_has_vsx_region)
411 {
412 unsigned long msr = regs->msr;
413
414 /* Make sure floating point registers are stored in regs */
415 flush_fp_to_thread(current);
416
417 /* save general registers */
418 if (save_general_regs(regs, frame))
419 return 1;
420
421 #ifdef CONFIG_ALTIVEC
422 /* save altivec registers */
423 if (current->thread.used_vr) {
424 flush_altivec_to_thread(current);
425 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
426 ELF_NVRREG * sizeof(vector128)))
427 return 1;
428 /* set MSR_VEC in the saved MSR value to indicate that
429 frame->mc_vregs contains valid data */
430 msr |= MSR_VEC;
431 }
432 /* else assert((regs->msr & MSR_VEC) == 0) */
433
434 /* We always copy to/from vrsave, it's 0 if we don't have or don't
435 * use altivec. Since VSCR only contains 32 bits saved in the least
436 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 * most significant bits of that same vector. --BenH
438 * Note that the current VRSAVE value is in the SPR at this point.
439 */
440 if (cpu_has_feature(CPU_FTR_ALTIVEC))
441 current->thread.vrsave = mfspr(SPRN_VRSAVE);
442 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
443 return 1;
444 #endif /* CONFIG_ALTIVEC */
445 if (copy_fpr_to_user(&frame->mc_fregs, current))
446 return 1;
447
448 /*
449 * Clear the MSR VSX bit to indicate there is no valid state attached
450 * to this context, except in the specific case below where we set it.
451 */
452 msr &= ~MSR_VSX;
453 #ifdef CONFIG_VSX
454 /*
455 * Copy VSR 0-31 upper half from thread_struct to local
456 * buffer, then write that to userspace. Also set MSR_VSX in
457 * the saved MSR value to indicate that frame->mc_vregs
458 * contains valid data
459 */
460 if (current->thread.used_vsr && ctx_has_vsx_region) {
461 __giveup_vsx(current);
462 if (copy_vsx_to_user(&frame->mc_vsregs, current))
463 return 1;
464 msr |= MSR_VSX;
465 }
466 #endif /* CONFIG_VSX */
467 #ifdef CONFIG_SPE
468 /* save spe registers */
469 if (current->thread.used_spe) {
470 flush_spe_to_thread(current);
471 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
472 ELF_NEVRREG * sizeof(u32)))
473 return 1;
474 /* set MSR_SPE in the saved MSR value to indicate that
475 frame->mc_vregs contains valid data */
476 msr |= MSR_SPE;
477 }
478 /* else assert((regs->msr & MSR_SPE) == 0) */
479
480 /* We always copy to/from spefscr */
481 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
482 return 1;
483 #endif /* CONFIG_SPE */
484
485 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
486 return 1;
487 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
488 * can check it on the restore to see if TM is active
489 */
490 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
491 return 1;
492
493 if (sigret) {
494 /* Set up the sigreturn trampoline: li r0,sigret; sc */
495 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
496 || __put_user(0x44000002UL, &frame->tramp[1]))
497 return 1;
498 flush_icache_range((unsigned long) &frame->tramp[0],
499 (unsigned long) &frame->tramp[2]);
500 }
501
502 return 0;
503 }
504
505 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
506 /*
507 * Save the current user registers on the user stack.
508 * We only save the altivec/spe registers if the process has used
509 * altivec/spe instructions at some point.
510 * We also save the transactional registers to a second ucontext in the
511 * frame.
512 *
513 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
514 */
515 static int save_tm_user_regs(struct pt_regs *regs,
516 struct mcontext __user *frame,
517 struct mcontext __user *tm_frame, int sigret)
518 {
519 unsigned long msr = regs->msr;
520
521 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
522 * just indicates to userland that we were doing a transaction, but we
523 * don't want to return in transactional state. This also ensures
524 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
525 */
526 regs->msr &= ~MSR_TS_MASK;
527
528 /* Make sure floating point registers are stored in regs */
529 flush_fp_to_thread(current);
530
531 /* Save both sets of general registers */
532 if (save_general_regs(&current->thread.ckpt_regs, frame)
533 || save_general_regs(regs, tm_frame))
534 return 1;
535
536 /* Stash the top half of the 64bit MSR into the 32bit MSR word
537 * of the transactional mcontext. This way we have a backward-compatible
538 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
539 * also look at what type of transaction (T or S) was active at the
540 * time of the signal.
