]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/kernel/traps.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89
90 /*
91 * Trap & Exception support
92 */
93
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 mutex_lock(&pmac_backlight_mutex);
98 if (pmac_backlight) {
99 struct backlight_properties *props;
100
101 props = &pmac_backlight->props;
102 props->brightness = props->max_brightness;
103 props->power = FB_BLANK_UNBLANK;
104 backlight_update_status(pmac_backlight);
105 }
106 mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 int cpu;
120 unsigned long flags;
121
122 if (debugger(regs))
123 return 1;
124
125 oops_enter();
126
127 /* racy, but better than risking deadlock. */
128 raw_local_irq_save(flags);
129 cpu = smp_processor_id();
130 if (!arch_spin_trylock(&die_lock)) {
131 if (cpu == die_owner)
132 /* nested oops. should stop eventually */;
133 else
134 arch_spin_lock(&die_lock);
135 }
136 die_nest_count++;
137 die_owner = cpu;
138 console_verbose();
139 bust_spinlocks(1);
140 if (machine_is(powermac))
141 pmac_backlight_unblank();
142 return flags;
143 }
144
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 int signr)
147 {
148 bust_spinlocks(0);
149 die_owner = -1;
150 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 die_nest_count--;
152 oops_exit();
153 printk("\n");
154 if (!die_nest_count)
155 /* Nest count reaches zero, release the lock. */
156 arch_spin_unlock(&die_lock);
157 raw_local_irq_restore(flags);
158
159 crash_fadump(regs, "die oops");
160
161 /*
162 * A system reset (0x100) is a request to dump, so we always send
163 * it through the crashdump code.
164 */
165 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 crash_kexec(regs);
167
168 /*
169 * We aren't the primary crash CPU. We need to send it
170 * to a holding pattern to avoid it ending up in the panic
171 * code.
172 */
173 crash_kexec_secondary(regs);
174 }
175
176 if (!signr)
177 return;
178
179 /*
180 * While our oops output is serialised by a spinlock, output
181 * from panic() called below can race and corrupt it. If we
182 * know we are going to panic, delay for 1 second so we have a
183 * chance to get clean backtraces from all CPUs that are oopsing.
184 */
185 if (in_interrupt() || panic_on_oops || !current->pid ||
186 is_global_init(current)) {
187 mdelay(MSEC_PER_SEC);
188 }
189
190 if (in_interrupt())
191 panic("Fatal exception in interrupt");
192 if (panic_on_oops)
193 panic("Fatal exception");
194 do_exit(signr);
195 }
196
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 #ifdef CONFIG_DEBUG_PAGEALLOC
207 printk("DEBUG_PAGEALLOC ");
208 #endif
209 #ifdef CONFIG_NUMA
210 printk("NUMA ");
211 #endif
212 printk("%s\n", ppc_md.name ? ppc_md.name : "");
213
214 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
215 return 1;
216
217 print_modules();
218 show_regs(regs);
219
220 return 0;
221 }
222
223 void die(const char *str, struct pt_regs *regs, long err)
224 {
225 unsigned long flags = oops_begin(regs);
226
227 if (__die(str, regs, err))
228 err = 0;
229 oops_end(flags, regs, err);
230 }
231
232 void user_single_step_siginfo(struct task_struct *tsk,
233 struct pt_regs *regs, siginfo_t *info)
234 {
235 memset(info, 0, sizeof(*info));
236 info->si_signo = SIGTRAP;
237 info->si_code = TRAP_TRACE;
238 info->si_addr = (void __user *)regs->nip;
239 }
240
241 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
242 {
243 siginfo_t info;
244 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
245 "at %08lx nip %08lx lr %08lx code %x\n";
246 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
247 "at %016lx nip %016lx lr %016lx code %x\n";
248
249 if (!user_mode(regs)) {
250 die("Exception in kernel mode", regs, signr);
251 return;
252 }
253
254 if (show_unhandled_signals && unhandled_signal(current, signr)) {
255 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
256 current->comm, current->pid, signr,
257 addr, regs->nip, regs->link, code);
258 }
259
260 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
261 local_irq_enable();
262
263 current->thread.trap_nr = code;
264 memset(&info, 0, sizeof(info));
265 info.si_signo = signr;
266 info.si_code = code;
267 info.si_addr = (void __user *) addr;
268 force_sig_info(signr, &info, current);
269 }
270
271 #ifdef CONFIG_PPC64
272 void system_reset_exception(struct pt_regs *regs)
273 {
274 /* See if any machine dependent calls */
275 if (ppc_md.system_reset_exception) {
276 if (ppc_md.system_reset_exception(regs))
277 return;
278 }
279
280 die("System Reset", regs, SIGABRT);
281
282 /* Must die if the interrupt is not recoverable */
283 if (!(regs->msr & MSR_RI))
284 panic("Unrecoverable System Reset");
285
286 /* What should we do here? We could issue a shutdown or hard reset. */
287 }
288
289 /*
290 * This function is called in real mode. Strictly no printk's please.
291 *
292 * regs->nip and regs->msr contains srr0 and ssr1.
293 */
294 long machine_check_early(struct pt_regs *regs)
295 {
296 long handled = 0;
297
298 __this_cpu_inc(irq_stat.mce_exceptions);
299
300 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
301 handled = cur_cpu_spec->machine_check_early(regs);
302 return handled;
303 }
304
305 long hmi_exception_realmode(struct pt_regs *regs)
306 {
307 __this_cpu_inc(irq_stat.hmi_exceptions);
308
309 if (ppc_md.hmi_exception_early)
310 ppc_md.hmi_exception_early(regs);
311
312 return 0;
313 }
314
315 #endif
316
317 /*
318 * I/O accesses can cause machine checks on powermacs.
319 * Check if the NIP corresponds to the address of a sync
320 * instruction for which there is an entry in the exception
321 * table.
322 * Note that the 601 only takes a machine check on TEA
323 * (transfer error ack) signal assertion, and does not
324 * set any of the top 16 bits of SRR1.
325 * -- paulus.
326 */
327 static inline int check_io_access(struct pt_regs *regs)
328 {
329 #ifdef CONFIG_PPC32
330 unsigned long msr = regs->msr;
331 const struct exception_table_entry *entry;
332 unsigned int *nip = (unsigned int *)regs->nip;
333
334 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
335 && (entry = search_exception_tables(regs->nip)) != NULL) {
336 /*
337 * Check that it's a sync instruction, or somewhere
338 * in the twi; isync; nop sequence that inb/inw/inl uses.
339 * As the address is in the exception table
340 * we should be able to read the instr there.
341 * For the debug message, we look at the preceding
342 * load or store.
