]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
13c9dcdcba6922e32d4c00267201f47e9498f805
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/ptrace.h>
26 #include <linux/user.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/extable.h>
30 #include <linux/module.h> /* print_modules */
31 #include <linux/prctl.h>
32 #include <linux/delay.h>
33 #include <linux/kprobes.h>
34 #include <linux/kexec.h>
35 #include <linux/backlight.h>
36 #include <linux/bug.h>
37 #include <linux/kdebug.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/debugfs.h>
45 #include <asm/io.h>
46 #include <asm/machdep.h>
47 #include <asm/rtas.h>
48 #include <asm/pmc.h>
49 #include <asm/reg.h>
50 #ifdef CONFIG_PMAC_BACKLIGHT
51 #include <asm/backlight.h>
52 #endif
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/processor.h>
56 #include <asm/tm.h>
57 #endif
58 #include <asm/kexec.h>
59 #include <asm/ppc-opcode.h>
60 #include <asm/rio.h>
61 #include <asm/fadump.h>
62 #include <asm/switch_to.h>
63 #include <asm/tm.h>
64 #include <asm/debug.h>
65 #include <asm/asm-prototypes.h>
66 #include <asm/hmi.h>
67 #include <sysdev/fsl_pci.h>
68 #include <asm/kprobes.h>
69
70 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
71 int (*__debugger)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
78
79 EXPORT_SYMBOL(__debugger);
80 EXPORT_SYMBOL(__debugger_ipi);
81 EXPORT_SYMBOL(__debugger_bpt);
82 EXPORT_SYMBOL(__debugger_sstep);
83 EXPORT_SYMBOL(__debugger_iabr_match);
84 EXPORT_SYMBOL(__debugger_break_match);
85 EXPORT_SYMBOL(__debugger_fault_handler);
86 #endif
87
88 /* Transactional Memory trap debug */
89 #ifdef TM_DEBUG_SW
90 #define TM_DEBUG(x...) printk(KERN_INFO x)
91 #else
92 #define TM_DEBUG(x...) do { } while(0)
93 #endif
94
95 /*
96 * Trap & Exception support
97 */
98
99 #ifdef CONFIG_PMAC_BACKLIGHT
100 static void pmac_backlight_unblank(void)
101 {
102 mutex_lock(&pmac_backlight_mutex);
103 if (pmac_backlight) {
104 struct backlight_properties *props;
105
106 props = &pmac_backlight->props;
107 props->brightness = props->max_brightness;
108 props->power = FB_BLANK_UNBLANK;
109 backlight_update_status(pmac_backlight);
110 }
111 mutex_unlock(&pmac_backlight_mutex);
112 }
113 #else
114 static inline void pmac_backlight_unblank(void) { }
115 #endif
116
117 /*
118 * If oops/die is expected to crash the machine, return true here.
119 *
120 * This should not be expected to be 100% accurate, there may be
121 * notifiers registered or other unexpected conditions that may bring
122 * down the kernel. Or if the current process in the kernel is holding
123 * locks or has other critical state, the kernel may become effectively
124 * unusable anyway.
125 */
126 bool die_will_crash(void)
127 {
128 if (should_fadump_crash())
129 return true;
130 if (kexec_should_crash(current))
131 return true;
132 if (in_interrupt() || panic_on_oops ||
133 !current->pid || is_global_init(current))
134 return true;
135
136 return false;
137 }
138
139 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
140 static int die_owner = -1;
141 static unsigned int die_nest_count;
142 static int die_counter;
143
144 static unsigned long oops_begin(struct pt_regs *regs)
145 {
146 int cpu;
147 unsigned long flags;
148
149 oops_enter();
150
151 /* racy, but better than risking deadlock. */
152 raw_local_irq_save(flags);
153 cpu = smp_processor_id();
154 if (!arch_spin_trylock(&die_lock)) {
155 if (cpu == die_owner)
156 /* nested oops. should stop eventually */;
157 else
158 arch_spin_lock(&die_lock);
159 }
160 die_nest_count++;
161 die_owner = cpu;
162 console_verbose();
163 bust_spinlocks(1);
164 if (machine_is(powermac))
165 pmac_backlight_unblank();
166 return flags;
167 }
168 NOKPROBE_SYMBOL(oops_begin);
169
170 static void oops_end(unsigned long flags, struct pt_regs *regs,
171 int signr)
172 {
173 bust_spinlocks(0);
174 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
175 die_nest_count--;
176 oops_exit();
177 printk("\n");
178 if (!die_nest_count) {
179 /* Nest count reaches zero, release the lock. */
180 die_owner = -1;
181 arch_spin_unlock(&die_lock);
182 }
183 raw_local_irq_restore(flags);
184
185 crash_fadump(regs, "die oops");
186
187 if (kexec_should_crash(current))
188 crash_kexec(regs);
189
190 if (!signr)
191 return;
192
193 /*
194 * While our oops output is serialised by a spinlock, output
195 * from panic() called below can race and corrupt it. If we
196 * know we are going to panic, delay for 1 second so we have a
197 * chance to get clean backtraces from all CPUs that are oopsing.
198 */
199 if (in_interrupt() || panic_on_oops || !current->pid ||
200 is_global_init(current)) {
201 mdelay(MSEC_PER_SEC);
202 }
203
204 if (in_interrupt())
205 panic("Fatal exception in interrupt");
206 if (panic_on_oops)
207 panic("Fatal exception");
208 do_exit(signr);
209 }
210 NOKPROBE_SYMBOL(oops_end);
211
212 static int __die(const char *str, struct pt_regs *regs, long err)
213 {
214 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
215
216 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
217 printk("LE ");
218 else
219 printk("BE ");
220
221 if (IS_ENABLED(CONFIG_PREEMPT))
222 pr_cont("PREEMPT ");
223
224 if (IS_ENABLED(CONFIG_SMP))
225 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
226
227 if (debug_pagealloc_enabled())
228 pr_cont("DEBUG_PAGEALLOC ");
229
230 if (IS_ENABLED(CONFIG_NUMA))
231 pr_cont("NUMA ");
232
233 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
234
235 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
236 return 1;
237
238 print_modules();
239 show_regs(regs);
240
241 return 0;
242 }
243 NOKPROBE_SYMBOL(__die);
244
245 void die(const char *str, struct pt_regs *regs, long err)
246 {
247 unsigned long flags;
248
249 if (debugger(regs))
250 return;
251
252 flags = oops_begin(regs);
253 if (__die(str, regs, err))
254 err = 0;
255 oops_end(flags, regs, err);
256 }
257 NOKPROBE_SYMBOL(die);
258
259 void user_single_step_siginfo(struct task_struct *tsk,
260 struct pt_regs *regs, siginfo_t *info)
261 {
262 memset(info, 0, sizeof(*info));
263 info->si_signo = SIGTRAP;
264 info->si_code = TRAP_TRACE;
265 info->si_addr = (void __user *)regs->nip;
266 }
267
268 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
269 {
270 siginfo_t info;
271 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
272 "at %08lx nip %08lx lr %08lx code %x\n";
273 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
274 "at %016lx nip %016lx lr %016lx code %x\n";
275
276 if (!user_mode(regs)) {
277 die("Exception in kernel mode", regs, signr);
278 return;
279 }
280
281 if (show_unhandled_signals && unhandled_signal(current, signr)) {
282 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
283 current->comm, current->pid, signr,
284 addr, regs->nip, regs->link, code);
285 }
286
287 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
288 local_irq_enable();
289
290 current->thread.trap_nr = code;
291 memset(&info, 0, sizeof(info));
292 info.si_signo = signr;
293 info.si_code = code;
294 info.si_addr = (void __user *) addr;
295 force_sig_info(signr, &info, current);
296 }
297
298 void system_reset_exception(struct pt_regs *regs)
299 {
300 /*
301 * Avoid crashes in case of nested NMI exceptions. Recoverability
302 * is determined by RI and in_nmi
303 */
304 bool nested = in_nmi();
305 if (!nested)
306 nmi_enter();
307
308 __this_cpu_inc(irq_stat.sreset_irqs);
309
310 /* See if any machine dependent calls */
311 if (ppc_md.system_reset_exception) {
312 if (ppc_md.system_reset_exception(regs))
313 goto out;
314 }
315
316 if (debugger(regs))
317 goto out;
318
319 /*
320 * A system reset is a request to dump, so we always send
321 * it through the crashdump code (if fadump or kdump are
322 * registered).