541 */
542 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
543 return 1;
544
545 #ifdef CONFIG_ALTIVEC
546 /* save altivec registers */
547 if (current->thread.used_vr) {
548 flush_altivec_to_thread(current);
549 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
550 ELF_NVRREG * sizeof(vector128)))
551 return 1;
552 if (msr & MSR_VEC) {
553 if (__copy_to_user(&tm_frame->mc_vregs,
554 &current->thread.transact_vr,
555 ELF_NVRREG * sizeof(vector128)))
556 return 1;
557 } else {
558 if (__copy_to_user(&tm_frame->mc_vregs,
559 &current->thread.vr_state,
560 ELF_NVRREG * sizeof(vector128)))
561 return 1;
562 }
563
564 /* set MSR_VEC in the saved MSR value to indicate that
565 * frame->mc_vregs contains valid data
566 */
567 msr |= MSR_VEC;
568 }
569
570 /* We always copy to/from vrsave, it's 0 if we don't have or don't
571 * use altivec. Since VSCR only contains 32 bits saved in the least
572 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
573 * most significant bits of that same vector. --BenH
574 */
575 if (cpu_has_feature(CPU_FTR_ALTIVEC))
576 current->thread.vrsave = mfspr(SPRN_VRSAVE);
577 if (__put_user(current->thread.vrsave,
578 (u32 __user *)&frame->mc_vregs[32]))
579 return 1;
580 if (msr & MSR_VEC) {
581 if (__put_user(current->thread.transact_vrsave,
582 (u32 __user *)&tm_frame->mc_vregs[32]))
583 return 1;
584 } else {
585 if (__put_user(current->thread.vrsave,
586 (u32 __user *)&tm_frame->mc_vregs[32]))
587 return 1;
588 }
589 #endif /* CONFIG_ALTIVEC */
590
591 if (copy_fpr_to_user(&frame->mc_fregs, current))
592 return 1;
593 if (msr & MSR_FP) {
594 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
595 return 1;
596 } else {
597 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
598 return 1;
599 }
600
601 #ifdef CONFIG_VSX
602 /*
603 * Copy VSR 0-31 upper half from thread_struct to local
604 * buffer, then write that to userspace. Also set MSR_VSX in
605 * the saved MSR value to indicate that frame->mc_vregs
606 * contains valid data
607 */
608 if (current->thread.used_vsr) {
609 __giveup_vsx(current);
610 if (copy_vsx_to_user(&frame->mc_vsregs, current))
611 return 1;
612 if (msr & MSR_VSX) {
613 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
614 current))
615 return 1;
616 } else {
617 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
618 return 1;
619 }
620
621 msr |= MSR_VSX;
622 }
623 #endif /* CONFIG_VSX */
624 #ifdef CONFIG_SPE
625 /* SPE regs are not checkpointed with TM, so this section is
626 * simply the same as in save_user_regs().
627 */
628 if (current->thread.used_spe) {
629 flush_spe_to_thread(current);
630 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
631 ELF_NEVRREG * sizeof(u32)))
632 return 1;
633 /* set MSR_SPE in the saved MSR value to indicate that
634 * frame->mc_vregs contains valid data */
635 msr |= MSR_SPE;
636 }
637
638 /* We always copy to/from spefscr */
639 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
640 return 1;
641 #endif /* CONFIG_SPE */
642
643 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
644 return 1;
645 if (sigret) {
646 /* Set up the sigreturn trampoline: li r0,sigret; sc */
647 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
648 || __put_user(0x44000002UL, &frame->tramp[1]))
649 return 1;
650 flush_icache_range((unsigned long) &frame->tramp[0],
651 (unsigned long) &frame->tramp[2]);
652 }
653
654 return 0;
655 }
656 #endif
657
658 /*
659 * Restore the current user register values from the user stack,
660 * (except for MSR).
661 */
662 static long restore_user_regs(struct pt_regs *regs,
663 struct mcontext __user *sr, int sig)
664 {
665 long err;
666 unsigned int save_r2 = 0;
667 unsigned long msr;
668 #ifdef CONFIG_VSX
669 int i;
670 #endif
671
672 /*
673 * restore general registers but not including MSR or SOFTE. Also
674 * take care of keeping r2 (TLS) intact if not a signal
675 */
676 if (!sig)
677 save_r2 = (unsigned int)regs->gpr[2];
678 err = restore_general_regs(regs, sr);
679 regs->trap = 0;
680 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
681 if (!sig)
682 regs->gpr[2] = (unsigned long) save_r2;
683 if (err)
684 return 1;
685
686 /* if doing signal return, restore the previous little-endian mode */
687 if (sig)
688 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
689
690 /*
691 * Do this before updating the thread state in
692 * current->thread.fpr/vr/evr. That way, if we get preempted
693 * and another task grabs the FPU/Altivec/SPE, it won't be
694 * tempted to save the current CPU state into the thread_struct
695 * and corrupt what we are writing there.