343 */
344 if (*nip == 0x60000000) /* nop */
345 nip -= 2;
346 else if (*nip == 0x4c00012c) /* isync */
347 --nip;
348 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
349 /* sync or twi */
350 unsigned int rb;
351
352 --nip;
353 rb = (*nip >> 11) & 0x1f;
354 printk(KERN_DEBUG "%s bad port %lx at %p\n",
355 (*nip & 0x100)? "OUT to": "IN from",
356 regs->gpr[rb] - _IO_BASE, nip);
357 regs->msr |= MSR_RI;
358 regs->nip = entry->fixup;
359 return 1;
360 }
361 }
362 #endif /* CONFIG_PPC32 */
363 return 0;
364 }
365
366 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
367 /* On 4xx, the reason for the machine check or program exception
368 is in the ESR. */
369 #define get_reason(regs) ((regs)->dsisr)
370 #ifndef CONFIG_FSL_BOOKE
371 #define get_mc_reason(regs) ((regs)->dsisr)
372 #else
373 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
374 #endif
375 #define REASON_FP ESR_FP
376 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
377 #define REASON_PRIVILEGED ESR_PPR
378 #define REASON_TRAP ESR_PTR
379
380 /* single-step stuff */
381 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
382 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
383
384 #else
385 /* On non-4xx, the reason for the machine check or program
386 exception is in the MSR. */
387 #define get_reason(regs) ((regs)->msr)
388 #define get_mc_reason(regs) ((regs)->msr)
389 #define REASON_TM 0x200000
390 #define REASON_FP 0x100000
391 #define REASON_ILLEGAL 0x80000
392 #define REASON_PRIVILEGED 0x40000
393 #define REASON_TRAP 0x20000
394
395 #define single_stepping(regs) ((regs)->msr & MSR_SE)
396 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
397 #endif
398
399 #if defined(CONFIG_4xx)
400 int machine_check_4xx(struct pt_regs *regs)
401 {
402 unsigned long reason = get_mc_reason(regs);
403
404 if (reason & ESR_IMCP) {
405 printk("Instruction");
406 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
407 } else
408 printk("Data");
409 printk(" machine check in kernel mode.\n");
410
411 return 0;
412 }
413
414 int machine_check_440A(struct pt_regs *regs)
415 {
416 unsigned long reason = get_mc_reason(regs);
417
418 printk("Machine check in kernel mode.\n");
419 if (reason & ESR_IMCP){
420 printk("Instruction Synchronous Machine Check exception\n");
421 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
422 }
423 else {
424 u32 mcsr = mfspr(SPRN_MCSR);
425 if (mcsr & MCSR_IB)
426 printk("Instruction Read PLB Error\n");
427 if (mcsr & MCSR_DRB)
428 printk("Data Read PLB Error\n");
429 if (mcsr & MCSR_DWB)
430 printk("Data Write PLB Error\n");
431 if (mcsr & MCSR_TLBP)
432 printk("TLB Parity Error\n");
433 if (mcsr & MCSR_ICP){
434 flush_instruction_cache();
435 printk("I-Cache Parity Error\n");
436 }
437 if (mcsr & MCSR_DCSP)
438 printk("D-Cache Search Parity Error\n");
439 if (mcsr & MCSR_DCFP)
440 printk("D-Cache Flush Parity Error\n");
441 if (mcsr & MCSR_IMPE)
442 printk("Machine Check exception is imprecise\n");
443
444 /* Clear MCSR */
445 mtspr(SPRN_MCSR, mcsr);
446 }
447 return 0;
448 }
449
450 int machine_check_47x(struct pt_regs *regs)
451 {
452 unsigned long reason = get_mc_reason(regs);
453 u32 mcsr;
454
455 printk(KERN_ERR "Machine check in kernel mode.\n");
456 if (reason & ESR_IMCP) {
457 printk(KERN_ERR
458 "Instruction Synchronous Machine Check exception\n");
459 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
460 return 0;
461 }
462 mcsr = mfspr(SPRN_MCSR);
463 if (mcsr & MCSR_IB)
464 printk(KERN_ERR "Instruction Read PLB Error\n");
465 if (mcsr & MCSR_DRB)
466 printk(KERN_ERR "Data Read PLB Error\n");
467 if (mcsr & MCSR_DWB)
468 printk(KERN_ERR "Data Write PLB Error\n");
469 if (mcsr & MCSR_TLBP)
470 printk(KERN_ERR "TLB Parity Error\n");
471 if (mcsr & MCSR_ICP) {
472 flush_instruction_cache();
473 printk(KERN_ERR "I-Cache Parity Error\n");
474 }
475 if (mcsr & MCSR_DCSP)
476 printk(KERN_ERR "D-Cache Search Parity Error\n");
477 if (mcsr & PPC47x_MCSR_GPR)
478 printk(KERN_ERR "GPR Parity Error\n");
479 if (mcsr & PPC47x_MCSR_FPR)
480 printk(KERN_ERR "FPR Parity Error\n");
481 if (mcsr & PPC47x_MCSR_IPR)
482 printk(KERN_ERR "Machine Check exception is imprecise\n");
483
484 /* Clear MCSR */
485 mtspr(SPRN_MCSR, mcsr);
486
487 return 0;
488 }
489 #elif defined(CONFIG_E500)
490 int machine_check_e500mc(struct pt_regs *regs)
491 {
492 unsigned long mcsr = mfspr(SPRN_MCSR);
493 unsigned long reason = mcsr;
494 int recoverable = 1;
495
496 if (reason & MCSR_LD) {
497 recoverable = fsl_rio_mcheck_exception(regs);
498 if (recoverable == 1)
499 goto silent_out;
500 }
501
502 printk("Machine check in kernel mode.\n");
503 printk("Caused by (from MCSR=%lx): ", reason);
504
505 if (reason & MCSR_MCP)
506 printk("Machine Check Signal\n");
507
508 if (reason & MCSR_ICPERR) {
509 printk("Instruction Cache Parity Error\n");
510
511 /*
512 * This is recoverable by invalidating the i-cache.
513 */
514 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
515 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
516 ;
517
518 /*
519 * This will generally be accompanied by an instruction
520 * fetch error report -- only treat MCSR_IF as fatal
521 * if it wasn't due to an L1 parity error.
522 */
523 reason &= ~MCSR_IF;
524 }
525
526 if (reason & MCSR_DCPERR_MC) {
527 printk("Data Cache Parity Error\n");
528
529 /*
530 * In write shadow mode we auto-recover from the error, but it
531 * may still get logged and cause a machine check. We should
532 * only treat the non-write shadow case as non-recoverable.
