]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/time.c
1be1092c72042b9d4fbf91d601ded3f23669c730
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time.
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/export.h>
36 #include <linux/sched.h>
37 #include <linux/kernel.h>
38 #include <linux/param.h>
39 #include <linux/string.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/timex.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/time.h>
45 #include <linux/clockchips.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55 #include <linux/delay.h>
56 #include <linux/irq_work.h>
57 #include <linux/clk-provider.h>
58 #include <asm/trace.h>
59
60 #include <asm/io.h>
61 #include <asm/processor.h>
62 #include <asm/nvram.h>
63 #include <asm/cache.h>
64 #include <asm/machdep.h>
65 #include <asm/uaccess.h>
66 #include <asm/time.h>
67 #include <asm/prom.h>
68 #include <asm/irq.h>
69 #include <asm/div64.h>
70 #include <asm/smp.h>
71 #include <asm/vdso_datapage.h>
72 #include <asm/firmware.h>
73 #include <asm/cputime.h>
74
75 /* powerpc clocksource/clockevent code */
76
77 #include <linux/clockchips.h>
78 #include <linux/timekeeper_internal.h>
79
80 static cycle_t rtc_read(struct clocksource *);
81 static struct clocksource clocksource_rtc = {
82 .name = "rtc",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .read = rtc_read,
87 };
88
89 static cycle_t timebase_read(struct clocksource *);
90 static struct clocksource clocksource_timebase = {
91 .name = "timebase",
92 .rating = 400,
93 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
94 .mask = CLOCKSOURCE_MASK(64),
95 .read = timebase_read,
96 };
97
98 #define DECREMENTER_MAX 0x7fffffff
99
100 static int decrementer_set_next_event(unsigned long evt,
101 struct clock_event_device *dev);
102 static int decrementer_shutdown(struct clock_event_device *evt);
103
104 struct clock_event_device decrementer_clockevent = {
105 .name = "decrementer",
106 .rating = 200,
107 .irq = 0,
108 .set_next_event = decrementer_set_next_event,
109 .set_state_shutdown = decrementer_shutdown,
110 .tick_resume = decrementer_shutdown,
111 .features = CLOCK_EVT_FEAT_ONESHOT |
112 CLOCK_EVT_FEAT_C3STOP,
113 };
114 EXPORT_SYMBOL(decrementer_clockevent);
115
116 DEFINE_PER_CPU(u64, decrementers_next_tb);
117 static DEFINE_PER_CPU(struct clock_event_device, decrementers);
118
119 #define XSEC_PER_SEC (1024*1024)
120
121 #ifdef CONFIG_PPC64
122 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
123 #else
124 /* compute ((xsec << 12) * max) >> 32 */
125 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
126 #endif
127
128 unsigned long tb_ticks_per_jiffy;
129 unsigned long tb_ticks_per_usec = 100; /* sane default */
130 EXPORT_SYMBOL(tb_ticks_per_usec);
131 unsigned long tb_ticks_per_sec;
132 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
133
134 DEFINE_SPINLOCK(rtc_lock);
135 EXPORT_SYMBOL_GPL(rtc_lock);
136
137 static u64 tb_to_ns_scale __read_mostly;
138 static unsigned tb_to_ns_shift __read_mostly;
139 static u64 boot_tb __read_mostly;
140
141 extern struct timezone sys_tz;
142 static long timezone_offset;
143
144 unsigned long ppc_proc_freq;
145 EXPORT_SYMBOL_GPL(ppc_proc_freq);
146 unsigned long ppc_tb_freq;
147 EXPORT_SYMBOL_GPL(ppc_tb_freq);
148
149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
150 /*
151 * Factors for converting from cputime_t (timebase ticks) to
152 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
153 * These are all stored as 0.64 fixed-point binary fractions.