323 */
324 crash_fadump(regs, "System Reset");
325
326 crash_kexec(regs);
327
328 /*
329 * We aren't the primary crash CPU. We need to send it
330 * to a holding pattern to avoid it ending up in the panic
331 * code.
332 */
333 crash_kexec_secondary(regs);
334
335 /*
336 * No debugger or crash dump registered, print logs then
337 * panic.
338 */
339 __die("System Reset", regs, SIGABRT);
340
341 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
342 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
343 nmi_panic(regs, "System Reset");
344
345 out:
346 #ifdef CONFIG_PPC_BOOK3S_64
347 BUG_ON(get_paca()->in_nmi == 0);
348 if (get_paca()->in_nmi > 1)
349 nmi_panic(regs, "Unrecoverable nested System Reset");
350 #endif
351 /* Must die if the interrupt is not recoverable */
352 if (!(regs->msr & MSR_RI))
353 nmi_panic(regs, "Unrecoverable System Reset");
354
355 if (!nested)
356 nmi_exit();
357
358 /* What should we do here? We could issue a shutdown or hard reset. */
359 }
360
361 /*
362 * I/O accesses can cause machine checks on powermacs.
363 * Check if the NIP corresponds to the address of a sync
364 * instruction for which there is an entry in the exception
365 * table.
366 * Note that the 601 only takes a machine check on TEA
367 * (transfer error ack) signal assertion, and does not
368 * set any of the top 16 bits of SRR1.
369 * -- paulus.
370 */
371 static inline int check_io_access(struct pt_regs *regs)
372 {
373 #ifdef CONFIG_PPC32
374 unsigned long msr = regs->msr;
375 const struct exception_table_entry *entry;
376 unsigned int *nip = (unsigned int *)regs->nip;
377
378 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
379 && (entry = search_exception_tables(regs->nip)) != NULL) {
380 /*
381 * Check that it's a sync instruction, or somewhere
382 * in the twi; isync; nop sequence that inb/inw/inl uses.
383 * As the address is in the exception table
384 * we should be able to read the instr there.
385 * For the debug message, we look at the preceding
386 * load or store.
387 */
388 if (*nip == PPC_INST_NOP)
389 nip -= 2;
390 else if (*nip == PPC_INST_ISYNC)
391 --nip;
392 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
393 unsigned int rb;
394
395 --nip;
396 rb = (*nip >> 11) & 0x1f;
397 printk(KERN_DEBUG "%s bad port %lx at %p\n",
398 (*nip & 0x100)? "OUT to": "IN from",
399 regs->gpr[rb] - _IO_BASE, nip);
400 regs->msr |= MSR_RI;
401 regs->nip = extable_fixup(entry);
402 return 1;
403 }
404 }
405 #endif /* CONFIG_PPC32 */
406 return 0;
407 }
408
409 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
410 /* On 4xx, the reason for the machine check or program exception
411 is in the ESR. */
412 #define get_reason(regs) ((regs)->dsisr)
413 #define REASON_FP ESR_FP
414 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
415 #define REASON_PRIVILEGED ESR_PPR
416 #define REASON_TRAP ESR_PTR
417
418 /* single-step stuff */
419 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
420 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
421
422 #else
423 /* On non-4xx, the reason for the machine check or program
424 exception is in the MSR. */
425 #define get_reason(regs) ((regs)->msr)
426 #define REASON_TM SRR1_PROGTM
427 #define REASON_FP SRR1_PROGFPE
428 #define REASON_ILLEGAL SRR1_PROGILL
429 #define REASON_PRIVILEGED SRR1_PROGPRIV
430 #define REASON_TRAP SRR1_PROGTRAP
431
432 #define single_stepping(regs) ((regs)->msr & MSR_SE)
433 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
434 #endif
435
436 #if defined(CONFIG_E500)
437 int machine_check_e500mc(struct pt_regs *regs)
438 {
439 unsigned long mcsr = mfspr(SPRN_MCSR);
440 unsigned long pvr = mfspr(SPRN_PVR);
441 unsigned long reason = mcsr;
442 int recoverable = 1;
443
444 if (reason & MCSR_LD) {
445 recoverable = fsl_rio_mcheck_exception(regs);
446 if (recoverable == 1)
447 goto silent_out;
448 }
449
450 printk("Machine check in kernel mode.\n");
451 printk("Caused by (from MCSR=%lx): ", reason);
452
453 if (reason & MCSR_MCP)
454 printk("Machine Check Signal\n");
455
456 if (reason & MCSR_ICPERR) {
457 printk("Instruction Cache Parity Error\n");
458
459 /*
460 * This is recoverable by invalidating the i-cache.
461 */
462 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
463 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
464 ;
465
466 /*
467 * This will generally be accompanied by an instruction
468 * fetch error report -- only treat MCSR_IF as fatal
469 * if it wasn't due to an L1 parity error.
470 */
471 reason &= ~MCSR_IF;
472 }
473
474 if (reason & MCSR_DCPERR_MC) {
475 printk("Data Cache Parity Error\n");
476
477 /*
478 * In write shadow mode we auto-recover from the error, but it
479 * may still get logged and cause a machine check. We should
480 * only treat the non-write shadow case as non-recoverable.
481 */
482 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
483 * is not implemented but L1 data cache always runs in write
484 * shadow mode. Hence on data cache parity errors HW will
485 * automatically invalidate the L1 Data Cache.