533 */
534 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
535 recoverable = 0;
536 }
537
538 if (reason & MCSR_L2MMU_MHIT) {
539 printk("Hit on multiple TLB entries\n");
540 recoverable = 0;
541 }
542
543 if (reason & MCSR_NMI)
544 printk("Non-maskable interrupt\n");
545
546 if (reason & MCSR_IF) {
547 printk("Instruction Fetch Error Report\n");
548 recoverable = 0;
549 }
550
551 if (reason & MCSR_LD) {
552 printk("Load Error Report\n");
553 recoverable = 0;
554 }
555
556 if (reason & MCSR_ST) {
557 printk("Store Error Report\n");
558 recoverable = 0;
559 }
560
561 if (reason & MCSR_LDG) {
562 printk("Guarded Load Error Report\n");
563 recoverable = 0;
564 }
565
566 if (reason & MCSR_TLBSYNC)
567 printk("Simultaneous tlbsync operations\n");
568
569 if (reason & MCSR_BSL2_ERR) {
570 printk("Level 2 Cache Error\n");
571 recoverable = 0;
572 }
573
574 if (reason & MCSR_MAV) {
575 u64 addr;
576
577 addr = mfspr(SPRN_MCAR);
578 addr |= (u64)mfspr(SPRN_MCARU) << 32;
579
580 printk("Machine Check %s Address: %#llx\n",
581 reason & MCSR_MEA ? "Effective" : "Physical", addr);
582 }
583
584 silent_out:
585 mtspr(SPRN_MCSR, mcsr);
586 return mfspr(SPRN_MCSR) == 0 && recoverable;
587 }
588
589 int machine_check_e500(struct pt_regs *regs)
590 {
591 unsigned long reason = get_mc_reason(regs);
592
593 if (reason & MCSR_BUS_RBERR) {
594 if (fsl_rio_mcheck_exception(regs))
595 return 1;
596 if (fsl_pci_mcheck_exception(regs))
597 return 1;
598 }
599
600 printk("Machine check in kernel mode.\n");
601 printk("Caused by (from MCSR=%lx): ", reason);
602
603 if (reason & MCSR_MCP)
604 printk("Machine Check Signal\n");
605 if (reason & MCSR_ICPERR)
606 printk("Instruction Cache Parity Error\n");
607 if (reason & MCSR_DCP_PERR)
608 printk("Data Cache Push Parity Error\n");
609 if (reason & MCSR_DCPERR)
610 printk("Data Cache Parity Error\n");
611 if (reason & MCSR_BUS_IAERR)
612 printk("Bus - Instruction Address Error\n");
613 if (reason & MCSR_BUS_RAERR)
614 printk("Bus - Read Address Error\n");
615 if (reason & MCSR_BUS_WAERR)
616 printk("Bus - Write Address Error\n");
617 if (reason & MCSR_BUS_IBERR)
618 printk("Bus - Instruction Data Error\n");
619 if (reason & MCSR_BUS_RBERR)
620 printk("Bus - Read Data Bus Error\n");
621 if (reason & MCSR_BUS_WBERR)
622 printk("Bus - Write Data Bus Error\n");
623 if (reason & MCSR_BUS_IPERR)
624 printk("Bus - Instruction Parity Error\n");
625 if (reason & MCSR_BUS_RPERR)
626 printk("Bus - Read Parity Error\n");
627
628 return 0;
629 }
630
631 int machine_check_generic(struct pt_regs *regs)
632 {
633 return 0;
634 }
635 #elif defined(CONFIG_E200)
636 int machine_check_e200(struct pt_regs *regs)
637 {
638 unsigned long reason = get_mc_reason(regs);
639
640 printk("Machine check in kernel mode.\n");
641 printk("Caused by (from MCSR=%lx): ", reason);
642
643 if (reason & MCSR_MCP)
644 printk("Machine Check Signal\n");
645 if (reason & MCSR_CP_PERR)
646 printk("Cache Push Parity Error\n");
647 if (reason & MCSR_CPERR)
648 printk("Cache Parity Error\n");
649 if (reason & MCSR_EXCP_ERR)
650 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
651 if (reason & MCSR_BUS_IRERR)
652 printk("Bus - Read Bus Error on instruction fetch\n");
653 if (reason & MCSR_BUS_DRERR)
654 printk("Bus - Read Bus Error on data load\n");
655 if (reason & MCSR_BUS_WRERR)
656 printk("Bus - Write Bus Error on buffered store or cache line push\n");
657
658 return 0;
659 }
660 #else
661 int machine_check_generic(struct pt_regs *regs)
662 {
663 unsigned long reason = get_mc_reason(regs);
664
665 printk("Machine check in kernel mode.\n");
666 printk("Caused by (from SRR1=%lx): ", reason);
667 switch (reason & 0x601F0000) {
668 case 0x80000:
669 printk("Machine check signal\n");
670 break;
671 case 0: /* for 601 */
672 case 0x40000:
673 case 0x140000: /* 7450 MSS error and TEA */
674 printk("Transfer error ack signal\n");
675 break;
676 case 0x20000:
677 printk("Data parity error signal\n");
678 break;
679 case 0x10000:
680 printk("Address parity error signal\n");
681 break;
682 case 0x20000000:
683 printk("L1 Data Cache error\n");
684 break;
685 case 0x40000000:
686 printk("L1 Instruction Cache error\n");
687 break;
688 case 0x00100000:
689 printk("L2 data cache parity error\n");
690 break;
691 default:
692 printk("Unknown values in msr\n");
693 }
694 return 0;
695 }
696 #endif /* everything else */
697
698 void machine_check_exception(struct pt_regs *regs)
699 {
700 enum ctx_state prev_state = exception_enter();
701 int recover = 0;
702
703 __this_cpu_inc(irq_stat.mce_exceptions);
704
705 /* See if any machine dependent calls. In theory, we would want
706 * to call the CPU first, and call the ppc_md. one if the CPU
707 * one returns a positive number. However there is existing code
708 * that assumes the board gets a first chance, so let's keep it
709 * that way for now and fix things later. --BenH.
710 */
711 if (ppc_md.machine_check_exception)
712 recover = ppc_md.machine_check_exception(regs);
713 else if (cur_cpu_spec->machine_check)
714 recover = cur_cpu_spec->machine_check(regs);
715
716 if (recover > 0)
717 goto bail;
718
719 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
720 /* the qspan pci read routines can cause machine checks -- Cort
721 *
722 * yuck !!! that totally needs to go away ! There are better ways
723 * to deal with that than having a wart in the mcheck handler.