696 */
697 discard_lazy_cpu_state();
698
699 #ifdef CONFIG_ALTIVEC
700 /*
701 * Force the process to reload the altivec registers from
702 * current->thread when it next does altivec instructions
703 */
704 regs->msr &= ~MSR_VEC;
705 if (msr & MSR_VEC) {
706 /* restore altivec registers from the stack */
707 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
708 sizeof(sr->mc_vregs)))
709 return 1;
710 } else if (current->thread.used_vr)
711 memset(&current->thread.vr_state, 0,
712 ELF_NVRREG * sizeof(vector128));
713
714 /* Always get VRSAVE back */
715 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
716 return 1;
717 if (cpu_has_feature(CPU_FTR_ALTIVEC))
718 mtspr(SPRN_VRSAVE, current->thread.vrsave);
719 #endif /* CONFIG_ALTIVEC */
720 if (copy_fpr_from_user(current, &sr->mc_fregs))
721 return 1;
722
723 #ifdef CONFIG_VSX
724 /*
725 * Force the process to reload the VSX registers from
726 * current->thread when it next does VSX instruction.
727 */
728 regs->msr &= ~MSR_VSX;
729 if (msr & MSR_VSX) {
730 /*
731 * Restore altivec registers from the stack to a local
732 * buffer, then write this out to the thread_struct
733 */
734 if (copy_vsx_from_user(current, &sr->mc_vsregs))
735 return 1;
736 } else if (current->thread.used_vsr)
737 for (i = 0; i < 32 ; i++)
738 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
739 #endif /* CONFIG_VSX */
740 /*
741 * force the process to reload the FP registers from
742 * current->thread when it next does FP instructions
743 */
744 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
745
746 #ifdef CONFIG_SPE
747 /* force the process to reload the spe registers from
748 current->thread when it next does spe instructions */
749 regs->msr &= ~MSR_SPE;
750 if (msr & MSR_SPE) {
751 /* restore spe registers from the stack */
752 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
753 ELF_NEVRREG * sizeof(u32)))
754 return 1;
755 } else if (current->thread.used_spe)
756 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
757
758 /* Always get SPEFSCR back */
759 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
760 return 1;
761 #endif /* CONFIG_SPE */
762
763 return 0;
764 }
765
766 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
767 /*
768 * Restore the current user register values from the user stack, except for
769 * MSR, and recheckpoint the original checkpointed register state for processes
770 * in transactions.
771 */
772 static long restore_tm_user_regs(struct pt_regs *regs,
773 struct mcontext __user *sr,
774 struct mcontext __user *tm_sr)
775 {
776 long err;
777 unsigned long msr, msr_hi;
778 #ifdef CONFIG_VSX
779 int i;
780 #endif
781
782 /*
783 * restore general registers but not including MSR or SOFTE. Also
784 * take care of keeping r2 (TLS) intact if not a signal.
785 * See comment in signal_64.c:restore_tm_sigcontexts();
786 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
787 * were set by the signal delivery.
788 */
789 err = restore_general_regs(regs, tm_sr);
790 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
791
792 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
793
794 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
795 if (err)
796 return 1;
797
798 /* Restore the previous little-endian mode */
799 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
800
801 /*
802 * Do this before updating the thread state in
803 * current->thread.fpr/vr/evr. That way, if we get preempted
804 * and another task grabs the FPU/Altivec/SPE, it won't be
805 * tempted to save the current CPU state into the thread_struct
806 * and corrupt what we are writing there.
807 */
808 discard_lazy_cpu_state();
809
810 #ifdef CONFIG_ALTIVEC
811 regs->msr &= ~MSR_VEC;
812 if (msr & MSR_VEC) {
813 /* restore altivec registers from the stack */
814 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
815 sizeof(sr->mc_vregs)) ||
816 __copy_from_user(&current->thread.transact_vr,
817 &tm_sr->mc_vregs,
818 sizeof(sr->mc_vregs)))
819 return 1;
820 } else if (current->thread.used_vr) {
821 memset(&current->thread.vr_state, 0,
822 ELF_NVRREG * sizeof(vector128));
823 memset(&current->thread.transact_vr, 0,
824 ELF_NVRREG * sizeof(vector128));
825 }
826
827 /* Always get VRSAVE back */
828 if (__get_user(current->thread.vrsave,
829 (u32 __user *)&sr->mc_vregs[32]) ||
830 __get_user(current->thread.transact_vrsave,
831 (u32 __user *)&tm_sr->mc_vregs[32]))
832 return 1;
833 if (cpu_has_feature(CPU_FTR_ALTIVEC))
834 mtspr(SPRN_VRSAVE, current->thread.vrsave);
835 #endif /* CONFIG_ALTIVEC */
836
837 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
838
839 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
840 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
841 return 1;
842
843 #ifdef CONFIG_VSX
844 regs->msr &= ~MSR_VSX;
845 if (msr & MSR_VSX) {
846 /*
847 * Restore altivec registers from the stack to a local
848 * buffer, then write this out to the thread_struct
849 */
850 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
851 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
852 return 1;
853 } else if (current->thread.used_vsr)
854 for (i = 0; i < 32 ; i++) {
855 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
856 current->thread.transact_fp.fpr[i][TS_VSRLOWOFFSET] = 0;
857 }
858 #endif /* CONFIG_VSX */
859
860 #ifdef CONFIG_SPE
861 /* SPE regs are not checkpointed with TM, so this section is
862 * simply the same as in restore_user_regs().