486 */
487 if (PVR_VER(pvr) != PVR_VER_E6500) {
488 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
489 recoverable = 0;
490 }
491 }
492
493 if (reason & MCSR_L2MMU_MHIT) {
494 printk("Hit on multiple TLB entries\n");
495 recoverable = 0;
496 }
497
498 if (reason & MCSR_NMI)
499 printk("Non-maskable interrupt\n");
500
501 if (reason & MCSR_IF) {
502 printk("Instruction Fetch Error Report\n");
503 recoverable = 0;
504 }
505
506 if (reason & MCSR_LD) {
507 printk("Load Error Report\n");
508 recoverable = 0;
509 }
510
511 if (reason & MCSR_ST) {
512 printk("Store Error Report\n");
513 recoverable = 0;
514 }
515
516 if (reason & MCSR_LDG) {
517 printk("Guarded Load Error Report\n");
518 recoverable = 0;
519 }
520
521 if (reason & MCSR_TLBSYNC)
522 printk("Simultaneous tlbsync operations\n");
523
524 if (reason & MCSR_BSL2_ERR) {
525 printk("Level 2 Cache Error\n");
526 recoverable = 0;
527 }
528
529 if (reason & MCSR_MAV) {
530 u64 addr;
531
532 addr = mfspr(SPRN_MCAR);
533 addr |= (u64)mfspr(SPRN_MCARU) << 32;
534
535 printk("Machine Check %s Address: %#llx\n",
536 reason & MCSR_MEA ? "Effective" : "Physical", addr);
537 }
538
539 silent_out:
540 mtspr(SPRN_MCSR, mcsr);
541 return mfspr(SPRN_MCSR) == 0 && recoverable;
542 }
543
544 int machine_check_e500(struct pt_regs *regs)
545 {
546 unsigned long reason = mfspr(SPRN_MCSR);
547
548 if (reason & MCSR_BUS_RBERR) {
549 if (fsl_rio_mcheck_exception(regs))
550 return 1;
551 if (fsl_pci_mcheck_exception(regs))
552 return 1;
553 }
554
555 printk("Machine check in kernel mode.\n");
556 printk("Caused by (from MCSR=%lx): ", reason);
557
558 if (reason & MCSR_MCP)
559 printk("Machine Check Signal\n");
560 if (reason & MCSR_ICPERR)
561 printk("Instruction Cache Parity Error\n");
562 if (reason & MCSR_DCP_PERR)
563 printk("Data Cache Push Parity Error\n");
564 if (reason & MCSR_DCPERR)
565 printk("Data Cache Parity Error\n");
566 if (reason & MCSR_BUS_IAERR)
567 printk("Bus - Instruction Address Error\n");
568 if (reason & MCSR_BUS_RAERR)
569 printk("Bus - Read Address Error\n");
570 if (reason & MCSR_BUS_WAERR)
571 printk("Bus - Write Address Error\n");
572 if (reason & MCSR_BUS_IBERR)
573 printk("Bus - Instruction Data Error\n");
574 if (reason & MCSR_BUS_RBERR)
575 printk("Bus - Read Data Bus Error\n");
576 if (reason & MCSR_BUS_WBERR)
577 printk("Bus - Write Data Bus Error\n");
578 if (reason & MCSR_BUS_IPERR)
579 printk("Bus - Instruction Parity Error\n");
580 if (reason & MCSR_BUS_RPERR)
581 printk("Bus - Read Parity Error\n");
582
583 return 0;
584 }
585
586 int machine_check_generic(struct pt_regs *regs)
587 {
588 return 0;
589 }
590 #elif defined(CONFIG_E200)
591 int machine_check_e200(struct pt_regs *regs)
592 {
593 unsigned long reason = mfspr(SPRN_MCSR);
594
595 printk("Machine check in kernel mode.\n");
596 printk("Caused by (from MCSR=%lx): ", reason);
597
598 if (reason & MCSR_MCP)
599 printk("Machine Check Signal\n");
600 if (reason & MCSR_CP_PERR)
601 printk("Cache Push Parity Error\n");
602 if (reason & MCSR_CPERR)
603 printk("Cache Parity Error\n");
604 if (reason & MCSR_EXCP_ERR)
605 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
606 if (reason & MCSR_BUS_IRERR)
607 printk("Bus - Read Bus Error on instruction fetch\n");
608 if (reason & MCSR_BUS_DRERR)
609 printk("Bus - Read Bus Error on data load\n");
610 if (reason & MCSR_BUS_WRERR)
611 printk("Bus - Write Bus Error on buffered store or cache line push\n");
612
613 return 0;
614 }
615 #elif defined(CONFIG_PPC32)
616 int machine_check_generic(struct pt_regs *regs)
617 {
618 unsigned long reason = regs->msr;
619
620 printk("Machine check in kernel mode.\n");
621 printk("Caused by (from SRR1=%lx): ", reason);
622 switch (reason & 0x601F0000) {
623 case 0x80000:
624 printk("Machine check signal\n");
625 break;
626 case 0: /* for 601 */
627 case 0x40000:
628 case 0x140000: /* 7450 MSS error and TEA */
629 printk("Transfer error ack signal\n");
630 break;
631 case 0x20000:
632 printk("Data parity error signal\n");
633 break;
634 case 0x10000:
635 printk("Address parity error signal\n");
636 break;
637 case 0x20000000:
638 printk("L1 Data Cache error\n");
639 break;
640 case 0x40000000:
641 printk("L1 Instruction Cache error\n");
642 break;
643 case 0x00100000:
644 printk("L2 data cache parity error\n");
645 break;
646 default:
647 printk("Unknown values in msr\n");
648 }
649 return 0;
650 }
651 #endif /* everything else */
652
653 void machine_check_exception(struct pt_regs *regs)
654 {
655 int recover = 0;
656 bool nested = in_nmi();
657 if (!nested)
658 nmi_enter();
659
660 /* 64s accounts the mce in machine_check_early when in HVMODE */
661 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64) || !cpu_has_feature(CPU_FTR_HVMODE))
662 __this_cpu_inc(irq_stat.mce_exceptions);
663
664 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
665
666 /* See if any machine dependent calls. In theory, we would want
667 * to call the CPU first, and call the ppc_md. one if the CPU
668 * one returns a positive number. However there is existing code
669 * that assumes the board gets a first chance, so let's keep it
670 * that way for now and fix things later. --BenH.
671 */
672 if (ppc_md.machine_check_exception)
673 recover = ppc_md.machine_check_exception(regs);
674 else if (cur_cpu_spec->machine_check)
675 recover = cur_cpu_spec->machine_check(regs);
676
677 if (recover > 0)
678 goto bail;
679
680 if (debugger_fault_handler(regs))
681 goto bail;
682
683 if (check_io_access(regs))
684 goto bail;
685
686 die("Machine check", regs, SIGBUS);
687
688 /* Must die if the interrupt is not recoverable */
689 if (!(regs->msr & MSR_RI))
690 nmi_panic(regs, "Unrecoverable Machine check");
691
692 bail:
693 if (!nested)
694 nmi_exit();
695 }
696
697 void SMIException(struct pt_regs *regs)
698 {
699 die("System Management Interrupt", regs, SIGABRT);
700 }
701
702 void handle_hmi_exception(struct pt_regs *regs)
703 {
704 struct pt_regs *old_regs;
705
706 old_regs = set_irq_regs(regs);
707 irq_enter();
708
709 if (ppc_md.handle_hmi_exception)
710 ppc_md.handle_hmi_exception(regs);
711
712 irq_exit();
713 set_irq_regs(old_regs);
714 }
715
716 void unknown_exception(struct pt_regs *regs)
717 {
718 enum ctx_state prev_state = exception_enter();
719
720 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
721 regs->nip, regs->msr, regs->trap);
722
723 _exception(SIGTRAP, regs, 0, 0);
724
725 exception_exit(prev_state);
726 }
727
728 void instruction_breakpoint_exception(struct pt_regs *regs)
729 {
730 enum ctx_state prev_state = exception_enter();
731
732 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
733 5, SIGTRAP) == NOTIFY_STOP)
734 goto bail;
735 if (debugger_iabr_match(regs))
736 goto bail;
737 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
738
739 bail:
740 exception_exit(prev_state);
741 }
742
743 void RunModeException(struct pt_regs *regs)
744 {
745 _exception(SIGTRAP, regs, 0, 0);
746 }
747
748 void single_step_exception(struct pt_regs *regs)
749 {
750 enum ctx_state prev_state = exception_enter();
751
752 clear_single_step(regs);
753
754 if (kprobe_post_handler(regs))
755 return;
756
757 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
758 5, SIGTRAP) == NOTIFY_STOP)
759 goto bail;
760 if (debugger_sstep(regs))
761 goto bail;
762
763 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
764
765 bail:
766 exception_exit(prev_state);
767 }
768 NOKPROBE_SYMBOL(single_step_exception);
769
770 /*
771 * After we have successfully emulated an instruction, we have to
772 * check if the instruction was being single-stepped, and if so,
773 * pretend we got a single-step exception. This was pointed out
774 * by Kumar Gala. -- paulus
775 */
776 static void emulate_single_step(struct pt_regs *regs)
777 {
778 if (single_stepping(regs))
779 single_step_exception(regs);
780 }
781
782 static inline int __parse_fpscr(unsigned long fpscr)
783 {
784 int ret = 0;
785
786 /* Invalid operation */
787 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
788 ret = FPE_FLTINV;
789
790 /* Overflow */
791 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
792 ret = FPE_FLTOVF;
793
794 /* Underflow */
795 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
796 ret = FPE_FLTUND;
797
798 /* Divide by zero */
799 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
800 ret = FPE_FLTDIV;
801
802 /* Inexact result */
803 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
804 ret = FPE_FLTRES;
805
806 return ret;
807 }
808
809 static void parse_fpe(struct pt_regs *regs)
810 {
811 int code = 0;
812
813 flush_fp_to_thread(current);
814
815 code = __parse_fpscr(current->thread.fp_state.fpscr);
816
817 _exception(SIGFPE, regs, code, regs->nip);
818 }
819
820 /*
821 * Illegal instruction emulation support. Originally written to
822 * provide the PVR to user applications using the mfspr rd, PVR.
