]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/time.c
Merge rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35 #include <linux/errno.h>
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/kernel.h>
39 #include <linux/param.h>
40 #include <linux/string.h>
41 #include <linux/mm.h>
42 #include <linux/interrupt.h>
43 #include <linux/timex.h>
44 #include <linux/kernel_stat.h>
45 #include <linux/time.h>
46 #include <linux/init.h>
47 #include <linux/profile.h>
48 #include <linux/cpu.h>
49 #include <linux/security.h>
50 #include <linux/percpu.h>
51 #include <linux/rtc.h>
52 #include <linux/jiffies.h>
53 #include <linux/posix-timers.h>
54 #include <linux/irq.h>
55
56 #include <asm/io.h>
57 #include <asm/processor.h>
58 #include <asm/nvram.h>
59 #include <asm/cache.h>
60 #include <asm/machdep.h>
61 #include <asm/uaccess.h>
62 #include <asm/time.h>
63 #include <asm/prom.h>
64 #include <asm/irq.h>
65 #include <asm/div64.h>
66 #include <asm/smp.h>
67 #include <asm/vdso_datapage.h>
68 #ifdef CONFIG_PPC64
69 #include <asm/firmware.h>
70 #endif
71 #ifdef CONFIG_PPC_ISERIES
72 #include <asm/iseries/it_lp_queue.h>
73 #include <asm/iseries/hv_call_xm.h>
74 #endif
75 #include <asm/smp.h>
76
77 /* keep track of when we need to update the rtc */
78 time_t last_rtc_update;
79 #ifdef CONFIG_PPC_ISERIES
80 unsigned long iSeries_recal_titan = 0;
81 unsigned long iSeries_recal_tb = 0;
82 static unsigned long first_settimeofday = 1;
83 #endif
84
85 /* The decrementer counts down by 128 every 128ns on a 601. */
86 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
87
88 #define XSEC_PER_SEC (1024*1024)
89
90 #ifdef CONFIG_PPC64
91 #define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92 #else
93 /* compute ((xsec << 12) * max) >> 32 */
94 #define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
95 #endif
96
97 unsigned long tb_ticks_per_jiffy;
98 unsigned long tb_ticks_per_usec = 100; /* sane default */
99 EXPORT_SYMBOL(tb_ticks_per_usec);
100 unsigned long tb_ticks_per_sec;
101 EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
102 u64 tb_to_xs;
103 unsigned tb_to_us;
104
105 #define TICKLEN_SCALE TICK_LENGTH_SHIFT
106 u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
107 u64 ticklen_to_xs; /* 0.64 fraction */
108
109 /* If last_tick_len corresponds to about 1/HZ seconds, then
110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111 #define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112
113 DEFINE_SPINLOCK(rtc_lock);
114 EXPORT_SYMBOL_GPL(rtc_lock);
115
116 u64 tb_to_ns_scale;
117 unsigned tb_to_ns_shift;
118
119 struct gettimeofday_struct do_gtod;
120
121 extern struct timezone sys_tz;
122 static long timezone_offset;
123
124 unsigned long ppc_proc_freq;
125 unsigned long ppc_tb_freq;
126
127 static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128 static DEFINE_PER_CPU(u64, last_jiffy);
129
130 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
131 /*
132 * Factors for converting from cputime_t (timebase ticks) to
133 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134 * These are all stored as 0.64 fixed-point binary fractions.
135 */
136 u64 __cputime_jiffies_factor;
137 EXPORT_SYMBOL(__cputime_jiffies_factor);
138 u64 __cputime_msec_factor;
139 EXPORT_SYMBOL(__cputime_msec_factor);
140 u64 __cputime_sec_factor;
141 EXPORT_SYMBOL(__cputime_sec_factor);
142 u64 __cputime_clockt_factor;
143 EXPORT_SYMBOL(__cputime_clockt_factor);
144
145 static void calc_cputime_factors(void)
146 {
147 struct div_result res;
148
149 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150 __cputime_jiffies_factor = res.result_low;
151 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152 __cputime_msec_factor = res.result_low;
153 div128_by_32(1, 0, tb_ticks_per_sec, &res);
154 __cputime_sec_factor = res.result_low;
155 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156 __cputime_clockt_factor = res.result_low;
157 }
158
159 /*
160 * Read the PURR on systems that have it, otherwise the timebase.
161 */
162 static u64 read_purr(void)
163 {
164 if (cpu_has_feature(CPU_FTR_PURR))
165 return mfspr(SPRN_PURR);
166 return mftb();
167 }
168
169 /*
170 * Account time for a transition between system, hard irq
171 * or soft irq state.
