]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/kernel/traps.c
ASoC: sti: fix missing clk_disable_unprepare() on error in uni_player_start()
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/hmi.h>
65 #include <sysdev/fsl_pci.h>
66
67 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
68 int (*__debugger)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
75
76 EXPORT_SYMBOL(__debugger);
77 EXPORT_SYMBOL(__debugger_ipi);
78 EXPORT_SYMBOL(__debugger_bpt);
79 EXPORT_SYMBOL(__debugger_sstep);
80 EXPORT_SYMBOL(__debugger_iabr_match);
81 EXPORT_SYMBOL(__debugger_break_match);
82 EXPORT_SYMBOL(__debugger_fault_handler);
83 #endif
84
85 /* Transactional Memory trap debug */
86 #ifdef TM_DEBUG_SW
87 #define TM_DEBUG(x...) printk(KERN_INFO x)
88 #else
89 #define TM_DEBUG(x...) do { } while(0)
90 #endif
91
92 /*
93 * Trap & Exception support
94 */
95
96 #ifdef CONFIG_PMAC_BACKLIGHT
97 static void pmac_backlight_unblank(void)
98 {
99 mutex_lock(&pmac_backlight_mutex);
100 if (pmac_backlight) {
101 struct backlight_properties *props;
102
103 props = &pmac_backlight->props;
104 props->brightness = props->max_brightness;
105 props->power = FB_BLANK_UNBLANK;
106 backlight_update_status(pmac_backlight);
107 }
108 mutex_unlock(&pmac_backlight_mutex);
109 }
110 #else
111 static inline void pmac_backlight_unblank(void) { }
112 #endif
113
114 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
115 static int die_owner = -1;
116 static unsigned int die_nest_count;
117 static int die_counter;
118
119 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
120 {
121 int cpu;
122 unsigned long flags;
123
124 if (debugger(regs))
125 return 1;
126
127 oops_enter();
128
129 /* racy, but better than risking deadlock. */
130 raw_local_irq_save(flags);
131 cpu = smp_processor_id();
132 if (!arch_spin_trylock(&die_lock)) {
133 if (cpu == die_owner)
134 /* nested oops. should stop eventually */;
135 else
136 arch_spin_lock(&die_lock);
137 }
138 die_nest_count++;
139 die_owner = cpu;
140 console_verbose();
141 bust_spinlocks(1);
142 if (machine_is(powermac))
143 pmac_backlight_unblank();
144 return flags;
145 }
146
147 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
148 int signr)
149 {
150 bust_spinlocks(0);
151 die_owner = -1;
152 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
153 die_nest_count--;
154 oops_exit();
155 printk("\n");
156 if (!die_nest_count)
157 /* Nest count reaches zero, release the lock. */
158 arch_spin_unlock(&die_lock);
159 raw_local_irq_restore(flags);
160
161 crash_fadump(regs, "die oops");
162
163 /*
164 * A system reset (0x100) is a request to dump, so we always send
165 * it through the crashdump code.
166 */
167 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
168 crash_kexec(regs);
169
170 /*
171 * We aren't the primary crash CPU. We need to send it
172 * to a holding pattern to avoid it ending up in the panic
173 * code.
174 */
175 crash_kexec_secondary(regs);
176 }
177
178 if (!signr)
179 return;
180
181 /*
182 * While our oops output is serialised by a spinlock, output
183 * from panic() called below can race and corrupt it. If we
184 * know we are going to panic, delay for 1 second so we have a
185 * chance to get clean backtraces from all CPUs that are oopsing.