823 * Return non-zero if we can't emulate, or -EFAULT if the associated
824 * memory access caused an access fault. Return zero on success.
825 *
826 * There are a couple of ways to do this, either "decode" the instruction
827 * or directly match lots of bits. In this case, matching lots of
828 * bits is faster and easier.
829 *
830 */
831 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
832 {
833 u8 rT = (instword >> 21) & 0x1f;
834 u8 rA = (instword >> 16) & 0x1f;
835 u8 NB_RB = (instword >> 11) & 0x1f;
836 u32 num_bytes;
837 unsigned long EA;
838 int pos = 0;
839
840 /* Early out if we are an invalid form of lswx */
841 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
842 if ((rT == rA) || (rT == NB_RB))
843 return -EINVAL;
844
845 EA = (rA == 0) ? 0 : regs->gpr[rA];
846
847 switch (instword & PPC_INST_STRING_MASK) {
848 case PPC_INST_LSWX:
849 case PPC_INST_STSWX:
850 EA += NB_RB;
851 num_bytes = regs->xer & 0x7f;
852 break;
853 case PPC_INST_LSWI:
854 case PPC_INST_STSWI:
855 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
856 break;
857 default:
858 return -EINVAL;
859 }
860
861 while (num_bytes != 0)
862 {
863 u8 val;
864 u32 shift = 8 * (3 - (pos & 0x3));
865
866 /* if process is 32-bit, clear upper 32 bits of EA */
867 if ((regs->msr & MSR_64BIT) == 0)
868 EA &= 0xFFFFFFFF;
869
870 switch ((instword & PPC_INST_STRING_MASK)) {
871 case PPC_INST_LSWX:
872 case PPC_INST_LSWI:
873 if (get_user(val, (u8 __user *)EA))
874 return -EFAULT;
875 /* first time updating this reg,
876 * zero it out */
877 if (pos == 0)
878 regs->gpr[rT] = 0;
879 regs->gpr[rT] |= val << shift;
880 break;
881 case PPC_INST_STSWI:
882 case PPC_INST_STSWX:
883 val = regs->gpr[rT] >> shift;
884 if (put_user(val, (u8 __user *)EA))
885 return -EFAULT;
886 break;
887 }
888 /* move EA to next address */
889 EA += 1;
890 num_bytes--;
891
892 /* manage our position within the register */
893 if (++pos == 4) {
894 pos = 0;
895 if (++rT == 32)
896 rT = 0;
897 }
898 }
899
900 return 0;
901 }
902
903 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
904 {
905 u32 ra,rs;
906 unsigned long tmp;
907
908 ra = (instword >> 16) & 0x1f;
909 rs = (instword >> 21) & 0x1f;
910
911 tmp = regs->gpr[rs];
912 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
913 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
914 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
915 regs->gpr[ra] = tmp;
916
917 return 0;
918 }
919
920 static int emulate_isel(struct pt_regs *regs, u32 instword)
921 {
922 u8 rT = (instword >> 21) & 0x1f;
923 u8 rA = (instword >> 16) & 0x1f;
924 u8 rB = (instword >> 11) & 0x1f;
925 u8 BC = (instword >> 6) & 0x1f;
926 u8 bit;
927 unsigned long tmp;
928
929 tmp = (rA == 0) ? 0 : regs->gpr[rA];
930 bit = (regs->ccr >> (31 - BC)) & 0x1;
931
932 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
933
934 return 0;
935 }
936
937 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
938 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
939 {
940 /* If we're emulating a load/store in an active transaction, we cannot
941 * emulate it as the kernel operates in transaction suspended context.
942 * We need to abort the transaction. This creates a persistent TM
943 * abort so tell the user what caused it with a new code.