172 */
173 void account_system_vtime(struct task_struct *tsk)
174 {
175 u64 now, delta;
176 unsigned long flags;
177
178 local_irq_save(flags);
179 now = read_purr();
180 delta = now - get_paca()->startpurr;
181 get_paca()->startpurr = now;
182 if (!in_interrupt()) {
183 delta += get_paca()->system_time;
184 get_paca()->system_time = 0;
185 }
186 account_system_time(tsk, 0, delta);
187 local_irq_restore(flags);
188 }
189
190 /*
191 * Transfer the user and system times accumulated in the paca
192 * by the exception entry and exit code to the generic process
193 * user and system time records.
194 * Must be called with interrupts disabled.
195 */
196 void account_process_vtime(struct task_struct *tsk)
197 {
198 cputime_t utime;
199
200 utime = get_paca()->user_time;
201 get_paca()->user_time = 0;
202 account_user_time(tsk, utime);
203 }
204
205 static void account_process_time(struct pt_regs *regs)
206 {
207 int cpu = smp_processor_id();
208
209 account_process_vtime(current);
210 run_local_timers();
211 if (rcu_pending(cpu))
212 rcu_check_callbacks(cpu, user_mode(regs));
213 scheduler_tick();
214 run_posix_cpu_timers(current);
215 }
216
217 #ifdef CONFIG_PPC_SPLPAR
218 /*
219 * Stuff for accounting stolen time.
220 */
221 struct cpu_purr_data {
222 int initialized; /* thread is running */
223 u64 tb; /* last TB value read */
224 u64 purr; /* last PURR value read */
225 spinlock_t lock;
226 };
227
228 static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
229
230 static void snapshot_tb_and_purr(void *data)
231 {
232 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
233
234 p->tb = mftb();
235 p->purr = mfspr(SPRN_PURR);
236 wmb();
237 p->initialized = 1;
238 }
239
240 /*
241 * Called during boot when all cpus have come up.
242 */
243 void snapshot_timebases(void)
244 {
245 int cpu;
246
247 if (!cpu_has_feature(CPU_FTR_PURR))
248 return;
249 for_each_possible_cpu(cpu)
250 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
251 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
252 }
253
254 void calculate_steal_time(void)
255 {
256 u64 tb, purr;
257 s64 stolen;
258 struct cpu_purr_data *pme;
259
260 if (!cpu_has_feature(CPU_FTR_PURR))
261 return;
262 pme = &per_cpu(cpu_purr_data, smp_processor_id());
263 if (!pme->initialized)
264 return; /* this can happen in early boot */
265 spin_lock(&pme->lock);
266 tb = mftb();
267 purr = mfspr(SPRN_PURR);
268 stolen = (tb - pme->tb) - (purr - pme->purr);
269 if (stolen > 0)
270 account_steal_time(current, stolen);
271 pme->tb = tb;
272 pme->purr = purr;
273 spin_unlock(&pme->lock);
274 }
275
276 /*
277 * Must be called before the cpu is added to the online map when
278 * a cpu is being brought up at runtime.
279 */
280 static void snapshot_purr(void)
281 {
282 struct cpu_purr_data *pme;
283 unsigned long flags;
284
285 if (!cpu_has_feature(CPU_FTR_PURR))
286 return;
287 pme = &per_cpu(cpu_purr_data, smp_processor_id());
288 spin_lock_irqsave(&pme->lock, flags);
289 pme->tb = mftb();
290 pme->purr = mfspr(SPRN_PURR);
291 pme->initialized = 1;
292 spin_unlock_irqrestore(&pme->lock, flags);
293 }
294
295 #endif /* CONFIG_PPC_SPLPAR */
296
297 #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
298 #define calc_cputime_factors()
299 #define account_process_time(regs) update_process_times(user_mode(regs))
300 #define calculate_steal_time() do { } while (0)
301 #endif
302
303 #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
304 #define snapshot_purr() do { } while (0)
305 #endif
306
307 /*
308 * Called when a cpu comes up after the system has finished booting,
309 * i.e. as a result of a hotplug cpu action.