154 */
155 u64 __cputime_jiffies_factor;
156 EXPORT_SYMBOL(__cputime_jiffies_factor);
157 u64 __cputime_usec_factor;
158 EXPORT_SYMBOL(__cputime_usec_factor);
159 u64 __cputime_sec_factor;
160 EXPORT_SYMBOL(__cputime_sec_factor);
161 u64 __cputime_clockt_factor;
162 EXPORT_SYMBOL(__cputime_clockt_factor);
163 DEFINE_PER_CPU(unsigned long, cputime_last_delta);
164 DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
165
166 cputime_t cputime_one_jiffy;
167
168 void (*dtl_consumer)(struct dtl_entry *, u64);
169
170 static void calc_cputime_factors(void)
171 {
172 struct div_result res;
173
174 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
175 __cputime_jiffies_factor = res.result_low;
176 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
177 __cputime_usec_factor = res.result_low;
178 div128_by_32(1, 0, tb_ticks_per_sec, &res);
179 __cputime_sec_factor = res.result_low;
180 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
181 __cputime_clockt_factor = res.result_low;
182 }
183
184 /*
185 * Read the SPURR on systems that have it, otherwise the PURR,
186 * or if that doesn't exist return the timebase value passed in.
187 */
188 static u64 read_spurr(u64 tb)
189 {
190 if (cpu_has_feature(CPU_FTR_SPURR))
191 return mfspr(SPRN_SPURR);
192 if (cpu_has_feature(CPU_FTR_PURR))
193 return mfspr(SPRN_PURR);
194 return tb;
195 }
196
197 #ifdef CONFIG_PPC_SPLPAR
198
199 /*
200 * Scan the dispatch trace log and count up the stolen time.
201 * Should be called with interrupts disabled.
202 */
203 static u64 scan_dispatch_log(u64 stop_tb)
204 {
205 u64 i = local_paca->dtl_ridx;
206 struct dtl_entry *dtl = local_paca->dtl_curr;
207 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
208 struct lppaca *vpa = local_paca->lppaca_ptr;
209 u64 tb_delta;
210 u64 stolen = 0;
211 u64 dtb;
212
213 if (!dtl)
214 return 0;
215
216 if (i == be64_to_cpu(vpa->dtl_idx))
217 return 0;
218 while (i < be64_to_cpu(vpa->dtl_idx)) {
219 dtb = be64_to_cpu(dtl->timebase);
220 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
221 be32_to_cpu(dtl->ready_to_enqueue_time);
222 barrier();
223 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
224 /* buffer has overflowed */
225 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
226 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
227 continue;
228 }
229 if (dtb > stop_tb)
230 break;
231 if (dtl_consumer)
232 dtl_consumer(dtl, i);
233 stolen += tb_delta;
234 ++i;
235 ++dtl;
236 if (dtl == dtl_end)
237 dtl = local_paca->dispatch_log;
238 }
239 local_paca->dtl_ridx = i;
240 local_paca->dtl_curr = dtl;
241 return stolen;
242 }
243
244 /*
245 * Accumulate stolen time by scanning the dispatch trace log.
246 * Called on entry from user mode.
247 */
248 void accumulate_stolen_time(void)
249 {
250 u64 sst, ust;
251
252 u8 save_soft_enabled = local_paca->soft_enabled;
253
254 /* We are called early in the exception entry, before
255 * soft/hard_enabled are sync'ed to the expected state
256 * for the exception. We are hard disabled but the PACA
257 * needs to reflect that so various debug stuff doesn't
258 * complain
259 */
260 local_paca->soft_enabled = 0;
261
262 sst = scan_dispatch_log(local_paca->starttime_user);
263 ust = scan_dispatch_log(local_paca->starttime);
264 local_paca->system_time -= sst;
265 local_paca->user_time -= ust;
266 local_paca->stolen_time += ust + sst;
267
268 local_paca->soft_enabled = save_soft_enabled;
269 }
270
271 static inline u64 calculate_stolen_time(u64 stop_tb)
272 {
273 u64 stolen = 0;
274
275 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
276 stolen = scan_dispatch_log(stop_tb);
277 get_paca()->system_time -= stolen;
278 }
279
280 stolen += get_paca()->stolen_time;
281 get_paca()->stolen_time = 0;
282 return stolen;
283 }
284
285 #else /* CONFIG_PPC_SPLPAR */
286 static inline u64 calculate_stolen_time(u64 stop_tb)
287 {
288 return 0;
289 }
290
291 #endif /* CONFIG_PPC_SPLPAR */
292
293 /*
294 * Account time for a transition between system, hard irq
295 * or soft irq state.