944 */
945 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
946 tm_enable();
947 tm_abort(cause);
948 return true;
949 }
950 return false;
951 }
952 #else
953 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
954 {
955 return false;
956 }
957 #endif
958
959 static int emulate_instruction(struct pt_regs *regs)
960 {
961 u32 instword;
962 u32 rd;
963
964 if (!user_mode(regs))
965 return -EINVAL;
966 CHECK_FULL_REGS(regs);
967
968 if (get_user(instword, (u32 __user *)(regs->nip)))
969 return -EFAULT;
970
971 /* Emulate the mfspr rD, PVR. */
972 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
973 PPC_WARN_EMULATED(mfpvr, regs);
974 rd = (instword >> 21) & 0x1f;
975 regs->gpr[rd] = mfspr(SPRN_PVR);
976 return 0;
977 }
978
979 /* Emulating the dcba insn is just a no-op. */
980 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
981 PPC_WARN_EMULATED(dcba, regs);
982 return 0;
983 }
984
985 /* Emulate the mcrxr insn. */
986 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
987 int shift = (instword >> 21) & 0x1c;
988 unsigned long msk = 0xf0000000UL >> shift;
989
990 PPC_WARN_EMULATED(mcrxr, regs);
991 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
992 regs->xer &= ~0xf0000000UL;
993 return 0;
994 }
995
996 /* Emulate load/store string insn. */
997 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
998 if (tm_abort_check(regs,
999 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1000 return -EINVAL;
1001 PPC_WARN_EMULATED(string, regs);
1002 return emulate_string_inst(regs, instword);
1003 }
1004
1005 /* Emulate the popcntb (Population Count Bytes) instruction. */
1006 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1007 PPC_WARN_EMULATED(popcntb, regs);
1008 return emulate_popcntb_inst(regs, instword);
1009 }
1010
1011 /* Emulate isel (Integer Select) instruction */
1012 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1013 PPC_WARN_EMULATED(isel, regs);
1014 return emulate_isel(regs, instword);
1015 }
1016
1017 /* Emulate sync instruction variants */
1018 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1019 PPC_WARN_EMULATED(sync, regs);
1020 asm volatile("sync");
1021 return 0;
1022 }
1023
1024 #ifdef CONFIG_PPC64
1025 /* Emulate the mfspr rD, DSCR. */
1026 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1027 PPC_INST_MFSPR_DSCR_USER) ||
1028 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1029 PPC_INST_MFSPR_DSCR)) &&
1030 cpu_has_feature(CPU_FTR_DSCR)) {
1031 PPC_WARN_EMULATED(mfdscr, regs);
1032 rd = (instword >> 21) & 0x1f;
1033 regs->gpr[rd] = mfspr(SPRN_DSCR);
1034 return 0;
1035 }
1036 /* Emulate the mtspr DSCR, rD. */
1037 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1038 PPC_INST_MTSPR_DSCR_USER) ||
1039 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1040 PPC_INST_MTSPR_DSCR)) &&
1041 cpu_has_feature(CPU_FTR_DSCR)) {
1042 PPC_WARN_EMULATED(mtdscr, regs);
1043 rd = (instword >> 21) & 0x1f;
1044 current->thread.dscr = regs->gpr[rd];
1045 current->thread.dscr_inherit = 1;
1046 mtspr(SPRN_DSCR, current->thread.dscr);
1047 return 0;
1048 }
1049 #endif
1050
1051 return -EINVAL;
1052 }
1053
1054 int is_valid_bugaddr(unsigned long addr)
1055 {
1056 return is_kernel_addr(addr);
1057 }
1058
1059 #ifdef CONFIG_MATH_EMULATION
1060 static int emulate_math(struct pt_regs *regs)
1061 {
1062 int ret;
1063 extern int do_mathemu(struct pt_regs *regs);
1064
1065 ret = do_mathemu(regs);
1066 if (ret >= 0)
1067 PPC_WARN_EMULATED(math, regs);
1068
1069 switch (ret) {
1070 case 0:
1071 emulate_single_step(regs);
1072 return 0;
1073 case 1: {
1074 int code = 0;
1075 code = __parse_fpscr(current->thread.fp_state.fpscr);
1076 _exception(SIGFPE, regs, code, regs->nip);
1077 return 0;
1078 }
1079 case -EFAULT:
1080 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1081 return 0;
1082 }
1083
1084 return -1;
1085 }
1086 #else
1087 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1088 #endif
1089
1090 void program_check_exception(struct pt_regs *regs)
1091 {
1092 enum ctx_state prev_state = exception_enter();
1093 unsigned int reason = get_reason(regs);
1094
1095 /* We can now get here via a FP Unavailable exception if the core
1096 * has no FPU, in that case the reason flags will be 0 */
1097
1098 if (reason & REASON_FP) {
1099 /* IEEE FP exception */
1100 parse_fpe(regs);
1101 goto bail;
1102 }
1103 if (reason & REASON_TRAP) {
1104 unsigned long bugaddr;
1105 /* Debugger is first in line to stop recursive faults in
1106 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1107 if (debugger_bpt(regs))
1108 goto bail;
1109
1110 if (kprobe_handler(regs))
1111 goto bail;
1112
1113 /* trap exception */
1114 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1115 == NOTIFY_STOP)
1116 goto bail;
1117
1118 bugaddr = regs->nip;
1119 /*
1120 * Fixup bugaddr for BUG_ON() in real mode
1121 */
1122 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1123 bugaddr += PAGE_OFFSET;
1124
1125 if (!(regs->msr & MSR_PR) && /* not user-mode */
1126 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1127 regs->nip += 4;
1128 goto bail;
1129 }
1130 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1131 goto bail;
1132 }
1133 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1134 if (reason & REASON_TM) {
1135 /* This is a TM "Bad Thing Exception" program check.
1136 * This occurs when:
1137 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1138 * transition in TM states.
1139 * - A trechkpt is attempted when transactional.
1140 * - A treclaim is attempted when non transactional.
1141 * - A tend is illegally attempted.
1142 * - writing a TM SPR when transactional.
1143 */
1144 if (!user_mode(regs) &&
1145 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1146 regs->nip += 4;
1147 goto bail;
1148 }
1149 /* If usermode caused this, it's done something illegal and
1150 * gets a SIGILL slap on the wrist. We call it an illegal
1151 * operand to distinguish from the instruction just being bad
1152 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1153 * illegal /placement/ of a valid instruction.
1154 */
1155 if (user_mode(regs)) {
1156 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1157 goto bail;
1158 } else {
1159 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1160 "at %lx (msr 0x%x)\n", regs->nip, reason);
1161 die("Unrecoverable exception", regs, SIGABRT);
1162 }
1163 }
1164 #endif
1165
1166 /*
1167 * If we took the program check in the kernel skip down to sending a
1168 * SIGILL. The subsequent cases all relate to emulating instructions
1169 * which we should only do for userspace. We also do not want to enable
1170 * interrupts for kernel faults because that might lead to further
1171 * faults, and loose the context of the original exception.
1172 */
1173 if (!user_mode(regs))
1174 goto sigill;
1175
1176 /* We restore the interrupt state now */
1177 if (!arch_irq_disabled_regs(regs))
1178 local_irq_enable();
1179
1180 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1181 * but there seems to be a hardware bug on the 405GP (RevD)
1182 * that means ESR is sometimes set incorrectly - either to
1183 * ESR_DST (!?) or 0. In the process of chasing this with the
1184 * hardware people - not sure if it can happen on any illegal
1185 * instruction or only on FP instructions, whether there is a
1186 * pattern to occurrences etc. -dgibson 31/Mar/2003
1187 */
1188 if (!emulate_math(regs))
1189 goto bail;
1190
1191 /* Try to emulate it if we should. */
1192 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1193 switch (emulate_instruction(regs)) {
1194 case 0:
1195 regs->nip += 4;
1196 emulate_single_step(regs);
1197 goto bail;
1198 case -EFAULT:
1199 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1200 goto bail;
1201 }
1202 }
1203
1204 sigill:
1205 if (reason & REASON_PRIVILEGED)
1206 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1207 else
1208 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1209
1210 bail:
1211 exception_exit(prev_state);
1212 }
1213 NOKPROBE_SYMBOL(program_check_exception);
1214
1215 /*
1216 * This occurs when running in hypervisor mode on POWER6 or later
1217 * and an illegal instruction is encountered.