186 */
187 if (in_interrupt() || panic_on_oops || !current->pid ||
188 is_global_init(current)) {
189 mdelay(MSEC_PER_SEC);
190 }
191
192 if (in_interrupt())
193 panic("Fatal exception in interrupt");
194 if (panic_on_oops)
195 panic("Fatal exception");
196 do_exit(signr);
197 }
198
199 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
200 {
201 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
202 #ifdef CONFIG_PREEMPT
203 printk("PREEMPT ");
204 #endif
205 #ifdef CONFIG_SMP
206 printk("SMP NR_CPUS=%d ", NR_CPUS);
207 #endif
208 if (debug_pagealloc_enabled())
209 printk("DEBUG_PAGEALLOC ");
210 #ifdef CONFIG_NUMA
211 printk("NUMA ");
212 #endif
213 printk("%s\n", ppc_md.name ? ppc_md.name : "");
214
215 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
216 return 1;
217
218 print_modules();
219 show_regs(regs);
220
221 return 0;
222 }
223
224 void die(const char *str, struct pt_regs *regs, long err)
225 {
226 unsigned long flags = oops_begin(regs);
227
228 if (__die(str, regs, err))
229 err = 0;
230 oops_end(flags, regs, err);
231 }
232
233 void user_single_step_siginfo(struct task_struct *tsk,
234 struct pt_regs *regs, siginfo_t *info)
235 {
236 memset(info, 0, sizeof(*info));
237 info->si_signo = SIGTRAP;
238 info->si_code = TRAP_TRACE;
239 info->si_addr = (void __user *)regs->nip;
240 }
241
242 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
243 {
244 siginfo_t info;
245 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %08lx nip %08lx lr %08lx code %x\n";
247 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
248 "at %016lx nip %016lx lr %016lx code %x\n";
249
250 if (!user_mode(regs)) {
251 die("Exception in kernel mode", regs, signr);
252 return;
253 }
254
255 if (show_unhandled_signals && unhandled_signal(current, signr)) {
256 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
257 current->comm, current->pid, signr,
258 addr, regs->nip, regs->link, code);
259 }
260
261 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
262 local_irq_enable();
263
264 current->thread.trap_nr = code;
265 memset(&info, 0, sizeof(info));
266 info.si_signo = signr;
267 info.si_code = code;
268 info.si_addr = (void __user *) addr;
269 force_sig_info(signr, &info, current);
270 }
271
272 #ifdef CONFIG_PPC64
273 void system_reset_exception(struct pt_regs *regs)
274 {
275 /* See if any machine dependent calls */
276 if (ppc_md.system_reset_exception) {
277 if (ppc_md.system_reset_exception(regs))
278 return;
279 }
280
281 die("System Reset", regs, SIGABRT);
282
283 /* Must die if the interrupt is not recoverable */
284 if (!(regs->msr & MSR_RI))
285 panic("Unrecoverable System Reset");
286
287 /* What should we do here? We could issue a shutdown or hard reset. */
288 }
289
290 /*
291 * This function is called in real mode. Strictly no printk's please.
292 *
293 * regs->nip and regs->msr contains srr0 and ssr1.
294 */
295 long machine_check_early(struct pt_regs *regs)
296 {
297 long handled = 0;
298
299 __this_cpu_inc(irq_stat.mce_exceptions);
300
301 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
302
303 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
304 handled = cur_cpu_spec->machine_check_early(regs);
305 return handled;
306 }
307
308 long hmi_exception_realmode(struct pt_regs *regs)
309 {
310 __this_cpu_inc(irq_stat.hmi_exceptions);
311
312 wait_for_subcore_guest_exit();
313
314 if (ppc_md.hmi_exception_early)
315 ppc_md.hmi_exception_early(regs);
316
317 wait_for_tb_resync();
318
319 return 0;
320 }
321
322 #endif
323
324 /*
325 * I/O accesses can cause machine checks on powermacs.
326 * Check if the NIP corresponds to the address of a sync
327 * instruction for which there is an entry in the exception
328 * table.
329 * Note that the 601 only takes a machine check on TEA
330 * (transfer error ack) signal assertion, and does not
331 * set any of the top 16 bits of SRR1.
332 * -- paulus.
333 */
334 static inline int check_io_access(struct pt_regs *regs)
335 {
336 #ifdef CONFIG_PPC32
337 unsigned long msr = regs->msr;
338 const struct exception_table_entry *entry;
339 unsigned int *nip = (unsigned int *)regs->nip;
340
341 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
342 && (entry = search_exception_tables(regs->nip)) != NULL) {
343 /*
344 * Check that it's a sync instruction, or somewhere
345 * in the twi; isync; nop sequence that inb/inw/inl uses.
346 * As the address is in the exception table
347 * we should be able to read the instr there.
348 * For the debug message, we look at the preceding
349 * load or store.