296 */
297 static u64 vtime_delta(struct task_struct *tsk,
298 u64 *sys_scaled, u64 *stolen)
299 {
300 u64 now, nowscaled, deltascaled;
301 u64 udelta, delta, user_scaled;
302
303 WARN_ON_ONCE(!irqs_disabled());
304
305 now = mftb();
306 nowscaled = read_spurr(now);
307 get_paca()->system_time += now - get_paca()->starttime;
308 get_paca()->starttime = now;
309 deltascaled = nowscaled - get_paca()->startspurr;
310 get_paca()->startspurr = nowscaled;
311
312 *stolen = calculate_stolen_time(now);
313
314 delta = get_paca()->system_time;
315 get_paca()->system_time = 0;
316 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
317 get_paca()->utime_sspurr = get_paca()->user_time;
318
319 /*
320 * Because we don't read the SPURR on every kernel entry/exit,
321 * deltascaled includes both user and system SPURR ticks.
322 * Apportion these ticks to system SPURR ticks and user
323 * SPURR ticks in the same ratio as the system time (delta)
324 * and user time (udelta) values obtained from the timebase
325 * over the same interval. The system ticks get accounted here;
326 * the user ticks get saved up in paca->user_time_scaled to be
327 * used by account_process_tick.
328 */
329 *sys_scaled = delta;
330 user_scaled = udelta;
331 if (deltascaled != delta + udelta) {
332 if (udelta) {
333 *sys_scaled = deltascaled * delta / (delta + udelta);
334 user_scaled = deltascaled - *sys_scaled;
335 } else {
336 *sys_scaled = deltascaled;
337 }
338 }
339 get_paca()->user_time_scaled += user_scaled;
340
341 return delta;
342 }
343
344 void vtime_account_system(struct task_struct *tsk)
345 {
346 u64 delta, sys_scaled, stolen;
347
348 delta = vtime_delta(tsk, &sys_scaled, &stolen);
349 account_system_time(tsk, 0, delta, sys_scaled);
350 if (stolen)
351 account_steal_time(stolen);
352 }
353 EXPORT_SYMBOL_GPL(vtime_account_system);
354
355 void vtime_account_idle(struct task_struct *tsk)
356 {
357 u64 delta, sys_scaled, stolen;
358
359 delta = vtime_delta(tsk, &sys_scaled, &stolen);
360 account_idle_time(delta + stolen);
361 }
362
363 /*
364 * Transfer the user time accumulated in the paca
365 * by the exception entry and exit code to the generic
366 * process user time records.
367 * Must be called with interrupts disabled.
368 * Assumes that vtime_account_system/idle() has been called
369 * recently (i.e. since the last entry from usermode) so that
370 * get_paca()->user_time_scaled is up to date.
371 */
372 void vtime_account_user(struct task_struct *tsk)
373 {
374 cputime_t utime, utimescaled;
375
376 utime = get_paca()->user_time;
377 utimescaled = get_paca()->user_time_scaled;
378 get_paca()->user_time = 0;
379 get_paca()->user_time_scaled = 0;
380 get_paca()->utime_sspurr = 0;
381 account_user_time(tsk, utime, utimescaled);
382 }
383
384 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
385 #define calc_cputime_factors()
386 #endif
387
388 void __delay(unsigned long loops)
389 {
390 unsigned long start;
391 int diff;
392
393 if (__USE_RTC()) {
394 start = get_rtcl();
395 do {
396 /* the RTCL register wraps at 1000000000 */
397 diff = get_rtcl() - start;
398 if (diff < 0)
399 diff += 1000000000;
400 } while (diff < loops);
401 } else {
402 start = get_tbl();
403 while (get_tbl() - start < loops)
404 HMT_low();
405 HMT_medium();
406 }
407 }
408 EXPORT_SYMBOL(__delay);
409
410 void udelay(unsigned long usecs)
411 {
412 __delay(tb_ticks_per_usec * usecs);
413 }
414 EXPORT_SYMBOL(udelay);
415
416 #ifdef CONFIG_SMP
417 unsigned long profile_pc(struct pt_regs *regs)
418 {
419 unsigned long pc = instruction_pointer(regs);
420
421 if (in_lock_functions(pc))
422 return regs->link;
423
424 return pc;
425 }
426 EXPORT_SYMBOL(profile_pc);
427 #endif
428
429 #ifdef CONFIG_IRQ_WORK
430
431 /*
432 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