863 */
864 regs->msr &= ~MSR_SPE;
865 if (msr & MSR_SPE) {
866 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
867 ELF_NEVRREG * sizeof(u32)))
868 return 1;
869 } else if (current->thread.used_spe)
870 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
871
872 /* Always get SPEFSCR back */
873 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
874 + ELF_NEVRREG))
875 return 1;
876 #endif /* CONFIG_SPE */
877
878 /* Get the top half of the MSR from the user context */
879 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
880 return 1;
881 msr_hi <<= 32;
882 /* If TM bits are set to the reserved value, it's an invalid context */
883 if (MSR_TM_RESV(msr_hi))
884 return 1;
885 /* Pull in the MSR TM bits from the user context */
886 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
887 /* Now, recheckpoint. This loads up all of the checkpointed (older)
888 * registers, including FP and V[S]Rs. After recheckpointing, the
889 * transactional versions should be loaded.
890 */
891 tm_enable();
892 /* Make sure the transaction is marked as failed */
893 current->thread.tm_texasr |= TEXASR_FS;
894 /* This loads the checkpointed FP/VEC state, if used */
895 tm_recheckpoint(&current->thread, msr);
896
897 /* This loads the speculative FP/VEC state, if used */
898 if (msr & MSR_FP) {
899 do_load_up_transact_fpu(&current->thread);
900 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
901 }
902 #ifdef CONFIG_ALTIVEC
903 if (msr & MSR_VEC) {
904 do_load_up_transact_altivec(&current->thread);
905 regs->msr |= MSR_VEC;
906 }
907 #endif
908
909 return 0;
910 }
911 #endif
912
913 #ifdef CONFIG_PPC64
914 int copy_siginfo_to_user32(struct compat_siginfo __user *d, const siginfo_t *s)
915 {
916 int err;
917
918 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
919 return -EFAULT;
920
921 /* If you change siginfo_t structure, please be sure
922 * this code is fixed accordingly.
923 * It should never copy any pad contained in the structure
924 * to avoid security leaks, but must copy the generic
925 * 3 ints plus the relevant union member.
926 * This routine must convert siginfo from 64bit to 32bit as well
927 * at the same time.
928 */
929 err = __put_user(s->si_signo, &d->si_signo);
930 err |= __put_user(s->si_errno, &d->si_errno);
931 err |= __put_user((short)s->si_code, &d->si_code);
932 if (s->si_code < 0)
933 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
934 SI_PAD_SIZE32);
935 else switch(s->si_code >> 16) {
936 case __SI_CHLD >> 16:
937 err |= __put_user(s->si_pid, &d->si_pid);
938 err |= __put_user(s->si_uid, &d->si_uid);
939 err |= __put_user(s->si_utime, &d->si_utime);
940 err |= __put_user(s->si_stime, &d->si_stime);
941 err |= __put_user(s->si_status, &d->si_status);
942 break;
943 case __SI_FAULT >> 16:
944 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
945 &d->si_addr);
946 break;
947 case __SI_POLL >> 16:
948 err |= __put_user(s->si_band, &d->si_band);
949 err |= __put_user(s->si_fd, &d->si_fd);
950 break;
951 case __SI_TIMER >> 16:
952 err |= __put_user(s->si_tid, &d->si_tid);
953 err |= __put_user(s->si_overrun, &d->si_overrun);
954 err |= __put_user(s->si_int, &d->si_int);
955 break;
956 case __SI_SYS >> 16:
957 err |= __put_user(ptr_to_compat(s->si_call_addr), &d->si_call_addr);
958 err |= __put_user(s->si_syscall, &d->si_syscall);
959 err |= __put_user(s->si_arch, &d->si_arch);
960 break;
961 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
962 case __SI_MESGQ >> 16:
963 err |= __put_user(s->si_int, &d->si_int);
964 /* fallthrough */
965 case __SI_KILL >> 16:
966 default:
967 err |= __put_user(s->si_pid, &d->si_pid);
968 err |= __put_user(s->si_uid, &d->si_uid);
969 break;
970 }
971 return err;
972 }
973
974 #define copy_siginfo_to_user copy_siginfo_to_user32
975
976 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
977 {
978 if (copy_from_user(to, from, 3*sizeof(int)) ||
979 copy_from_user(to->_sifields._pad,
980 from->_sifields._pad, SI_PAD_SIZE32))
981 return -EFAULT;
982
983 return 0;
984 }
985 #endif /* CONFIG_PPC64 */
986
987 /*
988 * Set up a signal frame for a "real-time" signal handler
989 * (one which gets siginfo).