310 */
311 void snapshot_timebase(void)
312 {
313 __get_cpu_var(last_jiffy) = get_tb();
314 snapshot_purr();
315 }
316
317 void __delay(unsigned long loops)
318 {
319 unsigned long start;
320 int diff;
321
322 if (__USE_RTC()) {
323 start = get_rtcl();
324 do {
325 /* the RTCL register wraps at 1000000000 */
326 diff = get_rtcl() - start;
327 if (diff < 0)
328 diff += 1000000000;
329 } while (diff < loops);
330 } else {
331 start = get_tbl();
332 while (get_tbl() - start < loops)
333 HMT_low();
334 HMT_medium();
335 }
336 }
337 EXPORT_SYMBOL(__delay);
338
339 void udelay(unsigned long usecs)
340 {
341 __delay(tb_ticks_per_usec * usecs);
342 }
343 EXPORT_SYMBOL(udelay);
344
345 static __inline__ void timer_check_rtc(void)
346 {
347 /*
348 * update the rtc when needed, this should be performed on the
349 * right fraction of a second. Half or full second ?
350 * Full second works on mk48t59 clocks, others need testing.
351 * Note that this update is basically only used through
352 * the adjtimex system calls. Setting the HW clock in
353 * any other way is a /dev/rtc and userland business.
354 * This is still wrong by -0.5/+1.5 jiffies because of the
355 * timer interrupt resolution and possible delay, but here we
356 * hit a quantization limit which can only be solved by higher
357 * resolution timers and decoupling time management from timer
358 * interrupts. This is also wrong on the clocks
359 * which require being written at the half second boundary.
360 * We should have an rtc call that only sets the minutes and
361 * seconds like on Intel to avoid problems with non UTC clocks.
362 */
363 if (ppc_md.set_rtc_time && ntp_synced() &&
364 xtime.tv_sec - last_rtc_update >= 659 &&
365 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
366 struct rtc_time tm;
367 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
368 tm.tm_year -= 1900;
369 tm.tm_mon -= 1;
370 if (ppc_md.set_rtc_time(&tm) == 0)
371 last_rtc_update = xtime.tv_sec + 1;
372 else
373 /* Try again one minute later */
374 last_rtc_update += 60;
375 }
376 }
377
378 /*
379 * This version of gettimeofday has microsecond resolution.
380 */
381 static inline void __do_gettimeofday(struct timeval *tv)
382 {
383 unsigned long sec, usec;
384 u64 tb_ticks, xsec;
385 struct gettimeofday_vars *temp_varp;
386 u64 temp_tb_to_xs, temp_stamp_xsec;
387
388 /*
389 * These calculations are faster (gets rid of divides)
390 * if done in units of 1/2^20 rather than microseconds.
391 * The conversion to microseconds at the end is done
392 * without a divide (and in fact, without a multiply)
393 */
394 temp_varp = do_gtod.varp;
395
396 /* Sampling the time base must be done after loading
397 * do_gtod.varp in order to avoid racing with update_gtod.
398 */
399 data_barrier(temp_varp);
400 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
401 temp_tb_to_xs = temp_varp->tb_to_xs;
402 temp_stamp_xsec = temp_varp->stamp_xsec;
403 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
404 sec = xsec / XSEC_PER_SEC;
405 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
406 usec = SCALE_XSEC(usec, 1000000);
407
408 tv->tv_sec = sec;
409 tv->tv_usec = usec;
410 }
411
412 void do_gettimeofday(struct timeval *tv)
413 {
414 if (__USE_RTC()) {
415 /* do this the old way */
416 unsigned long flags, seq;
417 unsigned int sec, nsec, usec;
418
419 do {
420 seq = read_seqbegin_irqsave(&xtime_lock, flags);
421 sec = xtime.tv_sec;
422 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
423 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
424 usec = nsec / 1000;
425 while (usec >= 1000000) {
426 usec -= 1000000;
427 ++sec;
428 }
429 tv->tv_sec = sec;
430 tv->tv_usec = usec;
431 return;
432 }
433 __do_gettimeofday(tv);
434 }
435
436 EXPORT_SYMBOL(do_gettimeofday);
437
438 /*
439 * There are two copies of tb_to_xs and stamp_xsec so that no
440 * lock is needed to access and use these values in
441 * do_gettimeofday. We alternate the copies and as long as a
442 * reasonable time elapses between changes, there will never
443 * be inconsistent values. ntpd has a minimum of one minute
444 * between updates.