433 */
434 #ifdef CONFIG_PPC64
435 static inline unsigned long test_irq_work_pending(void)
436 {
437 unsigned long x;
438
439 asm volatile("lbz %0,%1(13)"
440 : "=r" (x)
441 : "i" (offsetof(struct paca_struct, irq_work_pending)));
442 return x;
443 }
444
445 static inline void set_irq_work_pending_flag(void)
446 {
447 asm volatile("stb %0,%1(13)" : :
448 "r" (1),
449 "i" (offsetof(struct paca_struct, irq_work_pending)));
450 }
451
452 static inline void clear_irq_work_pending(void)
453 {
454 asm volatile("stb %0,%1(13)" : :
455 "r" (0),
456 "i" (offsetof(struct paca_struct, irq_work_pending)));
457 }
458
459 #else /* 32-bit */
460
461 DEFINE_PER_CPU(u8, irq_work_pending);
462
463 #define set_irq_work_pending_flag() __this_cpu_write(irq_work_pending, 1)
464 #define test_irq_work_pending() __this_cpu_read(irq_work_pending)
465 #define clear_irq_work_pending() __this_cpu_write(irq_work_pending, 0)
466
467 #endif /* 32 vs 64 bit */
468
469 void arch_irq_work_raise(void)
470 {
471 preempt_disable();
472 set_irq_work_pending_flag();
473 set_dec(1);
474 preempt_enable();
475 }
476
477 #else /* CONFIG_IRQ_WORK */
478
479 #define test_irq_work_pending() 0
480 #define clear_irq_work_pending()
481
482 #endif /* CONFIG_IRQ_WORK */
483
484 static void __timer_interrupt(void)
485 {
486 struct pt_regs *regs = get_irq_regs();
487 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
488 struct clock_event_device *evt = this_cpu_ptr(&decrementers);
489 u64 now;
490
491 trace_timer_interrupt_entry(regs);
492
493 if (test_irq_work_pending()) {
494 clear_irq_work_pending();
495 irq_work_run();
496 }
497
498 now = get_tb_or_rtc();
499 if (now >= *next_tb) {
500 *next_tb = ~(u64)0;
501 if (evt->event_handler)
502 evt->event_handler(evt);
503 __this_cpu_inc(irq_stat.timer_irqs_event);
504 } else {
505 now = *next_tb - now;
506 if (now <= DECREMENTER_MAX)
507 set_dec((int)now);
508 /* We may have raced with new irq work */
509 if (test_irq_work_pending())
510 set_dec(1);
511 __this_cpu_inc(irq_stat.timer_irqs_others);
512 }
513
514 #ifdef CONFIG_PPC64
515 /* collect purr register values often, for accurate calculations */
516 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
517 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
518 cu->current_tb = mfspr(SPRN_PURR);
519 }
520 #endif
521
522 trace_timer_interrupt_exit(regs);
523 }
524
525 /*
526 * timer_interrupt - gets called when the decrementer overflows,
527 * with interrupts disabled.
528 */
529 void timer_interrupt(struct pt_regs * regs)
530 {
531 struct pt_regs *old_regs;
532 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
533
534 /* Ensure a positive value is written to the decrementer, or else
535 * some CPUs will continue to take decrementer exceptions.
536 */
537 set_dec(DECREMENTER_MAX);
538
539 /* Some implementations of hotplug will get timer interrupts while
540 * offline, just ignore these and we also need to set
541 * decrementers_next_tb as MAX to make sure __check_irq_replay
542 * don't replay timer interrupt when return, otherwise we'll trap
543 * here infinitely :(
544 */
545 if (!cpu_online(smp_processor_id())) {
546 *next_tb = ~(u64)0;
547 return;
548 }
549
550 /* Conditionally hard-enable interrupts now that the DEC has been
551 * bumped to its maximum value
552 */
553 may_hard_irq_enable();
554
555
556 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_PMAC)
557 if (atomic_read(&ppc_n_lost_interrupts) != 0)
558 do_IRQ(regs);
559 #endif
560
561 old_regs = set_irq_regs(regs);
562 irq_enter();
563
564 __timer_interrupt();
565 irq_exit();
566 set_irq_regs(old_regs);
567 }
568
569 /*
570 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
571 * left pending on exit from a KVM guest. We don't need to do anything
572 * to clear them, as they are edge-triggered.