1218 */
1219 void emulation_assist_interrupt(struct pt_regs *regs)
1220 {
1221 regs->msr |= REASON_ILLEGAL;
1222 program_check_exception(regs);
1223 }
1224 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1225
1226 void alignment_exception(struct pt_regs *regs)
1227 {
1228 enum ctx_state prev_state = exception_enter();
1229 int sig, code, fixed = 0;
1230
1231 /* We restore the interrupt state now */
1232 if (!arch_irq_disabled_regs(regs))
1233 local_irq_enable();
1234
1235 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1236 goto bail;
1237
1238 /* we don't implement logging of alignment exceptions */
1239 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1240 fixed = fix_alignment(regs);
1241
1242 if (fixed == 1) {
1243 regs->nip += 4; /* skip over emulated instruction */
1244 emulate_single_step(regs);
1245 goto bail;
1246 }
1247
1248 /* Operand address was bad */
1249 if (fixed == -EFAULT) {
1250 sig = SIGSEGV;
1251 code = SEGV_ACCERR;
1252 } else {
1253 sig = SIGBUS;
1254 code = BUS_ADRALN;
1255 }
1256 if (user_mode(regs))
1257 _exception(sig, regs, code, regs->dar);
1258 else
1259 bad_page_fault(regs, regs->dar, sig);
1260
1261 bail:
1262 exception_exit(prev_state);
1263 }
1264
1265 void slb_miss_bad_addr(struct pt_regs *regs)
1266 {
1267 enum ctx_state prev_state = exception_enter();
1268
1269 if (user_mode(regs))
1270 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1271 else
1272 bad_page_fault(regs, regs->dar, SIGSEGV);
1273
1274 exception_exit(prev_state);
1275 }
1276
1277 void StackOverflow(struct pt_regs *regs)
1278 {
1279 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1280 current, regs->gpr[1]);
1281 debugger(regs);
1282 show_regs(regs);
1283 panic("kernel stack overflow");
1284 }
1285
1286 void nonrecoverable_exception(struct pt_regs *regs)
1287 {
1288 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1289 regs->nip, regs->msr);
1290 debugger(regs);
1291 die("nonrecoverable exception", regs, SIGKILL);
1292 }
1293
1294 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1295 {
1296 enum ctx_state prev_state = exception_enter();
1297
1298 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1299 "%lx at %lx\n", regs->trap, regs->nip);
1300 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1301
1302 exception_exit(prev_state);
1303 }
1304
1305 void altivec_unavailable_exception(struct pt_regs *regs)
1306 {
1307 enum ctx_state prev_state = exception_enter();
1308
1309 if (user_mode(regs)) {
1310 /* A user program has executed an altivec instruction,
1311 but this kernel doesn't support altivec. */
1312 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1313 goto bail;
1314 }
1315
1316 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1317 "%lx at %lx\n", regs->trap, regs->nip);
1318 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1319
1320 bail:
1321 exception_exit(prev_state);
1322 }
1323
1324 void vsx_unavailable_exception(struct pt_regs *regs)
1325 {
1326 if (user_mode(regs)) {
1327 /* A user program has executed an vsx instruction,
1328 but this kernel doesn't support vsx. */
1329 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1330 return;
1331 }
1332
1333 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1334 "%lx at %lx\n", regs->trap, regs->nip);
1335 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1336 }
1337
1338 #ifdef CONFIG_PPC64
1339 static void tm_unavailable(struct pt_regs *regs)
1340 {
1341 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1342 if (user_mode(regs)) {
1343 current->thread.load_tm++;
1344 regs->msr |= MSR_TM;
1345 tm_enable();
1346 tm_restore_sprs(&current->thread);
1347 return;
1348 }
1349 #endif
1350 pr_emerg("Unrecoverable TM Unavailable Exception "
1351 "%lx at %lx\n", regs->trap, regs->nip);
1352 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1353 }
1354
1355 void facility_unavailable_exception(struct pt_regs *regs)
1356 {
1357 static char *facility_strings[] = {
1358 [FSCR_FP_LG] = "FPU",
1359 [FSCR_VECVSX_LG] = "VMX/VSX",
1360 [FSCR_DSCR_LG] = "DSCR",
1361 [FSCR_PM_LG] = "PMU SPRs",
1362 [FSCR_BHRB_LG] = "BHRB",
1363 [FSCR_TM_LG] = "TM",
1364 [FSCR_EBB_LG] = "EBB",
1365 [FSCR_TAR_LG] = "TAR",
1366 [FSCR_MSGP_LG] = "MSGP",
1367 [FSCR_SCV_LG] = "SCV",
1368 };
1369 char *facility = "unknown";
1370 u64 value;
1371 u32 instword, rd;
1372 u8 status;
1373 bool hv;
1374
1375 hv = (regs->trap == 0xf80);
1376 if (hv)
1377 value = mfspr(SPRN_HFSCR);
1378 else
1379 value = mfspr(SPRN_FSCR);
1380
1381 status = value >> 56;
1382 if (status == FSCR_DSCR_LG) {
1383 /*
1384 * User is accessing the DSCR register using the problem
1385 * state only SPR number (0x03) either through a mfspr or
1386 * a mtspr instruction. If it is a write attempt through
1387 * a mtspr, then we set the inherit bit. This also allows
1388 * the user to write or read the register directly in the
1389 * future by setting via the FSCR DSCR bit. But in case it
1390 * is a read DSCR attempt through a mfspr instruction, we
1391 * just emulate the instruction instead. This code path will
1392 * always emulate all the mfspr instructions till the user
1393 * has attempted at least one mtspr instruction. This way it
1394 * preserves the same behaviour when the user is accessing
1395 * the DSCR through privilege level only SPR number (0x11)
1396 * which is emulated through illegal instruction exception.
1397 * We always leave HFSCR DSCR set.
1398 */
1399 if (get_user(instword, (u32 __user *)(regs->nip))) {
1400 pr_err("Failed to fetch the user instruction\n");
1401 return;
1402 }
1403
1404 /* Write into DSCR (mtspr 0x03, RS) */
1405 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1406 == PPC_INST_MTSPR_DSCR_USER) {
1407 rd = (instword >> 21) & 0x1f;
1408 current->thread.dscr = regs->gpr[rd];
1409 current->thread.dscr_inherit = 1;
1410 current->thread.fscr |= FSCR_DSCR;
1411 mtspr(SPRN_FSCR, current->thread.fscr);
1412 }
1413
1414 /* Read from DSCR (mfspr RT, 0x03) */
1415 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1416 == PPC_INST_MFSPR_DSCR_USER) {
1417 if (emulate_instruction(regs)) {
1418 pr_err("DSCR based mfspr emulation failed\n");
1419 return;
1420 }
1421 regs->nip += 4;
1422 emulate_single_step(regs);
1423 }
1424 return;
1425 }
1426
1427 if (status == FSCR_TM_LG) {
1428 /*
1429 * If we're here then the hardware is TM aware because it
1430 * generated an exception with FSRM_TM set.
1431 *
1432 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1433 * told us not to do TM, or the kernel is not built with TM
1434 * support.
1435 *
1436 * If both of those things are true, then userspace can spam the
1437 * console by triggering the printk() below just by continually
1438 * doing tbegin (or any TM instruction). So in that case just
1439 * send the process a SIGILL immediately.
1440 */
1441 if (!cpu_has_feature(CPU_FTR_TM))
1442 goto out;
1443
1444 tm_unavailable(regs);
1445 return;
1446 }
1447
1448 if ((hv || status >= 2) &&
1449 (status < ARRAY_SIZE(facility_strings)) &&
1450 facility_strings[status])
1451 facility = facility_strings[status];
1452
1453 /* We restore the interrupt state now */
1454 if (!arch_irq_disabled_regs(regs))
1455 local_irq_enable();
1456
1457 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1458 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1459
1460 out:
1461 if (user_mode(regs)) {
1462 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1463 return;
1464 }
1465
1466 die("Unexpected facility unavailable exception", regs, SIGABRT);
1467 }
1468 #endif
1469
1470 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1471
1472 void fp_unavailable_tm(struct pt_regs *regs)
1473 {
1474 /* Note: This does not handle any kind of FP laziness. */
1475
1476 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1477 regs->nip, regs->msr);
1478
1479 /* We can only have got here if the task started using FP after
1480 * beginning the transaction. So, the transactional regs are just a
1481 * copy of the checkpointed ones. But, we still need to recheckpoint
1482 * as we're enabling FP for the process; it will return, abort the
1483 * transaction, and probably retry but now with FP enabled. So the
1484 * checkpointed FP registers need to be loaded.