445 */
446 static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
447 u64 new_tb_to_xs)
448 {
449 unsigned temp_idx;
450 struct gettimeofday_vars *temp_varp;
451
452 temp_idx = (do_gtod.var_idx == 0);
453 temp_varp = &do_gtod.vars[temp_idx];
454
455 temp_varp->tb_to_xs = new_tb_to_xs;
456 temp_varp->tb_orig_stamp = new_tb_stamp;
457 temp_varp->stamp_xsec = new_stamp_xsec;
458 smp_mb();
459 do_gtod.varp = temp_varp;
460 do_gtod.var_idx = temp_idx;
461
462 /*
463 * tb_update_count is used to allow the userspace gettimeofday code
464 * to assure itself that it sees a consistent view of the tb_to_xs and
465 * stamp_xsec variables. It reads the tb_update_count, then reads
466 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
467 * the two values of tb_update_count match and are even then the
468 * tb_to_xs and stamp_xsec values are consistent. If not, then it
469 * loops back and reads them again until this criteria is met.
470 * We expect the caller to have done the first increment of
471 * vdso_data->tb_update_count already.
472 */
473 vdso_data->tb_orig_stamp = new_tb_stamp;
474 vdso_data->stamp_xsec = new_stamp_xsec;
475 vdso_data->tb_to_xs = new_tb_to_xs;
476 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
477 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
478 smp_wmb();
479 ++(vdso_data->tb_update_count);
480 }
481
482 /*
483 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
484 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
485 * difference tb - tb_orig_stamp small enough to always fit inside a
486 * 32 bits number. This is a requirement of our fast 32 bits userland
487 * implementation in the vdso. If we "miss" a call to this function
488 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
489 * with a too big difference, then the vdso will fallback to calling
490 * the syscall
491 */
492 static __inline__ void timer_recalc_offset(u64 cur_tb)
493 {
494 unsigned long offset;
495 u64 new_stamp_xsec;
496 u64 tlen, t2x;
497 u64 tb, xsec_old, xsec_new;
498 struct gettimeofday_vars *varp;
499
500 if (__USE_RTC())
501 return;
502 tlen = current_tick_length();
503 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
504 if (tlen == last_tick_len && offset < 0x80000000u)
505 return;
506 if (tlen != last_tick_len) {
507 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
508 last_tick_len = tlen;
509 } else
510 t2x = do_gtod.varp->tb_to_xs;
511 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
512 do_div(new_stamp_xsec, 1000000000);
513 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
514
515 ++vdso_data->tb_update_count;
516 smp_mb();
517
518 /*
519 * Make sure time doesn't go backwards for userspace gettimeofday.
520 */
521 tb = get_tb();
522 varp = do_gtod.varp;
523 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
524 + varp->stamp_xsec;
525 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
526 if (xsec_new < xsec_old)
527 new_stamp_xsec += xsec_old - xsec_new;
528
529 update_gtod(cur_tb, new_stamp_xsec, t2x);
530 }
531
532 #ifdef CONFIG_SMP
533 unsigned long profile_pc(struct pt_regs *regs)
534 {
535 unsigned long pc = instruction_pointer(regs);
536
537 if (in_lock_functions(pc))
538 return regs->link;
539
540 return pc;
541 }
542 EXPORT_SYMBOL(profile_pc);
543 #endif
544
545 #ifdef CONFIG_PPC_ISERIES
546
547 /*
548 * This function recalibrates the timebase based on the 49-bit time-of-day
549 * value in the Titan chip. The Titan is much more accurate than the value
550 * returned by the service processor for the timebase frequency.
551 */
552
553 static void iSeries_tb_recal(void)
554 {
555 struct div_result divres;
556 unsigned long titan, tb;
557 tb = get_tb();
558 titan = HvCallXm_loadTod();
559 if ( iSeries_recal_titan ) {
560 unsigned long tb_ticks = tb - iSeries_recal_tb;
561 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
562 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
563 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
564 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
565 char sign = '+';
566 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
567 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
568
569 if ( tick_diff < 0 ) {
570 tick_diff = -tick_diff;
571 sign = '-';
572 }
573 if ( tick_diff ) {
574 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
575 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
576 new_tb_ticks_per_jiffy, sign, tick_diff );
577 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
578 tb_ticks_per_sec = new_tb_ticks_per_sec;
579 calc_cputime_factors();
580 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
581 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
582 tb_to_xs = divres.result_low;
583 do_gtod.varp->tb_to_xs = tb_to_xs;
584 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
585 vdso_data->tb_to_xs = tb_to_xs;
586 }
587 else {
588 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
589 " new tb_ticks_per_jiffy = %lu\n"
590 " old tb_ticks_per_jiffy = %lu\n",
591 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
592 }
593 }
594 }
595 iSeries_recal_titan = titan;
596 iSeries_recal_tb = tb;
597 }
598 #endif
599
600 /*
601 * For iSeries shared processors, we have to let the hypervisor
602 * set the hardware decrementer. We set a virtual decrementer
603 * in the lppaca and call the hypervisor if the virtual
604 * decrementer is less than the current value in the hardware
605 * decrementer. (almost always the new decrementer value will
606 * be greater than the current hardware decementer so the hypervisor
607 * call will not be needed)
608 */
609
610 /*
611 * timer_interrupt - gets called when the decrementer overflows,
612 * with interrupts disabled.