573 */
574 void hdec_interrupt(struct pt_regs *regs)
575 {
576 }
577
578 #ifdef CONFIG_SUSPEND
579 static void generic_suspend_disable_irqs(void)
580 {
581 /* Disable the decrementer, so that it doesn't interfere
582 * with suspending.
583 */
584
585 set_dec(DECREMENTER_MAX);
586 local_irq_disable();
587 set_dec(DECREMENTER_MAX);
588 }
589
590 static void generic_suspend_enable_irqs(void)
591 {
592 local_irq_enable();
593 }
594
595 /* Overrides the weak version in kernel/power/main.c */
596 void arch_suspend_disable_irqs(void)
597 {
598 if (ppc_md.suspend_disable_irqs)
599 ppc_md.suspend_disable_irqs();
600 generic_suspend_disable_irqs();
601 }
602
603 /* Overrides the weak version in kernel/power/main.c */
604 void arch_suspend_enable_irqs(void)
605 {
606 generic_suspend_enable_irqs();
607 if (ppc_md.suspend_enable_irqs)
608 ppc_md.suspend_enable_irqs();
609 }
610 #endif
611
612 unsigned long long tb_to_ns(unsigned long long ticks)
613 {
614 return mulhdu(ticks, tb_to_ns_scale) << tb_to_ns_shift;
615 }
616 EXPORT_SYMBOL_GPL(tb_to_ns);
617
618 /*
619 * Scheduler clock - returns current time in nanosec units.
620 *
621 * Note: mulhdu(a, b) (multiply high double unsigned) returns
622 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
623 * are 64-bit unsigned numbers.
624 */
625 unsigned long long sched_clock(void)
626 {
627 if (__USE_RTC())
628 return get_rtc();
629 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
630 }
631
632
633 #ifdef CONFIG_PPC_PSERIES
634
635 /*
636 * Running clock - attempts to give a view of time passing for a virtualised
637 * kernels.
638 * Uses the VTB register if available otherwise a next best guess.
639 */
640 unsigned long long running_clock(void)
641 {
642 /*
643 * Don't read the VTB as a host since KVM does not switch in host
644 * timebase into the VTB when it takes a guest off the CPU, reading the
645 * VTB would result in reading 'last switched out' guest VTB.
646 *
647 * Host kernels are often compiled with CONFIG_PPC_PSERIES checked, it
648 * would be unsafe to rely only on the #ifdef above.
649 */
650 if (firmware_has_feature(FW_FEATURE_LPAR) &&
651 cpu_has_feature(CPU_FTR_ARCH_207S))
652 return mulhdu(get_vtb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
653
654 /*
655 * This is a next best approximation without a VTB.
656 * On a host which is running bare metal there should never be any stolen
657 * time and on a host which doesn't do any virtualisation TB *should* equal
658 * VTB so it makes no difference anyway.