350 */
351 if (*nip == 0x60000000) /* nop */
352 nip -= 2;
353 else if (*nip == 0x4c00012c) /* isync */
354 --nip;
355 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
356 /* sync or twi */
357 unsigned int rb;
358
359 --nip;
360 rb = (*nip >> 11) & 0x1f;
361 printk(KERN_DEBUG "%s bad port %lx at %p\n",
362 (*nip & 0x100)? "OUT to": "IN from",
363 regs->gpr[rb] - _IO_BASE, nip);
364 regs->msr |= MSR_RI;
365 regs->nip = entry->fixup;
366 return 1;
367 }
368 }
369 #endif /* CONFIG_PPC32 */
370 return 0;
371 }
372
373 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
374 /* On 4xx, the reason for the machine check or program exception
375 is in the ESR. */
376 #define get_reason(regs) ((regs)->dsisr)
377 #ifndef CONFIG_FSL_BOOKE
378 #define get_mc_reason(regs) ((regs)->dsisr)
379 #else
380 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
381 #endif
382 #define REASON_FP ESR_FP
383 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
384 #define REASON_PRIVILEGED ESR_PPR
385 #define REASON_TRAP ESR_PTR
386
387 /* single-step stuff */
388 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
389 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
390
391 #else
392 /* On non-4xx, the reason for the machine check or program
393 exception is in the MSR. */
394 #define get_reason(regs) ((regs)->msr)
395 #define get_mc_reason(regs) ((regs)->msr)
396 #define REASON_TM 0x200000
397 #define REASON_FP 0x100000
398 #define REASON_ILLEGAL 0x80000
399 #define REASON_PRIVILEGED 0x40000
400 #define REASON_TRAP 0x20000
401
402 #define single_stepping(regs) ((regs)->msr & MSR_SE)
403 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
404 #endif
405
406 #if defined(CONFIG_4xx)
407 int machine_check_4xx(struct pt_regs *regs)
408 {
409 unsigned long reason = get_mc_reason(regs);
410
411 if (reason & ESR_IMCP) {
412 printk("Instruction");
413 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
414 } else
415 printk("Data");
416 printk(" machine check in kernel mode.\n");
417
418 return 0;
419 }
420
421 int machine_check_440A(struct pt_regs *regs)
422 {
423 unsigned long reason = get_mc_reason(regs);
424
425 printk("Machine check in kernel mode.\n");
426 if (reason & ESR_IMCP){
427 printk("Instruction Synchronous Machine Check exception\n");
428 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
429 }
430 else {
431 u32 mcsr = mfspr(SPRN_MCSR);
432 if (mcsr & MCSR_IB)
433 printk("Instruction Read PLB Error\n");
434 if (mcsr & MCSR_DRB)
435 printk("Data Read PLB Error\n");
436 if (mcsr & MCSR_DWB)
437 printk("Data Write PLB Error\n");
438 if (mcsr & MCSR_TLBP)
439 printk("TLB Parity Error\n");
440 if (mcsr & MCSR_ICP){
441 flush_instruction_cache();
442 printk("I-Cache Parity Error\n");
443 }
444 if (mcsr & MCSR_DCSP)
445 printk("D-Cache Search Parity Error\n");
446 if (mcsr & MCSR_DCFP)
447 printk("D-Cache Flush Parity Error\n");
448 if (mcsr & MCSR_IMPE)
449 printk("Machine Check exception is imprecise\n");
450
451 /* Clear MCSR */
452 mtspr(SPRN_MCSR, mcsr);
453 }
454 return 0;
455 }
456
457 int machine_check_47x(struct pt_regs *regs)
458 {
459 unsigned long reason = get_mc_reason(regs);
460 u32 mcsr;
461
462 printk(KERN_ERR "Machine check in kernel mode.\n");
463 if (reason & ESR_IMCP) {
464 printk(KERN_ERR
465 "Instruction Synchronous Machine Check exception\n");
466 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
467 return 0;
468 }
469 mcsr = mfspr(SPRN_MCSR);
470 if (mcsr & MCSR_IB)
471 printk(KERN_ERR "Instruction Read PLB Error\n");
472 if (mcsr & MCSR_DRB)
473 printk(KERN_ERR "Data Read PLB Error\n");
474 if (mcsr & MCSR_DWB)
475 printk(KERN_ERR "Data Write PLB Error\n");
476 if (mcsr & MCSR_TLBP)
477 printk(KERN_ERR "TLB Parity Error\n");
478 if (mcsr & MCSR_ICP) {
479 flush_instruction_cache();
480 printk(KERN_ERR "I-Cache Parity Error\n");
481 }
482 if (mcsr & MCSR_DCSP)
483 printk(KERN_ERR "D-Cache Search Parity Error\n");
484 if (mcsr & PPC47x_MCSR_GPR)
485 printk(KERN_ERR "GPR Parity Error\n");
486 if (mcsr & PPC47x_MCSR_FPR)
487 printk(KERN_ERR "FPR Parity Error\n");
488 if (mcsr & PPC47x_MCSR_IPR)
489 printk(KERN_ERR "Machine Check exception is imprecise\n");
490
491 /* Clear MCSR */
492 mtspr(SPRN_MCSR, mcsr);
493
494 return 0;
495 }
496 #elif defined(CONFIG_E500)
497 int machine_check_e500mc(struct pt_regs *regs)
498 {
499 unsigned long mcsr = mfspr(SPRN_MCSR);
500 unsigned long reason = mcsr;
501 int recoverable = 1;
502
503 if (reason & MCSR_LD) {
504 recoverable = fsl_rio_mcheck_exception(regs);
505 if (recoverable == 1)
506 goto silent_out;
507 }
508
509 printk("Machine check in kernel mode.\n");
510 printk("Caused by (from MCSR=%lx): ", reason);
511
512 if (reason & MCSR_MCP)
513 printk("Machine Check Signal\n");
514
515 if (reason & MCSR_ICPERR) {
516 printk("Instruction Cache Parity Error\n");
517
518 /*
519 * This is recoverable by invalidating the i-cache.