724 * -- BenH
725 */
726 bad_page_fault(regs, regs->dar, SIGBUS);
727 goto bail;
728 #endif
729
730 if (debugger_fault_handler(regs))
731 goto bail;
732
733 if (check_io_access(regs))
734 goto bail;
735
736 die("Machine check", regs, SIGBUS);
737
738 /* Must die if the interrupt is not recoverable */
739 if (!(regs->msr & MSR_RI))
740 panic("Unrecoverable Machine check");
741
742 bail:
743 exception_exit(prev_state);
744 }
745
746 void SMIException(struct pt_regs *regs)
747 {
748 die("System Management Interrupt", regs, SIGABRT);
749 }
750
751 void handle_hmi_exception(struct pt_regs *regs)
752 {
753 struct pt_regs *old_regs;
754
755 old_regs = set_irq_regs(regs);
756 irq_enter();
757
758 if (ppc_md.handle_hmi_exception)
759 ppc_md.handle_hmi_exception(regs);
760
761 irq_exit();
762 set_irq_regs(old_regs);
763 }
764
765 void unknown_exception(struct pt_regs *regs)
766 {
767 enum ctx_state prev_state = exception_enter();
768
769 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
770 regs->nip, regs->msr, regs->trap);
771
772 _exception(SIGTRAP, regs, 0, 0);
773
774 exception_exit(prev_state);
775 }
776
777 void instruction_breakpoint_exception(struct pt_regs *regs)
778 {
779 enum ctx_state prev_state = exception_enter();
780
781 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
782 5, SIGTRAP) == NOTIFY_STOP)
783 goto bail;
784 if (debugger_iabr_match(regs))
785 goto bail;
786 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
787
788 bail:
789 exception_exit(prev_state);
790 }
791
792 void RunModeException(struct pt_regs *regs)
793 {
794 _exception(SIGTRAP, regs, 0, 0);
795 }
796
797 void __kprobes single_step_exception(struct pt_regs *regs)
798 {
799 enum ctx_state prev_state = exception_enter();
800
801 clear_single_step(regs);
802
803 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
804 5, SIGTRAP) == NOTIFY_STOP)
805 goto bail;
806 if (debugger_sstep(regs))
807 goto bail;
808
809 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
810
811 bail:
812 exception_exit(prev_state);
813 }
814
815 /*
816 * After we have successfully emulated an instruction, we have to
817 * check if the instruction was being single-stepped, and if so,
818 * pretend we got a single-step exception. This was pointed out
819 * by Kumar Gala. -- paulus
820 */
821 static void emulate_single_step(struct pt_regs *regs)
822 {
823 if (single_stepping(regs))
824 single_step_exception(regs);
825 }
826
827 static inline int __parse_fpscr(unsigned long fpscr)
828 {
829 int ret = 0;
830
831 /* Invalid operation */
832 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
833 ret = FPE_FLTINV;
834
835 /* Overflow */
836 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
837 ret = FPE_FLTOVF;
838
839 /* Underflow */
840 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
841 ret = FPE_FLTUND;
842
843 /* Divide by zero */
844 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
845 ret = FPE_FLTDIV;
846
847 /* Inexact result */
848 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
849 ret = FPE_FLTRES;
850
851 return ret;
852 }
853
854 static void parse_fpe(struct pt_regs *regs)
855 {
856 int code = 0;
857
858 flush_fp_to_thread(current);
859
860 code = __parse_fpscr(current->thread.fp_state.fpscr);
861
862 _exception(SIGFPE, regs, code, regs->nip);
863 }
864
865 /*
866 * Illegal instruction emulation support. Originally written to
867 * provide the PVR to user applications using the mfspr rd, PVR.
868 * Return non-zero if we can't emulate, or -EFAULT if the associated
869 * memory access caused an access fault. Return zero on success.
870 *
871 * There are a couple of ways to do this, either "decode" the instruction
872 * or directly match lots of bits. In this case, matching lots of
873 * bits is faster and easier.
874 *
875 */
876 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
877 {
878 u8 rT = (instword >> 21) & 0x1f;
879 u8 rA = (instword >> 16) & 0x1f;
880 u8 NB_RB = (instword >> 11) & 0x1f;
881 u32 num_bytes;
882 unsigned long EA;
883 int pos = 0;
884
885 /* Early out if we are an invalid form of lswx */
886 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
887 if ((rT == rA) || (rT == NB_RB))
888 return -EINVAL;
889
890 EA = (rA == 0) ? 0 : regs->gpr[rA];
891
892 switch (instword & PPC_INST_STRING_MASK) {
893 case PPC_INST_LSWX:
894 case PPC_INST_STSWX:
895 EA += NB_RB;
896 num_bytes = regs->xer & 0x7f;
897 break;
898 case PPC_INST_LSWI:
899 case PPC_INST_STSWI:
900 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
901 break;
902 default:
903 return -EINVAL;
904 }
905
906 while (num_bytes != 0)
907 {
908 u8 val;
909 u32 shift = 8 * (3 - (pos & 0x3));
910
911 /* if process is 32-bit, clear upper 32 bits of EA */
912 if ((regs->msr & MSR_64BIT) == 0)
913 EA &= 0xFFFFFFFF;
914
915 switch ((instword & PPC_INST_STRING_MASK)) {
916 case PPC_INST_LSWX:
917 case PPC_INST_LSWI:
918 if (get_user(val, (u8 __user *)EA))
919 return -EFAULT;
920 /* first time updating this reg,
921 * zero it out */
922 if (pos == 0)
923 regs->gpr[rT] = 0;
924 regs->gpr[rT] |= val << shift;
925 break;
926 case PPC_INST_STSWI:
927 case PPC_INST_STSWX:
928 val = regs->gpr[rT] >> shift;
929 if (put_user(val, (u8 __user *)EA))
930 return -EFAULT;
931 break;
932 }
933 /* move EA to next address */
934 EA += 1;
935 num_bytes--;
936
937 /* manage our position within the register */
938 if (++pos == 4) {
939 pos = 0;
940 if (++rT == 32)
941 rT = 0;
942 }
943 }
944
945 return 0;
946 }
947
948 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
949 {
950 u32 ra,rs;
951 unsigned long tmp;
952
953 ra = (instword >> 16) & 0x1f;
954 rs = (instword >> 21) & 0x1f;
955
956 tmp = regs->gpr[rs];
957 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
958 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
959 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
960 regs->gpr[ra] = tmp;
961
962 return 0;
963 }
964
965 static int emulate_isel(struct pt_regs *regs, u32 instword)
966 {
967 u8 rT = (instword >> 21) & 0x1f;
968 u8 rA = (instword >> 16) & 0x1f;
969 u8 rB = (instword >> 11) & 0x1f;
970 u8 BC = (instword >> 6) & 0x1f;
971 u8 bit;
972 unsigned long tmp;
973
974 tmp = (rA == 0) ? 0 : regs->gpr[rA];
975 bit = (regs->ccr >> (31 - BC)) & 0x1;
976
977 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
978
979 return 0;
980 }
981
982 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
983 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
984 {
985 /* If we're emulating a load/store in an active transaction, we cannot
986 * emulate it as the kernel operates in transaction suspended context.
987 * We need to abort the transaction. This creates a persistent TM
988 * abort so tell the user what caused it with a new code.