613 */
614 void timer_interrupt(struct pt_regs * regs)
615 {
616 struct pt_regs *old_regs;
617 int next_dec;
618 int cpu = smp_processor_id();
619 unsigned long ticks;
620 u64 tb_next_jiffy;
621
622 #ifdef CONFIG_PPC32
623 if (atomic_read(&ppc_n_lost_interrupts) != 0)
624 do_IRQ(regs);
625 #endif
626
627 old_regs = set_irq_regs(regs);
628 irq_enter();
629
630 profile_tick(CPU_PROFILING);
631 calculate_steal_time();
632
633 #ifdef CONFIG_PPC_ISERIES
634 get_lppaca()->int_dword.fields.decr_int = 0;
635 #endif
636
637 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
638 >= tb_ticks_per_jiffy) {
639 /* Update last_jiffy */
640 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
641 /* Handle RTCL overflow on 601 */
642 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
643 per_cpu(last_jiffy, cpu) -= 1000000000;
644
645 /*
646 * We cannot disable the decrementer, so in the period
647 * between this cpu's being marked offline in cpu_online_map
648 * and calling stop-self, it is taking timer interrupts.
649 * Avoid calling into the scheduler rebalancing code if this
650 * is the case.
651 */
652 if (!cpu_is_offline(cpu))
653 account_process_time(regs);
654
655 /*
656 * No need to check whether cpu is offline here; boot_cpuid
657 * should have been fixed up by now.
658 */
659 if (cpu != boot_cpuid)
660 continue;
661
662 write_seqlock(&xtime_lock);
663 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
664 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
665 tb_last_jiffy = tb_next_jiffy;
666 do_timer(1);
667 timer_recalc_offset(tb_last_jiffy);
668 timer_check_rtc();
669 }
670 write_sequnlock(&xtime_lock);
671 }
672
673 next_dec = tb_ticks_per_jiffy - ticks;
674 set_dec(next_dec);
675
676 #ifdef CONFIG_PPC_ISERIES
677 if (hvlpevent_is_pending())
678 process_hvlpevents();
679 #endif
680
681 #ifdef CONFIG_PPC64
682 /* collect purr register values often, for accurate calculations */
683 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
684 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
685 cu->current_tb = mfspr(SPRN_PURR);
686 }
687 #endif
688
689 irq_exit();
690 set_irq_regs(old_regs);
691 }
692
693 void wakeup_decrementer(void)
694 {
695 unsigned long ticks;
696
697 /*
698 * The timebase gets saved on sleep and restored on wakeup,
699 * so all we need to do is to reset the decrementer.
700 */
701 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
702 if (ticks < tb_ticks_per_jiffy)
703 ticks = tb_ticks_per_jiffy - ticks;
704 else
705 ticks = 1;
706 set_dec(ticks);
707 }
708
709 #ifdef CONFIG_SMP
710 void __init smp_space_timers(unsigned int max_cpus)
711 {
712 int i;
713 unsigned long half = tb_ticks_per_jiffy / 2;
714 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
715 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
716
717 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
718 previous_tb -= tb_ticks_per_jiffy;
719 /*
720 * The stolen time calculation for POWER5 shared-processor LPAR
721 * systems works better if the two threads' timebase interrupts
722 * are staggered by half a jiffy with respect to each other.
723 */
724 for_each_possible_cpu(i) {
725 if (i == boot_cpuid)
726 continue;
727 if (i == (boot_cpuid ^ 1))
728 per_cpu(last_jiffy, i) =
729 per_cpu(last_jiffy, boot_cpuid) - half;
730 else if (i & 1)
731 per_cpu(last_jiffy, i) =
732 per_cpu(last_jiffy, i ^ 1) + half;
733 else {
734 previous_tb += offset;
735 per_cpu(last_jiffy, i) = previous_tb;
736 }
737 }
738 }
739 #endif
740
741 /*
742 * Scheduler clock - returns current time in nanosec units.
743 *
744 * Note: mulhdu(a, b) (multiply high double unsigned) returns
745 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
746 * are 64-bit unsigned numbers.