990 */
991 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
992 struct pt_regs *regs)
993 {
994 struct rt_sigframe __user *rt_sf;
995 struct mcontext __user *frame;
996 struct mcontext __user *tm_frame = NULL;
997 void __user *addr;
998 unsigned long newsp = 0;
999 int sigret;
1000 unsigned long tramp;
1001
1002 /* Set up Signal Frame */
1003 /* Put a Real Time Context onto stack */
1004 rt_sf = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*rt_sf), 1);
1005 addr = rt_sf;
1006 if (unlikely(rt_sf == NULL))
1007 goto badframe;
1008
1009 /* Put the siginfo & fill in most of the ucontext */
1010 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
1011 || __put_user(0, &rt_sf->uc.uc_flags)
1012 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
1013 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
1014 &rt_sf->uc.uc_regs)
1015 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
1016 goto badframe;
1017
1018 /* Save user registers on the stack */
1019 frame = &rt_sf->uc.uc_mcontext;
1020 addr = frame;
1021 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
1022 sigret = 0;
1023 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
1024 } else {
1025 sigret = __NR_rt_sigreturn;
1026 tramp = (unsigned long) frame->tramp;
1027 }
1028
1029 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1030 tm_frame = &rt_sf->uc_transact.uc_mcontext;
1031 if (MSR_TM_ACTIVE(regs->msr)) {
1032 if (__put_user((unsigned long)&rt_sf->uc_transact,
1033 &rt_sf->uc.uc_link) ||
1034 __put_user((unsigned long)tm_frame,
1035 &rt_sf->uc_transact.uc_regs))
1036 goto badframe;
1037 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
1038 goto badframe;
1039 }
1040 else
1041 #endif
1042 {
1043 if (__put_user(0, &rt_sf->uc.uc_link))
1044 goto badframe;
1045 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
1046 goto badframe;
1047 }
1048 regs->link = tramp;
1049
1050 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1051
1052 /* create a stack frame for the caller of the handler */
1053 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1054 addr = (void __user *)regs->gpr[1];
1055 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1056 goto badframe;
1057
1058 /* Fill registers for signal handler */
1059 regs->gpr[1] = newsp;
1060 regs->gpr[3] = ksig->sig;
1061 regs->gpr[4] = (unsigned long) &rt_sf->info;
1062 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1063 regs->gpr[6] = (unsigned long) rt_sf;
1064 regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
1065 /* enter the signal handler in native-endian mode */
1066 regs->msr &= ~MSR_LE;
1067 regs->msr |= (MSR_KERNEL & MSR_LE);
1068 return 0;
1069
1070 badframe:
1071 if (show_unhandled_signals)
1072 printk_ratelimited(KERN_INFO
1073 "%s[%d]: bad frame in handle_rt_signal32: "
1074 "%p nip %08lx lr %08lx\n",
1075 current->comm, current->pid,
1076 addr, regs->nip, regs->link);
1077
1078 return 1;
1079 }
1080
1081 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1082 {
1083 sigset_t set;
1084 struct mcontext __user *mcp;
1085
1086 if (get_sigset_t(&set, &ucp->uc_sigmask))
1087 return -EFAULT;
1088 #ifdef CONFIG_PPC64
1089 {
1090 u32 cmcp;
1091
1092 if (__get_user(cmcp, &ucp->uc_regs))
1093 return -EFAULT;
1094 mcp = (struct mcontext __user *)(u64)cmcp;
1095 /* no need to check access_ok(mcp), since mcp < 4GB */
1096 }
1097 #else
1098 if (__get_user(mcp, &ucp->uc_regs))
1099 return -EFAULT;
1100 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1101 return -EFAULT;
1102 #endif
1103 set_current_blocked(&set);
1104 if (restore_user_regs(regs, mcp, sig))
1105 return -EFAULT;
1106
1107 return 0;
1108 }
1109
1110 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1111 static int do_setcontext_tm(struct ucontext __user *ucp,
1112 struct ucontext __user *tm_ucp,
1113 struct pt_regs *regs)
1114 {
1115 sigset_t set;
1116 struct mcontext __user *mcp;
1117 struct mcontext __user *tm_mcp;
1118 u32 cmcp;
1119 u32 tm_cmcp;
1120
1121 if (get_sigset_t(&set, &ucp->uc_sigmask))
1122 return -EFAULT;
1123
1124 if (__get_user(cmcp, &ucp->uc_regs) ||
1125 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1126 return -EFAULT;
1127 mcp = (struct mcontext __user *)(u64)cmcp;
1128 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1129 /* no need to check access_ok(mcp), since mcp < 4GB */
1130
1131 set_current_blocked(&set);
1132 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1133 return -EFAULT;
1134
1135 return 0;
1136 }
1137 #endif
1138
1139 long sys_swapcontext(struct ucontext __user *old_ctx,
1140 struct ucontext __user *new_ctx,
1141 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1142 {
1143 unsigned char tmp;
1144 int ctx_has_vsx_region = 0;
1145
1146 #ifdef CONFIG_PPC64
1147 unsigned long new_msr = 0;
1148
1149 if (new_ctx) {
1150 struct mcontext __user *mcp;
1151 u32 cmcp;
1152
1153 /*
1154 * Get pointer to the real mcontext. No need for
1155 * access_ok since we are dealing with compat
1156 * pointers.