989 */
990 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
991 tm_enable();
992 tm_abort(cause);
993 return true;
994 }
995 return false;
996 }
997 #else
998 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
999 {
1000 return false;
1001 }
1002 #endif
1003
1004 static int emulate_instruction(struct pt_regs *regs)
1005 {
1006 u32 instword;
1007 u32 rd;
1008
1009 if (!user_mode(regs))
1010 return -EINVAL;
1011 CHECK_FULL_REGS(regs);
1012
1013 if (get_user(instword, (u32 __user *)(regs->nip)))
1014 return -EFAULT;
1015
1016 /* Emulate the mfspr rD, PVR. */
1017 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1018 PPC_WARN_EMULATED(mfpvr, regs);
1019 rd = (instword >> 21) & 0x1f;
1020 regs->gpr[rd] = mfspr(SPRN_PVR);
1021 return 0;
1022 }
1023
1024 /* Emulating the dcba insn is just a no-op. */
1025 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1026 PPC_WARN_EMULATED(dcba, regs);
1027 return 0;
1028 }
1029
1030 /* Emulate the mcrxr insn. */
1031 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1032 int shift = (instword >> 21) & 0x1c;
1033 unsigned long msk = 0xf0000000UL >> shift;
1034
1035 PPC_WARN_EMULATED(mcrxr, regs);
1036 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1037 regs->xer &= ~0xf0000000UL;
1038 return 0;
1039 }
1040
1041 /* Emulate load/store string insn. */
1042 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1043 if (tm_abort_check(regs,
1044 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1045 return -EINVAL;
1046 PPC_WARN_EMULATED(string, regs);
1047 return emulate_string_inst(regs, instword);
1048 }
1049
1050 /* Emulate the popcntb (Population Count Bytes) instruction. */
1051 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1052 PPC_WARN_EMULATED(popcntb, regs);
1053 return emulate_popcntb_inst(regs, instword);
1054 }
1055
1056 /* Emulate isel (Integer Select) instruction */
1057 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1058 PPC_WARN_EMULATED(isel, regs);
1059 return emulate_isel(regs, instword);
1060 }
1061
1062 /* Emulate sync instruction variants */
1063 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1064 PPC_WARN_EMULATED(sync, regs);
1065 asm volatile("sync");
1066 return 0;
1067 }
1068
1069 #ifdef CONFIG_PPC64
1070 /* Emulate the mfspr rD, DSCR. */
1071 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1072 PPC_INST_MFSPR_DSCR_USER) ||
1073 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1074 PPC_INST_MFSPR_DSCR)) &&
1075 cpu_has_feature(CPU_FTR_DSCR)) {
1076 PPC_WARN_EMULATED(mfdscr, regs);
1077 rd = (instword >> 21) & 0x1f;
1078 regs->gpr[rd] = mfspr(SPRN_DSCR);
1079 return 0;
1080 }
1081 /* Emulate the mtspr DSCR, rD. */
1082 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1083 PPC_INST_MTSPR_DSCR_USER) ||
1084 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1085 PPC_INST_MTSPR_DSCR)) &&
1086 cpu_has_feature(CPU_FTR_DSCR)) {
1087 PPC_WARN_EMULATED(mtdscr, regs);
1088 rd = (instword >> 21) & 0x1f;
1089 current->thread.dscr = regs->gpr[rd];
1090 current->thread.dscr_inherit = 1;
1091 mtspr(SPRN_DSCR, current->thread.dscr);
1092 return 0;
1093 }
1094 #endif
1095
1096 return -EINVAL;
1097 }
1098
1099 int is_valid_bugaddr(unsigned long addr)
1100 {
1101 return is_kernel_addr(addr);
1102 }
1103
1104 #ifdef CONFIG_MATH_EMULATION
1105 static int emulate_math(struct pt_regs *regs)
1106 {
1107 int ret;
1108 extern int do_mathemu(struct pt_regs *regs);
1109
1110 ret = do_mathemu(regs);
1111 if (ret >= 0)
1112 PPC_WARN_EMULATED(math, regs);
1113
1114 switch (ret) {
1115 case 0:
1116 emulate_single_step(regs);
1117 return 0;
1118 case 1: {
1119 int code = 0;
1120 code = __parse_fpscr(current->thread.fp_state.fpscr);
1121 _exception(SIGFPE, regs, code, regs->nip);
1122 return 0;
1123 }
1124 case -EFAULT:
1125 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1126 return 0;
1127 }
1128
1129 return -1;
1130 }
1131 #else
1132 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1133 #endif
1134
1135 void __kprobes program_check_exception(struct pt_regs *regs)
1136 {
1137 enum ctx_state prev_state = exception_enter();
1138 unsigned int reason = get_reason(regs);
1139
1140 /* We can now get here via a FP Unavailable exception if the core
1141 * has no FPU, in that case the reason flags will be 0 */
1142
1143 if (reason & REASON_FP) {
1144 /* IEEE FP exception */
1145 parse_fpe(regs);
1146 goto bail;
1147 }
1148 if (reason & REASON_TRAP) {
1149 /* Debugger is first in line to stop recursive faults in
1150 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1151 if (debugger_bpt(regs))
1152 goto bail;
1153
1154 /* trap exception */
1155 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1156 == NOTIFY_STOP)
1157 goto bail;
1158
1159 if (!(regs->msr & MSR_PR) && /* not user-mode */
1160 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1161 regs->nip += 4;
1162 goto bail;
1163 }
1164 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1165 goto bail;
1166 }
1167 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1168 if (reason & REASON_TM) {
1169 /* This is a TM "Bad Thing Exception" program check.
1170 * This occurs when:
1171 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1172 * transition in TM states.
1173 * - A trechkpt is attempted when transactional.
1174 * - A treclaim is attempted when non transactional.
1175 * - A tend is illegally attempted.
1176 * - writing a TM SPR when transactional.
1177 */
1178 if (!user_mode(regs) &&
1179 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1180 regs->nip += 4;
1181 goto bail;
1182 }
1183 /* If usermode caused this, it's done something illegal and
1184 * gets a SIGILL slap on the wrist. We call it an illegal
1185 * operand to distinguish from the instruction just being bad
1186 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1187 * illegal /placement/ of a valid instruction.
1188 */
1189 if (user_mode(regs)) {
1190 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1191 goto bail;
1192 } else {
1193 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1194 "at %lx (msr 0x%x)\n", regs->nip, reason);
1195 die("Unrecoverable exception", regs, SIGABRT);
1196 }
1197 }
1198 #endif
1199
1200 /*
1201 * If we took the program check in the kernel skip down to sending a
1202 * SIGILL. The subsequent cases all relate to emulating instructions
1203 * which we should only do for userspace. We also do not want to enable
1204 * interrupts for kernel faults because that might lead to further
1205 * faults, and loose the context of the original exception.
1206 */
1207 if (!user_mode(regs))
1208 goto sigill;
1209
1210 /* We restore the interrupt state now */
1211 if (!arch_irq_disabled_regs(regs))
1212 local_irq_enable();
1213
1214 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1215 * but there seems to be a hardware bug on the 405GP (RevD)
1216 * that means ESR is sometimes set incorrectly - either to
1217 * ESR_DST (!?) or 0. In the process of chasing this with the
1218 * hardware people - not sure if it can happen on any illegal
1219 * instruction or only on FP instructions, whether there is a
1220 * pattern to occurrences etc. -dgibson 31/Mar/2003
1221 */
1222 if (!emulate_math(regs))
1223 goto bail;
1224
1225 /* Try to emulate it if we should. */
1226 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1227 switch (emulate_instruction(regs)) {
1228 case 0:
1229 regs->nip += 4;
1230 emulate_single_step(regs);
1231 goto bail;
1232 case -EFAULT:
1233 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1234 goto bail;
1235 }
1236 }
1237
1238 sigill:
1239 if (reason & REASON_PRIVILEGED)
1240 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1241 else
1242 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1243
1244 bail:
1245 exception_exit(prev_state);
1246 }
1247
1248 /*
1249 * This occurs when running in hypervisor mode on POWER6 or later
1250 * and an illegal instruction is encountered.