747 */
748 unsigned long long sched_clock(void)
749 {
750 if (__USE_RTC())
751 return get_rtc();
752 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
753 }
754
755 int do_settimeofday(struct timespec *tv)
756 {
757 time_t wtm_sec, new_sec = tv->tv_sec;
758 long wtm_nsec, new_nsec = tv->tv_nsec;
759 unsigned long flags;
760 u64 new_xsec;
761 unsigned long tb_delta;
762
763 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
764 return -EINVAL;
765
766 write_seqlock_irqsave(&xtime_lock, flags);
767
768 /*
769 * Updating the RTC is not the job of this code. If the time is
770 * stepped under NTP, the RTC will be updated after STA_UNSYNC
771 * is cleared. Tools like clock/hwclock either copy the RTC
772 * to the system time, in which case there is no point in writing
773 * to the RTC again, or write to the RTC but then they don't call
774 * settimeofday to perform this operation.
775 */
776 #ifdef CONFIG_PPC_ISERIES
777 if (first_settimeofday) {
778 iSeries_tb_recal();
779 first_settimeofday = 0;
780 }
781 #endif
782
783 /* Make userspace gettimeofday spin until we're done. */
784 ++vdso_data->tb_update_count;
785 smp_mb();
786
787 /*
788 * Subtract off the number of nanoseconds since the
789 * beginning of the last tick.
790 */
791 tb_delta = tb_ticks_since(tb_last_jiffy);
792 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
793 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
794
795 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
796 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
797
798 set_normalized_timespec(&xtime, new_sec, new_nsec);
799 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
800
801 /* In case of a large backwards jump in time with NTP, we want the
802 * clock to be updated as soon as the PLL is again in lock.
803 */
804 last_rtc_update = new_sec - 658;
805
806 ntp_clear();
807
808 new_xsec = xtime.tv_nsec;
809 if (new_xsec != 0) {
810 new_xsec *= XSEC_PER_SEC;
811 do_div(new_xsec, NSEC_PER_SEC);
812 }
813 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
814 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
815
816 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
817 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
818
819 write_sequnlock_irqrestore(&xtime_lock, flags);
820 clock_was_set();
821 return 0;
822 }
823
824 EXPORT_SYMBOL(do_settimeofday);
825
826 static int __init get_freq(char *name, int cells, unsigned long *val)
827 {
828 struct device_node *cpu;
829 const unsigned int *fp;
830 int found = 0;
831
832 /* The cpu node should have timebase and clock frequency properties */
833 cpu = of_find_node_by_type(NULL, "cpu");
834
835 if (cpu) {
836 fp = get_property(cpu, name, NULL);
837 if (fp) {
838 found = 1;
839 *val = of_read_ulong(fp, cells);
840 }
841
842 of_node_put(cpu);
843 }
844
845 return found;
846 }
847
848 void __init generic_calibrate_decr(void)
849 {
850 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
851
852 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
853 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
854
855 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
856 "(not found)\n");
857 }
858
859 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
860
861 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
862 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
863
864 printk(KERN_ERR "WARNING: Estimating processor frequency "
865 "(not found)\n");
866 }
867
868 #ifdef CONFIG_BOOKE
869 /* Set the time base to zero */
870 mtspr(SPRN_TBWL, 0);
871 mtspr(SPRN_TBWU, 0);
872
873 /* Clear any pending timer interrupts */
874 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
875
876 /* Enable decrementer interrupt */
877 mtspr(SPRN_TCR, TCR_DIE);
878 #endif
879 }
880
881 unsigned long get_boot_time(void)
882 {
883 struct rtc_time tm;
884
885 if (ppc_md.get_boot_time)
886 return ppc_md.get_boot_time();
887 if (!ppc_md.get_rtc_time)
888 return 0;
889 ppc_md.get_rtc_time(&tm);
890 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
891 tm.tm_hour, tm.tm_min, tm.tm_sec);
892 }
893
894 /* This function is only called on the boot processor */
895 void __init time_init(void)
896 {
897 unsigned long flags;
898 unsigned long tm = 0;
899 struct div_result res;
900 u64 scale, x;
901 unsigned shift;
902
903 if (ppc_md.time_init != NULL)
904 timezone_offset = ppc_md.time_init();
905
906 if (__USE_RTC()) {
907 /* 601 processor: dec counts down by 128 every 128ns */
908 ppc_tb_freq = 1000000000;
909 tb_last_jiffy = get_rtcl();
910 } else {
911 /* Normal PowerPC with timebase register */
912 ppc_md.calibrate_decr();
913 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
914 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
915 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
916 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
917 tb_last_jiffy = get_tb();
918 }
919
920 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
921 tb_ticks_per_sec = ppc_tb_freq;
922 tb_ticks_per_usec = ppc_tb_freq / 1000000;
923 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
924 calc_cputime_factors();
925
926 /*
927 * Calculate the length of each tick in ns. It will not be
928 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
929 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
930 * rounded up.