659 */
660 return local_clock() - cputime_to_nsecs(kcpustat_this_cpu->cpustat[CPUTIME_STEAL]);
661 }
662 #endif
663
664 static int __init get_freq(char *name, int cells, unsigned long *val)
665 {
666 struct device_node *cpu;
667 const __be32 *fp;
668 int found = 0;
669
670 /* The cpu node should have timebase and clock frequency properties */
671 cpu = of_find_node_by_type(NULL, "cpu");
672
673 if (cpu) {
674 fp = of_get_property(cpu, name, NULL);
675 if (fp) {
676 found = 1;
677 *val = of_read_ulong(fp, cells);
678 }
679
680 of_node_put(cpu);
681 }
682
683 return found;
684 }
685
686 static void start_cpu_decrementer(void)
687 {
688 #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
689 /* Clear any pending timer interrupts */
690 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
691
692 /* Enable decrementer interrupt */
693 mtspr(SPRN_TCR, TCR_DIE);
694 #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
695 }
696
697 void __init generic_calibrate_decr(void)
698 {
699 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
700
701 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
702 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
703
704 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
705 "(not found)\n");
706 }
707
708 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
709
710 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
711 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
712
713 printk(KERN_ERR "WARNING: Estimating processor frequency "
714 "(not found)\n");
715 }
716 }
717
718 int update_persistent_clock(struct timespec now)
719 {
720 struct rtc_time tm;
721
722 if (!ppc_md.set_rtc_time)
723 return -ENODEV;
724
725 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
726 tm.tm_year -= 1900;
727 tm.tm_mon -= 1;
728
729 return ppc_md.set_rtc_time(&tm);
730 }
731
732 static void __read_persistent_clock(struct timespec *ts)
733 {
734 struct rtc_time tm;
735 static int first = 1;
736
737 ts->tv_nsec = 0;
738 /* XXX this is a litle fragile but will work okay in the short term */
739 if (first) {
740 first = 0;
741 if (ppc_md.time_init)
742 timezone_offset = ppc_md.time_init();
743
744 /* get_boot_time() isn't guaranteed to be safe to call late */
745 if (ppc_md.get_boot_time) {
746 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
747 return;
748 }
749 }
750 if (!ppc_md.get_rtc_time) {
751 ts->tv_sec = 0;
752 return;
753 }
754 ppc_md.get_rtc_time(&tm);
755
756 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
757 tm.tm_hour, tm.tm_min, tm.tm_sec);
758 }
759
760 void read_persistent_clock(struct timespec *ts)
761 {
762 __read_persistent_clock(ts);
763
764 /* Sanitize it in case real time clock is set below EPOCH */
765 if (ts->tv_sec < 0) {
766 ts->tv_sec = 0;
767 ts->tv_nsec = 0;
768 }
769
770 }
771
772 /* clocksource code */
773 static cycle_t rtc_read(struct clocksource *cs)
774 {
775 return (cycle_t)get_rtc();
776 }
777
778 static cycle_t timebase_read(struct clocksource *cs)
779 {
780 return (cycle_t)get_tb();
781 }
782
783 void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
784 struct clocksource *clock, u32 mult, cycle_t cycle_last)
785 {
786 u64 new_tb_to_xs, new_stamp_xsec;
787 u32 frac_sec;
788
789 if (clock != &clocksource_timebase)
790 return;
791
792 /* Make userspace gettimeofday spin until we're done. */
793 ++vdso_data->tb_update_count;
794 smp_mb();
795
796 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
797 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
798 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
799 do_div(new_stamp_xsec, 1000000000);
800 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
801
802 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
803 /* this is tv_nsec / 1e9 as a 0.32 fraction */
804 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
805
806 /*
807 * tb_update_count is used to allow the userspace gettimeofday code
808 * to assure itself that it sees a consistent view of the tb_to_xs and
809 * stamp_xsec variables. It reads the tb_update_count, then reads
810 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
811 * the two values of tb_update_count match and are even then the
812 * tb_to_xs and stamp_xsec values are consistent. If not, then it
813 * loops back and reads them again until this criteria is met.
814 * We expect the caller to have done the first increment of
815 * vdso_data->tb_update_count already.