520 */
521 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
522 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
523 ;
524
525 /*
526 * This will generally be accompanied by an instruction
527 * fetch error report -- only treat MCSR_IF as fatal
528 * if it wasn't due to an L1 parity error.
529 */
530 reason &= ~MCSR_IF;
531 }
532
533 if (reason & MCSR_DCPERR_MC) {
534 printk("Data Cache Parity Error\n");
535
536 /*
537 * In write shadow mode we auto-recover from the error, but it
538 * may still get logged and cause a machine check. We should
539 * only treat the non-write shadow case as non-recoverable.
540 */
541 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
542 recoverable = 0;
543 }
544
545 if (reason & MCSR_L2MMU_MHIT) {
546 printk("Hit on multiple TLB entries\n");
547 recoverable = 0;
548 }
549
550 if (reason & MCSR_NMI)
551 printk("Non-maskable interrupt\n");
552
553 if (reason & MCSR_IF) {
554 printk("Instruction Fetch Error Report\n");
555 recoverable = 0;
556 }
557
558 if (reason & MCSR_LD) {
559 printk("Load Error Report\n");
560 recoverable = 0;
561 }
562
563 if (reason & MCSR_ST) {
564 printk("Store Error Report\n");
565 recoverable = 0;
566 }
567
568 if (reason & MCSR_LDG) {
569 printk("Guarded Load Error Report\n");
570 recoverable = 0;
571 }
572
573 if (reason & MCSR_TLBSYNC)
574 printk("Simultaneous tlbsync operations\n");
575
576 if (reason & MCSR_BSL2_ERR) {
577 printk("Level 2 Cache Error\n");
578 recoverable = 0;
579 }
580
581 if (reason & MCSR_MAV) {
582 u64 addr;
583
584 addr = mfspr(SPRN_MCAR);
585 addr |= (u64)mfspr(SPRN_MCARU) << 32;
586
587 printk("Machine Check %s Address: %#llx\n",
588 reason & MCSR_MEA ? "Effective" : "Physical", addr);
589 }
590
591 silent_out:
592 mtspr(SPRN_MCSR, mcsr);
593 return mfspr(SPRN_MCSR) == 0 && recoverable;
594 }
595
596 int machine_check_e500(struct pt_regs *regs)
597 {
598 unsigned long reason = get_mc_reason(regs);
599
600 if (reason & MCSR_BUS_RBERR) {
601 if (fsl_rio_mcheck_exception(regs))
602 return 1;
603 if (fsl_pci_mcheck_exception(regs))
604 return 1;
605 }
606
607 printk("Machine check in kernel mode.\n");
608 printk("Caused by (from MCSR=%lx): ", reason);
609
610 if (reason & MCSR_MCP)
611 printk("Machine Check Signal\n");
612 if (reason & MCSR_ICPERR)
613 printk("Instruction Cache Parity Error\n");
614 if (reason & MCSR_DCP_PERR)
615 printk("Data Cache Push Parity Error\n");
616 if (reason & MCSR_DCPERR)
617 printk("Data Cache Parity Error\n");
618 if (reason & MCSR_BUS_IAERR)
619 printk("Bus - Instruction Address Error\n");
620 if (reason & MCSR_BUS_RAERR)
621 printk("Bus - Read Address Error\n");
622 if (reason & MCSR_BUS_WAERR)
623 printk("Bus - Write Address Error\n");
624 if (reason & MCSR_BUS_IBERR)
625 printk("Bus - Instruction Data Error\n");
626 if (reason & MCSR_BUS_RBERR)
627 printk("Bus - Read Data Bus Error\n");
628 if (reason & MCSR_BUS_WBERR)
629 printk("Bus - Write Data Bus Error\n");
630 if (reason & MCSR_BUS_IPERR)