1251 */
1252 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1253 {
1254 regs->msr |= REASON_ILLEGAL;
1255 program_check_exception(regs);
1256 }
1257
1258 void alignment_exception(struct pt_regs *regs)
1259 {
1260 enum ctx_state prev_state = exception_enter();
1261 int sig, code, fixed = 0;
1262
1263 /* We restore the interrupt state now */
1264 if (!arch_irq_disabled_regs(regs))
1265 local_irq_enable();
1266
1267 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1268 goto bail;
1269
1270 /* we don't implement logging of alignment exceptions */
1271 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1272 fixed = fix_alignment(regs);
1273
1274 if (fixed == 1) {
1275 regs->nip += 4; /* skip over emulated instruction */
1276 emulate_single_step(regs);
1277 goto bail;
1278 }
1279
1280 /* Operand address was bad */
1281 if (fixed == -EFAULT) {
1282 sig = SIGSEGV;
1283 code = SEGV_ACCERR;
1284 } else {
1285 sig = SIGBUS;
1286 code = BUS_ADRALN;
1287 }
1288 if (user_mode(regs))
1289 _exception(sig, regs, code, regs->dar);
1290 else
1291 bad_page_fault(regs, regs->dar, sig);
1292
1293 bail:
1294 exception_exit(prev_state);
1295 }
1296
1297 void StackOverflow(struct pt_regs *regs)
1298 {
1299 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1300 current, regs->gpr[1]);
1301 debugger(regs);
1302 show_regs(regs);
1303 panic("kernel stack overflow");
1304 }
1305
1306 void nonrecoverable_exception(struct pt_regs *regs)
1307 {
1308 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1309 regs->nip, regs->msr);
1310 debugger(regs);
1311 die("nonrecoverable exception", regs, SIGKILL);
1312 }
1313
1314 void trace_syscall(struct pt_regs *regs)
1315 {
1316 printk("Task: %p(%d), PC: %08lX/%08lX, Syscall: %3ld, Result: %s%ld %s\n",
1317 current, task_pid_nr(current), regs->nip, regs->link, regs->gpr[0],
1318 regs->ccr&0x10000000?"Error=":"", regs->gpr[3], print_tainted());
1319 }
1320
1321 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1322 {
1323 enum ctx_state prev_state = exception_enter();
1324
1325 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1326 "%lx at %lx\n", regs->trap, regs->nip);
1327 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1328
1329 exception_exit(prev_state);
1330 }
1331
1332 void altivec_unavailable_exception(struct pt_regs *regs)
1333 {
1334 enum ctx_state prev_state = exception_enter();
1335
1336 if (user_mode(regs)) {
1337 /* A user program has executed an altivec instruction,
1338 but this kernel doesn't support altivec. */
1339 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1340 goto bail;
1341 }
1342
1343 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1344 "%lx at %lx\n", regs->trap, regs->nip);
1345 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1346
1347 bail:
1348 exception_exit(prev_state);
1349 }
1350
1351 void vsx_unavailable_exception(struct pt_regs *regs)
1352 {
1353 if (user_mode(regs)) {
1354 /* A user program has executed an vsx instruction,
1355 but this kernel doesn't support vsx. */
1356 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1357 return;
1358 }
1359
1360 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1361 "%lx at %lx\n", regs->trap, regs->nip);
1362 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1363 }
1364
1365 #ifdef CONFIG_PPC64
1366 void facility_unavailable_exception(struct pt_regs *regs)
1367 {
1368 static char *facility_strings[] = {
1369 [FSCR_FP_LG] = "FPU",
1370 [FSCR_VECVSX_LG] = "VMX/VSX",
1371 [FSCR_DSCR_LG] = "DSCR",
1372 [FSCR_PM_LG] = "PMU SPRs",
1373 [FSCR_BHRB_LG] = "BHRB",
1374 [FSCR_TM_LG] = "TM",
1375 [FSCR_EBB_LG] = "EBB",
1376 [FSCR_TAR_LG] = "TAR",
1377 };
1378 char *facility = "unknown";
1379 u64 value;
1380 u8 status;
1381 bool hv;
1382
1383 hv = (regs->trap == 0xf80);
1384 if (hv)
1385 value = mfspr(SPRN_HFSCR);
1386 else
1387 value = mfspr(SPRN_FSCR);
1388
1389 status = value >> 56;
1390 if (status == FSCR_DSCR_LG) {
1391 /* User is acessing the DSCR. Set the inherit bit and allow
1392 * the user to set it directly in future by setting via the
1393 * FSCR DSCR bit. We always leave HFSCR DSCR set.
1394 */
1395 current->thread.dscr_inherit = 1;
1396 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1397 return;
1398 }
1399
1400 if ((status < ARRAY_SIZE(facility_strings)) &&
1401 facility_strings[status])
1402 facility = facility_strings[status];
1403
1404 /* We restore the interrupt state now */
1405 if (!arch_irq_disabled_regs(regs))
1406 local_irq_enable();
1407
1408 pr_err_ratelimited(
1409 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1410 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1411
1412 if (user_mode(regs)) {
1413 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1414 return;
1415 }
1416
1417 die("Unexpected facility unavailable exception", regs, SIGABRT);
1418 }
1419 #endif
1420
1421 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1422
1423 void fp_unavailable_tm(struct pt_regs *regs)
1424 {
1425 /* Note: This does not handle any kind of FP laziness. */
1426
1427 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1428 regs->nip, regs->msr);
1429
1430 /* We can only have got here if the task started using FP after
1431 * beginning the transaction. So, the transactional regs are just a
1432 * copy of the checkpointed ones. But, we still need to recheckpoint
1433 * as we're enabling FP for the process; it will return, abort the
1434 * transaction, and probably retry but now with FP enabled. So the
1435 * checkpointed FP registers need to be loaded.
1436 */
1437 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1438 /* Reclaim didn't save out any FPRs to transact_fprs. */
1439
1440 /* Enable FP for the task: */
1441 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1442
1443 /* This loads and recheckpoints the FP registers from
1444 * thread.fpr[]. They will remain in registers after the
1445 * checkpoint so we don't need to reload them after.
1446 * If VMX is in use, the VRs now hold checkpointed values,
1447 * so we don't want to load the VRs from the thread_struct.