816 */
817 vdso_data->tb_orig_stamp = cycle_last;
818 vdso_data->stamp_xsec = new_stamp_xsec;
819 vdso_data->tb_to_xs = new_tb_to_xs;
820 vdso_data->wtom_clock_sec = wtm->tv_sec;
821 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
822 vdso_data->stamp_xtime = *wall_time;
823 vdso_data->stamp_sec_fraction = frac_sec;
824 smp_wmb();
825 ++(vdso_data->tb_update_count);
826 }
827
828 void update_vsyscall_tz(void)
829 {
830 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
831 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
832 }
833
834 static void __init clocksource_init(void)
835 {
836 struct clocksource *clock;
837
838 if (__USE_RTC())
839 clock = &clocksource_rtc;
840 else
841 clock = &clocksource_timebase;
842
843 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
844 printk(KERN_ERR "clocksource: %s is already registered\n",
845 clock->name);
846 return;
847 }
848
849 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
850 clock->name, clock->mult, clock->shift);
851 }
852
853 static int decrementer_set_next_event(unsigned long evt,
854 struct clock_event_device *dev)
855 {
856 __this_cpu_write(decrementers_next_tb, get_tb_or_rtc() + evt);
857 set_dec(evt);
858
859 /* We may have raced with new irq work */
860 if (test_irq_work_pending())
861 set_dec(1);
862
863 return 0;
864 }
865
866 static int decrementer_shutdown(struct clock_event_device *dev)
867 {
868 decrementer_set_next_event(DECREMENTER_MAX, dev);
869 return 0;
870 }
871
872 /* Interrupt handler for the timer broadcast IPI */
873 void tick_broadcast_ipi_handler(void)
874 {
875 u64 *next_tb = this_cpu_ptr(&decrementers_next_tb);
876
877 *next_tb = get_tb_or_rtc();
878 __timer_interrupt();
879 }
880
881 static void register_decrementer_clockevent(int cpu)
882 {
883 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
884
885 *dec = decrementer_clockevent;
886 dec->cpumask = cpumask_of(cpu);
887
888 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
889 dec->name, dec->mult, dec->shift, cpu);
890
891 clockevents_register_device(dec);
892 }
893
894 static void __init init_decrementer_clockevent(void)
895 {
896 int cpu = smp_processor_id();
897
898 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
899
900 decrementer_clockevent.max_delta_ns =
901 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
902 decrementer_clockevent.min_delta_ns =
903 clockevent_delta2ns(2, &decrementer_clockevent);
904
905 register_decrementer_clockevent(cpu);
906 }
907
908 void secondary_cpu_time_init(void)
909 {
910 /* Start the decrementer on CPUs that have manual control
911 * such as BookE
912 */
913 start_cpu_decrementer();
914
915 /* FIME: Should make unrelatred change to move snapshot_timebase
916 * call here ! */
917 register_decrementer_clockevent(smp_processor_id());
918 }
919
920 /* This function is only called on the boot processor */
921 void __init time_init(void)
922 {
923 struct div_result res;
924 u64 scale;
925 unsigned shift;
926
927 if (__USE_RTC()) {
928 /* 601 processor: dec counts down by 128 every 128ns */
929 ppc_tb_freq = 1000000000;
930 } else {
931 /* Normal PowerPC with timebase register */
932 ppc_md.calibrate_decr();
933 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
934 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
935 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
936 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
937 }
938
939 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
940 tb_ticks_per_sec = ppc_tb_freq;
941 tb_ticks_per_usec = ppc_tb_freq / 1000000;
942 calc_cputime_factors();
943 setup_cputime_one_jiffy();
944
945 /*
946 * Compute scale factor for sched_clock.
947 * The calibrate_decr() function has set tb_ticks_per_sec,
948 * which is the timebase frequency.
949 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
950 * the 128-bit result as a 64.64 fixed-point number.
951 * We then shift that number right until it is less than 1.0,
952 * giving us the scale factor and shift count to use in
953 * sched_clock().