631 printk("Bus - Instruction Parity Error\n");
632 if (reason & MCSR_BUS_RPERR)
633 printk("Bus - Read Parity Error\n");
634
635 return 0;
636 }
637
638 int machine_check_generic(struct pt_regs *regs)
639 {
640 return 0;
641 }
642 #elif defined(CONFIG_E200)
643 int machine_check_e200(struct pt_regs *regs)
644 {
645 unsigned long reason = get_mc_reason(regs);
646
647 printk("Machine check in kernel mode.\n");
648 printk("Caused by (from MCSR=%lx): ", reason);
649
650 if (reason & MCSR_MCP)
651 printk("Machine Check Signal\n");
652 if (reason & MCSR_CP_PERR)
653 printk("Cache Push Parity Error\n");
654 if (reason & MCSR_CPERR)
655 printk("Cache Parity Error\n");
656 if (reason & MCSR_EXCP_ERR)
657 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
658 if (reason & MCSR_BUS_IRERR)
659 printk("Bus - Read Bus Error on instruction fetch\n");
660 if (reason & MCSR_BUS_DRERR)
661 printk("Bus - Read Bus Error on data load\n");
662 if (reason & MCSR_BUS_WRERR)
663 printk("Bus - Write Bus Error on buffered store or cache line push\n");
664
665 return 0;
666 }
667 #else
668 int machine_check_generic(struct pt_regs *regs)
669 {
670 unsigned long reason = get_mc_reason(regs);
671
672 printk("Machine check in kernel mode.\n");
673 printk("Caused by (from SRR1=%lx): ", reason);
674 switch (reason & 0x601F0000) {
675 case 0x80000:
676 printk("Machine check signal\n");
677 break;
678 case 0: /* for 601 */
679 case 0x40000:
680 case 0x140000: /* 7450 MSS error and TEA */
681 printk("Transfer error ack signal\n");
682 break;
683 case 0x20000:
684 printk("Data parity error signal\n");
685 break;
686 case 0x10000:
687 printk("Address parity error signal\n");
688 break;
689 case 0x20000000:
690 printk("L1 Data Cache error\n");
691 break;
692 case 0x40000000:
693 printk("L1 Instruction Cache error\n");
694 break;
695 case 0x00100000:
696 printk("L2 data cache parity error\n");
697 break;
698 default:
699 printk("Unknown values in msr\n");
700 }
701 return 0;
702 }
703 #endif /* everything else */
704
705 void machine_check_exception(struct pt_regs *regs)
706 {
707 enum ctx_state prev_state = exception_enter();
708 int recover = 0;
709
710 __this_cpu_inc(irq_stat.mce_exceptions);
711
712 /* See if any machine dependent calls. In theory, we would want
713 * to call the CPU first, and call the ppc_md. one if the CPU
714 * one returns a positive number. However there is existing code
715 * that assumes the board gets a first chance, so let's keep it
716 * that way for now and fix things later. --BenH.
717 */
718 if (ppc_md.machine_check_exception)
719 recover = ppc_md.machine_check_exception(regs);
720 else if (cur_cpu_spec->machine_check)
721 recover = cur_cpu_spec->machine_check(regs);
722
723 if (recover > 0)
724 goto bail;
725
726 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
727 /* the qspan pci read routines can cause machine checks -- Cort
728 *
729 * yuck !!! that totally needs to go away ! There are better ways
730 * to deal with that than having a wart in the mcheck handler.