1157 */
1158 if (__get_user(cmcp, &new_ctx->uc_regs))
1159 return -EFAULT;
1160 mcp = (struct mcontext __user *)(u64)cmcp;
1161 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1162 return -EFAULT;
1163 }
1164 /*
1165 * Check that the context is not smaller than the original
1166 * size (with VMX but without VSX)
1167 */
1168 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1169 return -EINVAL;
1170 /*
1171 * If the new context state sets the MSR VSX bits but
1172 * it doesn't provide VSX state.
1173 */
1174 if ((ctx_size < sizeof(struct ucontext)) &&
1175 (new_msr & MSR_VSX))
1176 return -EINVAL;
1177 /* Does the context have enough room to store VSX data? */
1178 if (ctx_size >= sizeof(struct ucontext))
1179 ctx_has_vsx_region = 1;
1180 #else
1181 /* Context size is for future use. Right now, we only make sure
1182 * we are passed something we understand
1183 */
1184 if (ctx_size < sizeof(struct ucontext))
1185 return -EINVAL;
1186 #endif
1187 if (old_ctx != NULL) {
1188 struct mcontext __user *mctx;
1189
1190 /*
1191 * old_ctx might not be 16-byte aligned, in which
1192 * case old_ctx->uc_mcontext won't be either.
1193 * Because we have the old_ctx->uc_pad2 field
1194 * before old_ctx->uc_mcontext, we need to round down
1195 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1196 */
1197 mctx = (struct mcontext __user *)
1198 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1199 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1200 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1201 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1202 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1203 return -EFAULT;
1204 }
1205 if (new_ctx == NULL)
1206 return 0;
1207 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1208 || __get_user(tmp, (u8 __user *) new_ctx)
1209 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1210 return -EFAULT;
1211
1212 /*
1213 * If we get a fault copying the context into the kernel's
1214 * image of the user's registers, we can't just return -EFAULT
1215 * because the user's registers will be corrupted. For instance
1216 * the NIP value may have been updated but not some of the
1217 * other registers. Given that we have done the access_ok
1218 * and successfully read the first and last bytes of the region
1219 * above, this should only happen in an out-of-memory situation
1220 * or if another thread unmaps the region containing the context.
1221 * We kill the task with a SIGSEGV in this situation.
1222 */
1223 if (do_setcontext(new_ctx, regs, 0))
1224 do_exit(SIGSEGV);
1225
1226 set_thread_flag(TIF_RESTOREALL);
1227 return 0;
1228 }
1229
1230 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1231 struct pt_regs *regs)
1232 {
1233 struct rt_sigframe __user *rt_sf;
1234 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1235 struct ucontext __user *uc_transact;
1236 unsigned long msr_hi;
1237 unsigned long tmp;
1238 int tm_restore = 0;
1239 #endif
1240 /* Always make any pending restarted system calls return -EINTR */
1241 current->restart_block.fn = do_no_restart_syscall;
1242
1243 rt_sf = (struct rt_sigframe __user *)
1244 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1245 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1246 goto bad;
1247 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1248 if (__get_user(tmp, &rt_sf->uc.uc_link))
1249 goto bad;
1250 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1251 if (uc_transact) {
1252 u32 cmcp;
1253 struct mcontext __user *mcp;
1254
1255 if (__get_user(cmcp, &uc_transact->uc_regs))
1256 return -EFAULT;
1257 mcp = (struct mcontext __user *)(u64)cmcp;
1258 /* The top 32 bits of the MSR are stashed in the transactional
1259 * ucontext. */
1260 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1261 goto bad;
1262
1263 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1264 /* We only recheckpoint on return if we're
1265 * transaction.