931 */
932 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
933 do_div(x, ppc_tb_freq);
934 tick_nsec = x;
935 last_tick_len = x << TICKLEN_SCALE;
936
937 /*
938 * Compute ticklen_to_xs, which is a factor which gets multiplied
939 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
940 * It is computed as:
941 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
942 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
943 * which turns out to be N = 51 - SHIFT_HZ.
944 * This gives the result as a 0.64 fixed-point fraction.
945 * That value is reduced by an offset amounting to 1 xsec per
946 * 2^31 timebase ticks to avoid problems with time going backwards
947 * by 1 xsec when we do timer_recalc_offset due to losing the
948 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
949 * since there are 2^20 xsec in a second.
950 */
951 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
952 tb_ticks_per_jiffy << SHIFT_HZ, &res);
953 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
954 ticklen_to_xs = res.result_low;
955
956 /* Compute tb_to_xs from tick_nsec */
957 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
958
959 /*
960 * Compute scale factor for sched_clock.
961 * The calibrate_decr() function has set tb_ticks_per_sec,
962 * which is the timebase frequency.
963 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
964 * the 128-bit result as a 64.64 fixed-point number.
965 * We then shift that number right until it is less than 1.0,
966 * giving us the scale factor and shift count to use in
967 * sched_clock().
968 */
969 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
970 scale = res.result_low;
971 for (shift = 0; res.result_high != 0; ++shift) {
972 scale = (scale >> 1) | (res.result_high << 63);
973 res.result_high >>= 1;
974 }
975 tb_to_ns_scale = scale;
976 tb_to_ns_shift = shift;
977
978 tm = get_boot_time();
979
980 write_seqlock_irqsave(&xtime_lock, flags);
981
982 /* If platform provided a timezone (pmac), we correct the time */
983 if (timezone_offset) {
984 sys_tz.tz_minuteswest = -timezone_offset / 60;
985 sys_tz.tz_dsttime = 0;
986 tm -= timezone_offset;
987 }
988
989 xtime.tv_sec = tm;
990 xtime.tv_nsec = 0;
991 do_gtod.varp = &do_gtod.vars[0];
992 do_gtod.var_idx = 0;
993 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
994 __get_cpu_var(last_jiffy) = tb_last_jiffy;
995 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
996 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
997 do_gtod.varp->tb_to_xs = tb_to_xs;
998 do_gtod.tb_to_us = tb_to_us;
999
1000 vdso_data->tb_orig_stamp = tb_last_jiffy;
1001 vdso_data->tb_update_count = 0;
1002 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1003 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1004 vdso_data->tb_to_xs = tb_to_xs;
1005
1006 time_freq = 0;
1007
1008 last_rtc_update = xtime.tv_sec;
1009 set_normalized_timespec(&wall_to_monotonic,
1010 -xtime.tv_sec, -xtime.tv_nsec);
1011 write_sequnlock_irqrestore(&xtime_lock, flags);
1012
1013 /* Not exact, but the timer interrupt takes care of this */
1014 set_dec(tb_ticks_per_jiffy);
1015 }
1016
1017 #ifdef CONFIG_RTC_CLASS
1018 static int set_rtc_class_time(struct rtc_time *tm)
1019 {
1020 int err;
1021 struct class_device *class_dev =
1022 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1023
1024 if (class_dev == NULL)
1025 return -ENODEV;
1026
1027 err = rtc_set_time(class_dev, tm);
1028
1029 rtc_class_close(class_dev);
1030
1031 return 0;
1032 }
1033
1034 static void get_rtc_class_time(struct rtc_time *tm)
1035 {
1036 int err;
1037 struct class_device *class_dev =
1038 rtc_class_open(CONFIG_RTC_HCTOSYS_DEVICE);
1039
1040 if (class_dev == NULL)
1041 return;
1042
1043 err = rtc_read_time(class_dev, tm);
1044
1045 rtc_class_close(class_dev);
1046
1047 return;
1048 }
1049
1050 int __init rtc_class_hookup(void)
1051 {
1052 ppc_md.get_rtc_time = get_rtc_class_time;
1053 ppc_md.set_rtc_time = set_rtc_class_time;
1054
1055 return 0;
1056 }
1057 #endif /* CONFIG_RTC_CLASS */
1058
1059
1060 #define FEBRUARY 2
1061 #define STARTOFTIME 1970