1485 */
1486 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1487 /* Reclaim didn't save out any FPRs to transact_fprs. */
1488
1489 /* Enable FP for the task: */
1490 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1491
1492 /* This loads and recheckpoints the FP registers from
1493 * thread.fpr[]. They will remain in registers after the
1494 * checkpoint so we don't need to reload them after.
1495 * If VMX is in use, the VRs now hold checkpointed values,
1496 * so we don't want to load the VRs from the thread_struct.
1497 */
1498 tm_recheckpoint(&current->thread, MSR_FP);
1499
1500 /* If VMX is in use, get the transactional values back */
1501 if (regs->msr & MSR_VEC) {
1502 msr_check_and_set(MSR_VEC);
1503 load_vr_state(&current->thread.vr_state);
1504 /* At this point all the VSX state is loaded, so enable it */
1505 regs->msr |= MSR_VSX;
1506 }
1507 }
1508
1509 void altivec_unavailable_tm(struct pt_regs *regs)
1510 {
1511 /* See the comments in fp_unavailable_tm(). This function operates
1512 * the same way.
1513 */
1514
1515 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1516 "MSR=%lx\n",
1517 regs->nip, regs->msr);
1518 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1519 regs->msr |= MSR_VEC;
1520 tm_recheckpoint(&current->thread, MSR_VEC);
1521 current->thread.used_vr = 1;
1522
1523 if (regs->msr & MSR_FP) {
1524 msr_check_and_set(MSR_FP);
1525 load_fp_state(&current->thread.fp_state);
1526 regs->msr |= MSR_VSX;
1527 }
1528 }
1529
1530 void vsx_unavailable_tm(struct pt_regs *regs)
1531 {
1532 unsigned long orig_msr = regs->msr;
1533
1534 /* See the comments in fp_unavailable_tm(). This works similarly,
1535 * though we're loading both FP and VEC registers in here.
1536 *
1537 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1538 * regs. Either way, set MSR_VSX.
1539 */
1540
1541 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1542 "MSR=%lx\n",
1543 regs->nip, regs->msr);
1544
1545 current->thread.used_vsr = 1;
1546
1547 /* If FP and VMX are already loaded, we have all the state we need */
1548 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1549 regs->msr |= MSR_VSX;
1550 return;
1551 }
1552
1553 /* This reclaims FP and/or VR regs if they're already enabled */
1554 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1555
1556 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1557 MSR_VSX;
1558
1559 /* This loads & recheckpoints FP and VRs; but we have
1560 * to be sure not to overwrite previously-valid state.
1561 */
1562 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1563
1564 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1565
1566 if (orig_msr & MSR_FP)
1567 load_fp_state(&current->thread.fp_state);
1568 if (orig_msr & MSR_VEC)
1569 load_vr_state(&current->thread.vr_state);
1570 }
1571 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1572
1573 void performance_monitor_exception(struct pt_regs *regs)
1574 {
1575 __this_cpu_inc(irq_stat.pmu_irqs);
1576
1577 perf_irq(regs);
1578 }
1579
1580 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1581 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1582 {
1583 int changed = 0;
1584 /*
1585 * Determine the cause of the debug event, clear the
1586 * event flags and send a trap to the handler. Torez
1587 */
1588 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1589 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1590 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1591 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1592 #endif
1593 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1594 5);
1595 changed |= 0x01;
1596 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1597 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1598 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1599 6);
1600 changed |= 0x01;
1601 } else if (debug_status & DBSR_IAC1) {
1602 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1603 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1604 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1605 1);
1606 changed |= 0x01;
1607 } else if (debug_status & DBSR_IAC2) {
1608 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1609 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1610 2);
1611 changed |= 0x01;
1612 } else if (debug_status & DBSR_IAC3) {
1613 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1614 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1615 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1616 3);
1617 changed |= 0x01;
1618 } else if (debug_status & DBSR_IAC4) {
1619 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1620 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1621 4);
1622 changed |= 0x01;
1623 }
1624 /*
1625 * At the point this routine was called, the MSR(DE) was turned off.
1626 * Check all other debug flags and see if that bit needs to be turned
1627 * back on or not.
1628 */
1629 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1630 current->thread.debug.dbcr1))
1631 regs->msr |= MSR_DE;
1632 else
1633 /* Make sure the IDM flag is off */
1634 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1635
1636 if (changed & 0x01)
1637 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1638 }
1639
1640 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1641 {
1642 current->thread.debug.dbsr = debug_status;
1643
1644 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1645 * on server, it stops on the target of the branch. In order to simulate
1646 * the server behaviour, we thus restart right away with a single step
1647 * instead of stopping here when hitting a BT
1648 */
1649 if (debug_status & DBSR_BT) {
1650 regs->msr &= ~MSR_DE;
1651
1652 /* Disable BT */
1653 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1654 /* Clear the BT event */
1655 mtspr(SPRN_DBSR, DBSR_BT);
1656
1657 /* Do the single step trick only when coming from userspace */
1658 if (user_mode(regs)) {
1659 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1660 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1661 regs->msr |= MSR_DE;
1662 return;
1663 }
1664
1665 if (kprobe_post_handler(regs))
1666 return;
1667
1668 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1669 5, SIGTRAP) == NOTIFY_STOP) {
1670 return;
1671 }
1672 if (debugger_sstep(regs))
1673 return;
1674 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1675 regs->msr &= ~MSR_DE;
1676
1677 /* Disable instruction completion */
1678 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1679 /* Clear the instruction completion event */
1680 mtspr(SPRN_DBSR, DBSR_IC);
1681
1682 if (kprobe_post_handler(regs))
1683 return;
1684
1685 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1686 5, SIGTRAP) == NOTIFY_STOP) {
1687 return;
1688 }
1689
1690 if (debugger_sstep(regs))
1691 return;
1692
1693 if (user_mode(regs)) {
1694 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1695 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1696 current->thread.debug.dbcr1))
1697 regs->msr |= MSR_DE;
1698 else
1699 /* Make sure the IDM bit is off */
1700 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1701 }
1702
1703 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1704 } else
1705 handle_debug(regs, debug_status);
1706 }
1707 NOKPROBE_SYMBOL(DebugException);
1708 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1709
1710 #if !defined(CONFIG_TAU_INT)