1266 */
1267 tm_restore = 1;
1268 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1269 goto bad;
1270 }
1271 }
1272 if (!tm_restore)
1273 /* Fall through, for non-TM restore */
1274 #endif
1275 if (do_setcontext(&rt_sf->uc, regs, 1))
1276 goto bad;
1277
1278 /*
1279 * It's not clear whether or why it is desirable to save the
1280 * sigaltstack setting on signal delivery and restore it on
1281 * signal return. But other architectures do this and we have
1282 * always done it up until now so it is probably better not to
1283 * change it. -- paulus
1284 */
1285 #ifdef CONFIG_PPC64
1286 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1287 goto bad;
1288 #else
1289 if (restore_altstack(&rt_sf->uc.uc_stack))
1290 goto bad;
1291 #endif
1292 set_thread_flag(TIF_RESTOREALL);
1293 return 0;
1294
1295 bad:
1296 if (show_unhandled_signals)
1297 printk_ratelimited(KERN_INFO
1298 "%s[%d]: bad frame in sys_rt_sigreturn: "
1299 "%p nip %08lx lr %08lx\n",
1300 current->comm, current->pid,
1301 rt_sf, regs->nip, regs->link);
1302
1303 force_sig(SIGSEGV, current);
1304 return 0;
1305 }
1306
1307 #ifdef CONFIG_PPC32
1308 int sys_debug_setcontext(struct ucontext __user *ctx,
1309 int ndbg, struct sig_dbg_op __user *dbg,
1310 int r6, int r7, int r8,
1311 struct pt_regs *regs)
1312 {
1313 struct sig_dbg_op op;
1314 int i;
1315 unsigned char tmp;
1316 unsigned long new_msr = regs->msr;
1317 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1318 unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1319 #endif
1320
1321 for (i=0; i<ndbg; i++) {
1322 if (copy_from_user(&op, dbg + i, sizeof(op)))
1323 return -EFAULT;
1324 switch (op.dbg_type) {
1325 case SIG_DBG_SINGLE_STEPPING:
1326 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1327 if (op.dbg_value) {
1328 new_msr |= MSR_DE;
1329 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1330 } else {
1331 new_dbcr0 &= ~DBCR0_IC;
1332 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1333 current->thread.debug.dbcr1)) {
1334 new_msr &= ~MSR_DE;
1335 new_dbcr0 &= ~DBCR0_IDM;
1336 }
1337 }
1338 #else
1339 if (op.dbg_value)
1340 new_msr |= MSR_SE;
1341 else
1342 new_msr &= ~MSR_SE;
1343 #endif
1344 break;
1345 case SIG_DBG_BRANCH_TRACING:
1346 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1347 return -EINVAL;
1348 #else
1349 if (op.dbg_value)
1350 new_msr |= MSR_BE;
1351 else
1352 new_msr &= ~MSR_BE;
1353 #endif
1354 break;
1355
1356 default:
1357 return -EINVAL;
1358 }
1359 }
1360
1361 /* We wait until here to actually install the values in the
1362 registers so if we fail in the above loop, it will not
1363 affect the contents of these registers. After this point,
1364 failure is a problem, anyway, and it's very unlikely unless
1365 the user is really doing something wrong. */
1366 regs->msr = new_msr;
1367 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1368 current->thread.debug.dbcr0 = new_dbcr0;
1369 #endif
1370
1371 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1372 || __get_user(tmp, (u8 __user *) ctx)
1373 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1374 return -EFAULT;
1375
1376 /*
1377 * If we get a fault copying the context into the kernel's
1378 * image of the user's registers, we can't just return -EFAULT
1379 * because the user's registers will be corrupted. For instance
1380 * the NIP value may have been updated but not some of the
1381 * other registers. Given that we have done the access_ok
1382 * and successfully read the first and last bytes of the region
1383 * above, this should only happen in an out-of-memory situation
1384 * or if another thread unmaps the region containing the context.
1385 * We kill the task with a SIGSEGV in this situation.