1062 #define SECDAY 86400L
1063 #define SECYR (SECDAY * 365)
1064 #define leapyear(year) ((year) % 4 == 0 && \
1065 ((year) % 100 != 0 || (year) % 400 == 0))
1066 #define days_in_year(a) (leapyear(a) ? 366 : 365)
1067 #define days_in_month(a) (month_days[(a) - 1])
1068
1069 static int month_days[12] = {
1070 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1071 };
1072
1073 /*
1074 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1075 */
1076 void GregorianDay(struct rtc_time * tm)
1077 {
1078 int leapsToDate;
1079 int lastYear;
1080 int day;
1081 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1082
1083 lastYear = tm->tm_year - 1;
1084
1085 /*
1086 * Number of leap corrections to apply up to end of last year
1087 */
1088 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1089
1090 /*
1091 * This year is a leap year if it is divisible by 4 except when it is
1092 * divisible by 100 unless it is divisible by 400
1093 *
1094 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1095 */
1096 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1097
1098 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1099 tm->tm_mday;
1100
1101 tm->tm_wday = day % 7;
1102 }
1103
1104 void to_tm(int tim, struct rtc_time * tm)
1105 {
1106 register int i;
1107 register long hms, day;
1108
1109 day = tim / SECDAY;
1110 hms = tim % SECDAY;
1111
1112 /* Hours, minutes, seconds are easy */
1113 tm->tm_hour = hms / 3600;
1114 tm->tm_min = (hms % 3600) / 60;
1115 tm->tm_sec = (hms % 3600) % 60;
1116
1117 /* Number of years in days */
1118 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1119 day -= days_in_year(i);
1120 tm->tm_year = i;
1121
1122 /* Number of months in days left */
1123 if (leapyear(tm->tm_year))
1124 days_in_month(FEBRUARY) = 29;
1125 for (i = 1; day >= days_in_month(i); i++)
1126 day -= days_in_month(i);
1127 days_in_month(FEBRUARY) = 28;
1128 tm->tm_mon = i;
1129
1130 /* Days are what is left over (+1) from all that. */
1131 tm->tm_mday = day + 1;
1132
1133 /*
1134 * Determine the day of week
1135 */
1136 GregorianDay(tm);
1137 }
1138
1139 /* Auxiliary function to compute scaling factors */
1140 /* Actually the choice of a timebase running at 1/4 the of the bus
1141 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1142 * It makes this computation very precise (27-28 bits typically) which
1143 * is optimistic considering the stability of most processor clock
1144 * oscillators and the precision with which the timebase frequency
1145 * is measured but does not harm.
1146 */
1147 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1148 {
1149 unsigned mlt=0, tmp, err;
1150 /* No concern for performance, it's done once: use a stupid
1151 * but safe and compact method to find the multiplier.
1152 */
1153
1154 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
1155 if (mulhwu(inscale, mlt|tmp) < outscale)
1156 mlt |= tmp;
1157 }
1158
1159 /* We might still be off by 1 for the best approximation.
1160 * A side effect of this is that if outscale is too large
1161 * the returned value will be zero.
1162 * Many corner cases have been checked and seem to work,
1163 * some might have been forgotten in the test however.
1164 */
1165
1166 err = inscale * (mlt+1);
1167 if (err <= inscale/2)
1168 mlt++;
1169 return mlt;
1170 }
1171
1172 /*
1173 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1174 * result.
1175 */
1176 void div128_by_32(u64 dividend_high, u64 dividend_low,
1177 unsigned divisor, struct div_result *dr)
1178 {
1179 unsigned long a, b, c, d;
1180 unsigned long w, x, y, z;
1181 u64 ra, rb, rc;
1182
1183 a = dividend_high >> 32;
1184 b = dividend_high & 0xffffffff;
1185 c = dividend_low >> 32;
1186 d = dividend_low & 0xffffffff;
1187
1188 w = a / divisor;
1189 ra = ((u64)(a - (w * divisor)) << 32) + b;
1190
1191 rb = ((u64) do_div(ra, divisor) << 32) + c;
1192 x = ra;
1193
1194 rc = ((u64) do_div(rb, divisor) << 32) + d;
1195 y = rb;
1196
1197 do_div(rc, divisor);
1198 z = rc;
1199
1200 dr->result_high = ((u64)w << 32) + x;
1201 dr->result_low = ((u64)y << 32) + z;
1202
1203 }