1448 */
1449 tm_recheckpoint(&current->thread, MSR_FP);
1450
1451 /* If VMX is in use, get the transactional values back */
1452 if (regs->msr & MSR_VEC) {
1453 do_load_up_transact_altivec(&current->thread);
1454 /* At this point all the VSX state is loaded, so enable it */
1455 regs->msr |= MSR_VSX;
1456 }
1457 }
1458
1459 void altivec_unavailable_tm(struct pt_regs *regs)
1460 {
1461 /* See the comments in fp_unavailable_tm(). This function operates
1462 * the same way.
1463 */
1464
1465 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1466 "MSR=%lx\n",
1467 regs->nip, regs->msr);
1468 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1469 regs->msr |= MSR_VEC;
1470 tm_recheckpoint(&current->thread, MSR_VEC);
1471 current->thread.used_vr = 1;
1472
1473 if (regs->msr & MSR_FP) {
1474 do_load_up_transact_fpu(&current->thread);
1475 regs->msr |= MSR_VSX;
1476 }
1477 }
1478
1479 void vsx_unavailable_tm(struct pt_regs *regs)
1480 {
1481 unsigned long orig_msr = regs->msr;
1482
1483 /* See the comments in fp_unavailable_tm(). This works similarly,
1484 * though we're loading both FP and VEC registers in here.
1485 *
1486 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1487 * regs. Either way, set MSR_VSX.
1488 */
1489
1490 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1491 "MSR=%lx\n",
1492 regs->nip, regs->msr);
1493
1494 current->thread.used_vsr = 1;
1495
1496 /* If FP and VMX are already loaded, we have all the state we need */
1497 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1498 regs->msr |= MSR_VSX;
1499 return;
1500 }
1501
1502 /* This reclaims FP and/or VR regs if they're already enabled */
1503 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1504
1505 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1506 MSR_VSX;
1507
1508 /* This loads & recheckpoints FP and VRs; but we have
1509 * to be sure not to overwrite previously-valid state.
1510 */
1511 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1512
1513 if (orig_msr & MSR_FP)
1514 do_load_up_transact_fpu(&current->thread);
1515 if (orig_msr & MSR_VEC)
1516 do_load_up_transact_altivec(&current->thread);
1517 }
1518 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1519
1520 void performance_monitor_exception(struct pt_regs *regs)
1521 {
1522 __this_cpu_inc(irq_stat.pmu_irqs);
1523
1524 perf_irq(regs);
1525 }
1526
1527 #ifdef CONFIG_8xx
1528 void SoftwareEmulation(struct pt_regs *regs)
1529 {
1530 CHECK_FULL_REGS(regs);
1531
1532 if (!user_mode(regs)) {
1533 debugger(regs);
1534 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1535 regs, SIGFPE);
1536 }
1537
1538 if (!emulate_math(regs))
1539 return;
1540
1541 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1542 }
1543 #endif /* CONFIG_8xx */
1544
1545 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1546 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1547 {
1548 int changed = 0;
1549 /*
1550 * Determine the cause of the debug event, clear the
1551 * event flags and send a trap to the handler. Torez
1552 */
1553 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1554 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1555 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1556 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1557 #endif
1558 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1559 5);
1560 changed |= 0x01;
1561 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1562 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1563 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1564 6);
1565 changed |= 0x01;
1566 } else if (debug_status & DBSR_IAC1) {
1567 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1568 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1569 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1570 1);
1571 changed |= 0x01;
1572 } else if (debug_status & DBSR_IAC2) {
1573 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1574 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1575 2);
1576 changed |= 0x01;
1577 } else if (debug_status & DBSR_IAC3) {
1578 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1579 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1580 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1581 3);
1582 changed |= 0x01;
1583 } else if (debug_status & DBSR_IAC4) {
1584 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1585 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1586 4);
1587 changed |= 0x01;
1588 }
1589 /*
1590 * At the point this routine was called, the MSR(DE) was turned off.
1591 * Check all other debug flags and see if that bit needs to be turned
1592 * back on or not.
1593 */
1594 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1595 current->thread.debug.dbcr1))
1596 regs->msr |= MSR_DE;
1597 else
1598 /* Make sure the IDM flag is off */
1599 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1600
1601 if (changed & 0x01)
1602 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1603 }
1604
1605 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1606 {
1607 current->thread.debug.dbsr = debug_status;
1608
1609 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1610 * on server, it stops on the target of the branch. In order to simulate
1611 * the server behaviour, we thus restart right away with a single step
1612 * instead of stopping here when hitting a BT
1613 */
1614 if (debug_status & DBSR_BT) {
1615 regs->msr &= ~MSR_DE;
1616
1617 /* Disable BT */
1618 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1619 /* Clear the BT event */
1620 mtspr(SPRN_DBSR, DBSR_BT);
1621
1622 /* Do the single step trick only when coming from userspace */
1623 if (user_mode(regs)) {
1624 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1625 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1626 regs->msr |= MSR_DE;
1627 return;
1628 }
1629
1630 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1631 5, SIGTRAP) == NOTIFY_STOP) {
1632 return;
1633 }
1634 if (debugger_sstep(regs))
1635 return;
1636 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1637 regs->msr &= ~MSR_DE;
1638
1639 /* Disable instruction completion */
1640 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1641 /* Clear the instruction completion event */
1642 mtspr(SPRN_DBSR, DBSR_IC);
1643
1644 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1645 5, SIGTRAP) == NOTIFY_STOP) {
1646 return;
1647 }
1648
1649 if (debugger_sstep(regs))
1650 return;
1651
1652 if (user_mode(regs)) {
1653 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1654 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1655 current->thread.debug.dbcr1))
1656 regs->msr |= MSR_DE;
1657 else
1658 /* Make sure the IDM bit is off */
1659 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1660 }
1661
1662 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1663 } else
1664 handle_debug(regs, debug_status);
1665 }
1666 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1667
1668 #if !defined(CONFIG_TAU_INT)
1669 void TAUException(struct pt_regs *regs)
1670 {
1671 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1672 regs->nip, regs->msr, regs->trap, print_tainted());