1711 void TAUException(struct pt_regs *regs)
1712 {
1713 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1714 regs->nip, regs->msr, regs->trap, print_tainted());
1715 }
1716 #endif /* CONFIG_INT_TAU */
1717
1718 #ifdef CONFIG_ALTIVEC
1719 void altivec_assist_exception(struct pt_regs *regs)
1720 {
1721 int err;
1722
1723 if (!user_mode(regs)) {
1724 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1725 " at %lx\n", regs->nip);
1726 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1727 }
1728
1729 flush_altivec_to_thread(current);
1730
1731 PPC_WARN_EMULATED(altivec, regs);
1732 err = emulate_altivec(regs);
1733 if (err == 0) {
1734 regs->nip += 4; /* skip emulated instruction */
1735 emulate_single_step(regs);
1736 return;
1737 }
1738
1739 if (err == -EFAULT) {
1740 /* got an error reading the instruction */
1741 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1742 } else {
1743 /* didn't recognize the instruction */
1744 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1745 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1746 "in %s at %lx\n", current->comm, regs->nip);
1747 current->thread.vr_state.vscr.u[3] |= 0x10000;
1748 }
1749 }
1750 #endif /* CONFIG_ALTIVEC */
1751
1752 #ifdef CONFIG_FSL_BOOKE
1753 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1754 unsigned long error_code)
1755 {
1756 /* We treat cache locking instructions from the user
1757 * as priv ops, in the future we could try to do
1758 * something smarter
1759 */
1760 if (error_code & (ESR_DLK|ESR_ILK))
1761 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1762 return;
1763 }
1764 #endif /* CONFIG_FSL_BOOKE */
1765
1766 #ifdef CONFIG_SPE
1767 void SPEFloatingPointException(struct pt_regs *regs)
1768 {
1769 extern int do_spe_mathemu(struct pt_regs *regs);
1770 unsigned long spefscr;
1771 int fpexc_mode;
1772 int code = 0;
1773 int err;
1774
1775 flush_spe_to_thread(current);
1776
1777 spefscr = current->thread.spefscr;
1778 fpexc_mode = current->thread.fpexc_mode;
1779
1780 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1781 code = FPE_FLTOVF;
1782 }
1783 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1784 code = FPE_FLTUND;
1785 }
1786 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1787 code = FPE_FLTDIV;
1788 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1789 code = FPE_FLTINV;
1790 }
1791 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1792 code = FPE_FLTRES;
1793
1794 err = do_spe_mathemu(regs);
1795 if (err == 0) {
1796 regs->nip += 4; /* skip emulated instruction */
1797 emulate_single_step(regs);
1798 return;
1799 }
1800
1801 if (err == -EFAULT) {
1802 /* got an error reading the instruction */
1803 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1804 } else if (err == -EINVAL) {
1805 /* didn't recognize the instruction */
1806 printk(KERN_ERR "unrecognized spe instruction "
1807 "in %s at %lx\n", current->comm, regs->nip);
1808 } else {
1809 _exception(SIGFPE, regs, code, regs->nip);
1810 }
1811
1812 return;
1813 }
1814
1815 void SPEFloatingPointRoundException(struct pt_regs *regs)
1816 {
1817 extern int speround_handler(struct pt_regs *regs);
1818 int err;
1819
1820 preempt_disable();
1821 if (regs->msr & MSR_SPE)
1822 giveup_spe(current);
1823 preempt_enable();
1824
1825 regs->nip -= 4;
1826 err = speround_handler(regs);
1827 if (err == 0) {
1828 regs->nip += 4; /* skip emulated instruction */
1829 emulate_single_step(regs);
1830 return;
1831 }
1832
1833 if (err == -EFAULT) {
1834 /* got an error reading the instruction */
1835 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1836 } else if (err == -EINVAL) {
1837 /* didn't recognize the instruction */
1838 printk(KERN_ERR "unrecognized spe instruction "
1839 "in %s at %lx\n", current->comm, regs->nip);
1840 } else {
1841 _exception(SIGFPE, regs, 0, regs->nip);
1842 return;
1843 }
1844 }
1845 #endif
1846
1847 /*
1848 * We enter here if we get an unrecoverable exception, that is, one
1849 * that happened at a point where the RI (recoverable interrupt) bit
1850 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1851 * we therefore lost state by taking this exception.
1852 */
1853 void unrecoverable_exception(struct pt_regs *regs)
1854 {
1855 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1856 regs->trap, regs->nip);
1857 die("Unrecoverable exception", regs, SIGABRT);
1858 }
1859 NOKPROBE_SYMBOL(unrecoverable_exception);
1860
1861 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1862 /*
1863 * Default handler for a Watchdog exception,
1864 * spins until a reboot occurs
1865 */
1866 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1867 {
1868 /* Generic WatchdogHandler, implement your own */
1869 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1870 return;
1871 }
1872
1873 void WatchdogException(struct pt_regs *regs)
1874 {
1875 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1876 WatchdogHandler(regs);
1877 }
1878 #endif
1879
1880 /*
1881 * We enter here if we discover during exception entry that we are
1882 * running in supervisor mode with a userspace value in the stack pointer.
1883 */
1884 void kernel_bad_stack(struct pt_regs *regs)
1885 {
1886 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1887 regs->gpr[1], regs->nip);
1888 die("Bad kernel stack pointer", regs, SIGABRT);
1889 }
1890 NOKPROBE_SYMBOL(kernel_bad_stack);
1891
1892 void __init trap_init(void)
1893 {
1894 }
1895
1896
1897 #ifdef CONFIG_PPC_EMULATED_STATS
1898
1899 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1900
1901 struct ppc_emulated ppc_emulated = {
1902 #ifdef CONFIG_ALTIVEC
1903 WARN_EMULATED_SETUP(altivec),
1904 #endif
1905 WARN_EMULATED_SETUP(dcba),
1906 WARN_EMULATED_SETUP(dcbz),
1907 WARN_EMULATED_SETUP(fp_pair),
1908 WARN_EMULATED_SETUP(isel),
1909 WARN_EMULATED_SETUP(mcrxr),
1910 WARN_EMULATED_SETUP(mfpvr),
1911 WARN_EMULATED_SETUP(multiple),
1912 WARN_EMULATED_SETUP(popcntb),
1913 WARN_EMULATED_SETUP(spe),
1914 WARN_EMULATED_SETUP(string),
1915 WARN_EMULATED_SETUP(sync),
1916 WARN_EMULATED_SETUP(unaligned),
1917 #ifdef CONFIG_MATH_EMULATION
1918 WARN_EMULATED_SETUP(math),
1919 #endif
1920 #ifdef CONFIG_VSX
1921 WARN_EMULATED_SETUP(vsx),
1922 #endif
1923 #ifdef CONFIG_PPC64
1924 WARN_EMULATED_SETUP(mfdscr),
1925 WARN_EMULATED_SETUP(mtdscr),
1926 WARN_EMULATED_SETUP(lq_stq),
1927 #endif
1928 };
1929
1930 u32 ppc_warn_emulated;
1931
1932 void ppc_warn_emulated_print(const char *type)
1933 {
1934 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1935 type);
1936 }
1937
1938 static int __init ppc_warn_emulated_init(void)
1939 {
1940 struct dentry *dir, *d;
1941 unsigned int i;
1942 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1943
1944 if (!powerpc_debugfs_root)
1945 return -ENODEV;
1946
1947 dir = debugfs_create_dir("emulated_instructions",
1948 powerpc_debugfs_root);
1949 if (!dir)
1950 return -ENOMEM;
1951
1952 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1953 &ppc_warn_emulated);
1954 if (!d)
1955 goto fail;
1956
1957 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1958 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1959 (u32 *)&entries[i].val.counter);
1960 if (!d)
1961 goto fail;
1962 }
1963
1964 return 0;
1965
1966 fail:
1967 debugfs_remove_recursive(dir);
1968 return -ENOMEM;
1969 }
1970
1971 device_initcall(ppc_warn_emulated_init);
1972
1973 #endif /* CONFIG_PPC_EMULATED_STATS */