1386 */
1387 if (do_setcontext(ctx, regs, 1)) {
1388 if (show_unhandled_signals)
1389 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1390 "sys_debug_setcontext: %p nip %08lx "
1391 "lr %08lx\n",
1392 current->comm, current->pid,
1393 ctx, regs->nip, regs->link);
1394
1395 force_sig(SIGSEGV, current);
1396 goto out;
1397 }
1398
1399 /*
1400 * It's not clear whether or why it is desirable to save the
1401 * sigaltstack setting on signal delivery and restore it on
1402 * signal return. But other architectures do this and we have
1403 * always done it up until now so it is probably better not to
1404 * change it. -- paulus
1405 */
1406 restore_altstack(&ctx->uc_stack);
1407
1408 set_thread_flag(TIF_RESTOREALL);
1409 out:
1410 return 0;
1411 }
1412 #endif
1413
1414 /*
1415 * OK, we're invoking a handler
1416 */
1417 int handle_signal32(struct ksignal *ksig, sigset_t *oldset, struct pt_regs *regs)
1418 {
1419 struct sigcontext __user *sc;
1420 struct sigframe __user *frame;
1421 struct mcontext __user *tm_mctx = NULL;
1422 unsigned long newsp = 0;
1423 int sigret;
1424 unsigned long tramp;
1425
1426 /* Set up Signal Frame */
1427 frame = get_sigframe(ksig, get_tm_stackpointer(regs), sizeof(*frame), 1);
1428 if (unlikely(frame == NULL))
1429 goto badframe;
1430 sc = (struct sigcontext __user *) &frame->sctx;
1431
1432 #if _NSIG != 64
1433 #error "Please adjust handle_signal()"
1434 #endif
1435 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1436 || __put_user(oldset->sig[0], &sc->oldmask)
1437 #ifdef CONFIG_PPC64
1438 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1439 #else
1440 || __put_user(oldset->sig[1], &sc->_unused[3])
1441 #endif
1442 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1443 || __put_user(ksig->sig, &sc->signal))
1444 goto badframe;
1445
1446 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1447 sigret = 0;
1448 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1449 } else {
1450 sigret = __NR_sigreturn;
1451 tramp = (unsigned long) frame->mctx.tramp;
1452 }
1453
1454 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1455 tm_mctx = &frame->mctx_transact;
1456 if (MSR_TM_ACTIVE(regs->msr)) {
1457 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1458 sigret))
1459 goto badframe;
1460 }
1461 else
1462 #endif
1463 {
1464 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1465 goto badframe;
1466 }
1467
1468 regs->link = tramp;
1469
1470 current->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1471
1472 /* create a stack frame for the caller of the handler */
1473 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1474 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1475 goto badframe;
1476
1477 regs->gpr[1] = newsp;
1478 regs->gpr[3] = ksig->sig;
1479 regs->gpr[4] = (unsigned long) sc;
1480 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1481 /* enter the signal handler in big-endian mode */
1482 regs->msr &= ~MSR_LE;
1483 return 0;
1484
1485 badframe:
1486 if (show_unhandled_signals)
1487 printk_ratelimited(KERN_INFO
1488 "%s[%d]: bad frame in handle_signal32: "
1489 "%p nip %08lx lr %08lx\n",
1490 current->comm, current->pid,
1491 frame, regs->nip, regs->link);
1492
1493 return 1;
1494 }
1495
1496 /*
1497 * Do a signal return; undo the signal stack.
1498 */
1499 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1500 struct pt_regs *regs)
1501 {
1502 struct sigframe __user *sf;
1503 struct sigcontext __user *sc;
1504 struct sigcontext sigctx;
1505 struct mcontext __user *sr;
1506 void __user *addr;
1507 sigset_t set;
1508 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1509 struct mcontext __user *mcp, *tm_mcp;
1510 unsigned long msr_hi;
1511 #endif
1512
1513 /* Always make any pending restarted system calls return -EINTR */
1514 current->restart_block.fn = do_no_restart_syscall;
1515
1516 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1517 sc = &sf->sctx;
1518 addr = sc;
1519 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1520 goto badframe;
1521
1522 #ifdef CONFIG_PPC64
1523 /*
1524 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1525 * unused part of the signal stackframe
1526 */
1527 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1528 #else
1529 set.sig[0] = sigctx.oldmask;
1530 set.sig[1] = sigctx._unused[3];
1531 #endif
1532 set_current_blocked(&set);
1533
1534 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1535 mcp = (struct mcontext __user *)&sf->mctx;
1536 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1537 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1538 goto badframe;
1539 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1540 if (!cpu_has_feature(CPU_FTR_TM))
1541 goto badframe;
1542 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1543 goto badframe;
1544 } else
1545 #endif
1546 {
1547 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1548 addr = sr;
1549 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1550 || restore_user_regs(regs, sr, 1))
1551 goto badframe;
1552 }
1553
1554 set_thread_flag(TIF_RESTOREALL);
1555 return 0;
1556
1557 badframe:
1558 if (show_unhandled_signals)
1559 printk_ratelimited(KERN_INFO
1560 "%s[%d]: bad frame in sys_sigreturn: "
1561 "%p nip %08lx lr %08lx\n",
1562 current->comm, current->pid,
1563 addr, regs->nip, regs->link);
1564
1565 force_sig(SIGSEGV, current);
1566 return 0;
1567 }