1673 }
1674 #endif /* CONFIG_INT_TAU */
1675
1676 #ifdef CONFIG_ALTIVEC
1677 void altivec_assist_exception(struct pt_regs *regs)
1678 {
1679 int err;
1680
1681 if (!user_mode(regs)) {
1682 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1683 " at %lx\n", regs->nip);
1684 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1685 }
1686
1687 flush_altivec_to_thread(current);
1688
1689 PPC_WARN_EMULATED(altivec, regs);
1690 err = emulate_altivec(regs);
1691 if (err == 0) {
1692 regs->nip += 4; /* skip emulated instruction */
1693 emulate_single_step(regs);
1694 return;
1695 }
1696
1697 if (err == -EFAULT) {
1698 /* got an error reading the instruction */
1699 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1700 } else {
1701 /* didn't recognize the instruction */
1702 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1703 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1704 "in %s at %lx\n", current->comm, regs->nip);
1705 current->thread.vr_state.vscr.u[3] |= 0x10000;
1706 }
1707 }
1708 #endif /* CONFIG_ALTIVEC */
1709
1710 #ifdef CONFIG_FSL_BOOKE
1711 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1712 unsigned long error_code)
1713 {
1714 /* We treat cache locking instructions from the user
1715 * as priv ops, in the future we could try to do
1716 * something smarter
1717 */
1718 if (error_code & (ESR_DLK|ESR_ILK))
1719 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1720 return;
1721 }
1722 #endif /* CONFIG_FSL_BOOKE */
1723
1724 #ifdef CONFIG_SPE
1725 void SPEFloatingPointException(struct pt_regs *regs)
1726 {
1727 extern int do_spe_mathemu(struct pt_regs *regs);
1728 unsigned long spefscr;
1729 int fpexc_mode;
1730 int code = 0;
1731 int err;
1732
1733 flush_spe_to_thread(current);
1734
1735 spefscr = current->thread.spefscr;
1736 fpexc_mode = current->thread.fpexc_mode;
1737
1738 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1739 code = FPE_FLTOVF;
1740 }
1741 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1742 code = FPE_FLTUND;
1743 }
1744 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1745 code = FPE_FLTDIV;
1746 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1747 code = FPE_FLTINV;
1748 }
1749 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1750 code = FPE_FLTRES;
1751
1752 err = do_spe_mathemu(regs);
1753 if (err == 0) {
1754 regs->nip += 4; /* skip emulated instruction */
1755 emulate_single_step(regs);
1756 return;
1757 }
1758
1759 if (err == -EFAULT) {
1760 /* got an error reading the instruction */
1761 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1762 } else if (err == -EINVAL) {
1763 /* didn't recognize the instruction */
1764 printk(KERN_ERR "unrecognized spe instruction "
1765 "in %s at %lx\n", current->comm, regs->nip);
1766 } else {
1767 _exception(SIGFPE, regs, code, regs->nip);
1768 }
1769
1770 return;
1771 }
1772
1773 void SPEFloatingPointRoundException(struct pt_regs *regs)
1774 {
1775 extern int speround_handler(struct pt_regs *regs);
1776 int err;
1777
1778 preempt_disable();
1779 if (regs->msr & MSR_SPE)
1780 giveup_spe(current);
1781 preempt_enable();
1782
1783 regs->nip -= 4;
1784 err = speround_handler(regs);
1785 if (err == 0) {
1786 regs->nip += 4; /* skip emulated instruction */
1787 emulate_single_step(regs);
1788 return;
1789 }
1790
1791 if (err == -EFAULT) {
1792 /* got an error reading the instruction */
1793 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1794 } else if (err == -EINVAL) {
1795 /* didn't recognize the instruction */
1796 printk(KERN_ERR "unrecognized spe instruction "
1797 "in %s at %lx\n", current->comm, regs->nip);
1798 } else {
1799 _exception(SIGFPE, regs, 0, regs->nip);
1800 return;
1801 }
1802 }
1803 #endif
1804
1805 /*
1806 * We enter here if we get an unrecoverable exception, that is, one
1807 * that happened at a point where the RI (recoverable interrupt) bit
1808 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1809 * we therefore lost state by taking this exception.
1810 */
1811 void unrecoverable_exception(struct pt_regs *regs)
1812 {
1813 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1814 regs->trap, regs->nip);
1815 die("Unrecoverable exception", regs, SIGABRT);
1816 }
1817
1818 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1819 /*
1820 * Default handler for a Watchdog exception,
1821 * spins until a reboot occurs
1822 */
1823 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1824 {
1825 /* Generic WatchdogHandler, implement your own */
1826 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1827 return;
1828 }
1829
1830 void WatchdogException(struct pt_regs *regs)
1831 {
1832 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1833 WatchdogHandler(regs);
1834 }
1835 #endif
1836
1837 /*
1838 * We enter here if we discover during exception entry that we are
1839 * running in supervisor mode with a userspace value in the stack pointer.
1840 */
1841 void kernel_bad_stack(struct pt_regs *regs)
1842 {
1843 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1844 regs->gpr[1], regs->nip);
1845 die("Bad kernel stack pointer", regs, SIGABRT);
1846 }
1847
1848 void __init trap_init(void)
1849 {
1850 }
1851
1852
1853 #ifdef CONFIG_PPC_EMULATED_STATS
1854
1855 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1856
1857 struct ppc_emulated ppc_emulated = {
1858 #ifdef CONFIG_ALTIVEC
1859 WARN_EMULATED_SETUP(altivec),
1860 #endif
1861 WARN_EMULATED_SETUP(dcba),
1862 WARN_EMULATED_SETUP(dcbz),
1863 WARN_EMULATED_SETUP(fp_pair),
1864 WARN_EMULATED_SETUP(isel),
1865 WARN_EMULATED_SETUP(mcrxr),
1866 WARN_EMULATED_SETUP(mfpvr),
1867 WARN_EMULATED_SETUP(multiple),
1868 WARN_EMULATED_SETUP(popcntb),
1869 WARN_EMULATED_SETUP(spe),
1870 WARN_EMULATED_SETUP(string),
1871 WARN_EMULATED_SETUP(sync),
1872 WARN_EMULATED_SETUP(unaligned),
1873 #ifdef CONFIG_MATH_EMULATION
1874 WARN_EMULATED_SETUP(math),
1875 #endif
1876 #ifdef CONFIG_VSX
1877 WARN_EMULATED_SETUP(vsx),
1878 #endif
1879 #ifdef CONFIG_PPC64
1880 WARN_EMULATED_SETUP(mfdscr),
1881 WARN_EMULATED_SETUP(mtdscr),
1882 WARN_EMULATED_SETUP(lq_stq),
1883 #endif
1884 };
1885
1886 u32 ppc_warn_emulated;
1887
1888 void ppc_warn_emulated_print(const char *type)
1889 {
1890 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1891 type);
1892 }
1893
1894 static int __init ppc_warn_emulated_init(void)
1895 {
1896 struct dentry *dir, *d;
1897 unsigned int i;
1898 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1899
1900 if (!powerpc_debugfs_root)
1901 return -ENODEV;
1902
1903 dir = debugfs_create_dir("emulated_instructions",
1904 powerpc_debugfs_root);
1905 if (!dir)
1906 return -ENOMEM;
1907
1908 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1909 &ppc_warn_emulated);
1910 if (!d)
1911 goto fail;
1912
1913 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1914 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1915 (u32 *)&entries[i].val.counter);
1916 if (!d)
1917 goto fail;
1918 }
1919
1920 return 0;
1921
1922 fail:
1923 debugfs_remove_recursive(dir);
1924 return -ENOMEM;
1925 }
1926
1927 device_initcall(ppc_warn_emulated_init);
1928
1929 #endif /* CONFIG_PPC_EMULATED_STATS */