954 */
955 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
956 scale = res.result_low;
957 for (shift = 0; res.result_high != 0; ++shift) {
958 scale = (scale >> 1) | (res.result_high << 63);
959 res.result_high >>= 1;
960 }
961 tb_to_ns_scale = scale;
962 tb_to_ns_shift = shift;
963 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
964 boot_tb = get_tb_or_rtc();
965
966 /* If platform provided a timezone (pmac), we correct the time */
967 if (timezone_offset) {
968 sys_tz.tz_minuteswest = -timezone_offset / 60;
969 sys_tz.tz_dsttime = 0;
970 }
971
972 vdso_data->tb_update_count = 0;
973 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
974
975 /* Start the decrementer on CPUs that have manual control
976 * such as BookE
977 */
978 start_cpu_decrementer();
979
980 /* Register the clocksource */
981 clocksource_init();
982
983 init_decrementer_clockevent();
984 tick_setup_hrtimer_broadcast();
985
986 #ifdef CONFIG_COMMON_CLK
987 of_clk_init(NULL);
988 #endif
989 }
990
991
992 #define FEBRUARY 2
993 #define STARTOFTIME 1970
994 #define SECDAY 86400L
995 #define SECYR (SECDAY * 365)
996 #define leapyear(year) ((year) % 4 == 0 && \
997 ((year) % 100 != 0 || (year) % 400 == 0))
998 #define days_in_year(a) (leapyear(a) ? 366 : 365)
999 #define days_in_month(a) (month_days[(a) - 1])
1000
1001 static int month_days[12] = {
1002 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1003 };
1004
1005 /*
1006 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1007 */
1008 void GregorianDay(struct rtc_time * tm)
1009 {
1010 int leapsToDate;
1011 int lastYear;
1012 int day;
1013 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1014
1015 lastYear = tm->tm_year - 1;
1016
1017 /*
1018 * Number of leap corrections to apply up to end of last year
1019 */
1020 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1021
1022 /*
1023 * This year is a leap year if it is divisible by 4 except when it is
1024 * divisible by 100 unless it is divisible by 400
1025 *
1026 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1027 */
1028 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1029
1030 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1031 tm->tm_mday;
1032
1033 tm->tm_wday = day % 7;
1034 }
1035 EXPORT_SYMBOL_GPL(GregorianDay);
1036
1037 void to_tm(int tim, struct rtc_time * tm)
1038 {
1039 register int i;
1040 register long hms, day;
1041
1042 day = tim / SECDAY;
1043 hms = tim % SECDAY;
1044
1045 /* Hours, minutes, seconds are easy */
1046 tm->tm_hour = hms / 3600;
1047 tm->tm_min = (hms % 3600) / 60;
1048 tm->tm_sec = (hms % 3600) % 60;
1049
1050 /* Number of years in days */
1051 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1052 day -= days_in_year(i);
1053 tm->tm_year = i;
1054
1055 /* Number of months in days left */
1056 if (leapyear(tm->tm_year))
1057 days_in_month(FEBRUARY) = 29;
1058 for (i = 1; day >= days_in_month(i); i++)
1059 day -= days_in_month(i);
1060 days_in_month(FEBRUARY) = 28;
1061 tm->tm_mon = i;
1062
1063 /* Days are what is left over (+1) from all that. */
1064 tm->tm_mday = day + 1;
1065
1066 /*
1067 * Determine the day of week
1068 */
1069 GregorianDay(tm);
1070 }
1071 EXPORT_SYMBOL(to_tm);
1072
1073 /*
1074 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1075 * result.
1076 */
1077 void div128_by_32(u64 dividend_high, u64 dividend_low,
1078 unsigned divisor, struct div_result *dr)
1079 {
1080 unsigned long a, b, c, d;
1081 unsigned long w, x, y, z;
1082 u64 ra, rb, rc;
1083
1084 a = dividend_high >> 32;
1085 b = dividend_high & 0xffffffff;
1086 c = dividend_low >> 32;
1087 d = dividend_low & 0xffffffff;
1088
1089 w = a / divisor;
1090 ra = ((u64)(a - (w * divisor)) << 32) + b;
1091
1092 rb = ((u64) do_div(ra, divisor) << 32) + c;
1093 x = ra;
1094
1095 rc = ((u64) do_div(rb, divisor) << 32) + d;
1096 y = rb;
1097
1098 do_div(rc, divisor);
1099 z = rc;
1100
1101 dr->result_high = ((u64)w << 32) + x;
1102 dr->result_low = ((u64)y << 32) + z;
1103
1104 }
1105
1106 /* We don't need to calibrate delay, we use the CPU timebase for that */
1107 void calibrate_delay(void)
1108 {
1109 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1110 * as the number of __delay(1) in a jiffy, so make it so
1111 */
1112 loops_per_jiffy = tb_ticks_per_jiffy;
1113 }
1114
1115 static int __init rtc_init(void)
1116 {
1117 struct platform_device *pdev;
1118
1119 if (!ppc_md.get_rtc_time)
1120 return -ENODEV;
1121
1122 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1123
1124 return PTR_ERR_OR_ZERO(pdev);
1125 }
1126
1127 device_initcall(rtc_init);