731 * -- BenH
732 */
733 bad_page_fault(regs, regs->dar, SIGBUS);
734 goto bail;
735 #endif
736
737 if (debugger_fault_handler(regs))
738 goto bail;
739
740 if (check_io_access(regs))
741 goto bail;
742
743 die("Machine check", regs, SIGBUS);
744
745 /* Must die if the interrupt is not recoverable */
746 if (!(regs->msr & MSR_RI))
747 panic("Unrecoverable Machine check");
748
749 bail:
750 exception_exit(prev_state);
751 }
752
753 void SMIException(struct pt_regs *regs)
754 {
755 die("System Management Interrupt", regs, SIGABRT);
756 }
757
758 void handle_hmi_exception(struct pt_regs *regs)
759 {
760 struct pt_regs *old_regs;
761
762 old_regs = set_irq_regs(regs);
763 irq_enter();
764
765 if (ppc_md.handle_hmi_exception)
766 ppc_md.handle_hmi_exception(regs);
767
768 irq_exit();
769 set_irq_regs(old_regs);
770 }
771
772 void unknown_exception(struct pt_regs *regs)
773 {
774 enum ctx_state prev_state = exception_enter();
775
776 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
777 regs->nip, regs->msr, regs->trap);
778
779 _exception(SIGTRAP, regs, 0, 0);
780
781 exception_exit(prev_state);
782 }
783
784 void instruction_breakpoint_exception(struct pt_regs *regs)
785 {
786 enum ctx_state prev_state = exception_enter();
787
788 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
789 5, SIGTRAP) == NOTIFY_STOP)
790 goto bail;
791 if (debugger_iabr_match(regs))
792 goto bail;
793 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
794
795 bail:
796 exception_exit(prev_state);
797 }
798
799 void RunModeException(struct pt_regs *regs)
800 {
801 _exception(SIGTRAP, regs, 0, 0);
802 }
803
804 void __kprobes single_step_exception(struct pt_regs *regs)
805 {
806 enum ctx_state prev_state = exception_enter();
807
808 clear_single_step(regs);
809
810 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
811 5, SIGTRAP) == NOTIFY_STOP)
812 goto bail;
813 if (debugger_sstep(regs))
814 goto bail;
815
816 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
817
818 bail:
819 exception_exit(prev_state);
820 }
821
822 /*
823 * After we have successfully emulated an instruction, we have to
824 * check if the instruction was being single-stepped, and if so,
825 * pretend we got a single-step exception. This was pointed out
826 * by Kumar Gala. -- paulus
827 */
828 static void emulate_single_step(struct pt_regs *regs)
829 {
830 if (single_stepping(regs))
831 single_step_exception(regs);
832 }
833
834 static inline int __parse_fpscr(unsigned long fpscr)
835 {
836 int ret = 0;
837
838 /* Invalid operation */
839 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
840 ret = FPE_FLTINV;
841
842 /* Overflow */
843 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
844 ret = FPE_FLTOVF;
845
846 /* Underflow */
847 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
848 ret = FPE_FLTUND;
849
850 /* Divide by zero */
851 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
852 ret = FPE_FLTDIV;
853
854 /* Inexact result */
855 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
856 ret = FPE_FLTRES;
857
858 return ret;
859 }
860
861 static void parse_fpe(struct pt_regs *regs)
862 {
863 int code = 0;
864
865 flush_fp_to_thread(current);
866
867 code = __parse_fpscr(current->thread.fp_state.fpscr);
868
869 _exception(SIGFPE, regs, code, regs->nip);
870 }
871
872 /*
873 * Illegal instruction emulation support. Originally written to
874 * provide the PVR to user applications using the mfspr rd, PVR.
875 * Return non-zero if we can't emulate, or -EFAULT if the associated
876 * memory access caused an access fault. Return zero on success.
877 *
878 * There are a couple of ways to do this, either "decode" the instruction
879 * or directly match lots of bits. In this case, matching lots of
880 * bits is faster and easier.
881 *
882 */
883 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
884 {
885 u8 rT = (instword >> 21) & 0x1f;
886 u8 rA = (instword >> 16) & 0x1f;
887 u8 NB_RB = (instword >> 11) & 0x1f;
888 u32 num_bytes;
889 unsigned long EA;
890 int pos = 0;
891
892 /* Early out if we are an invalid form of lswx */
893 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
894 if ((rT == rA) || (rT == NB_RB))
895 return -EINVAL;
896
897 EA = (rA == 0) ? 0 : regs->gpr[rA];
898
899 switch (instword & PPC_INST_STRING_MASK) {
900 case PPC_INST_LSWX:
901 case PPC_INST_STSWX:
902 EA += NB_RB;
903 num_bytes = regs->xer & 0x7f;
904 break;
905 case PPC_INST_LSWI:
906 case PPC_INST_STSWI:
907 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
908 break;
909 default:
910 return -EINVAL;
911 }
912
913 while (num_bytes != 0)
914 {
915 u8 val;
916 u32 shift = 8 * (3 - (pos & 0x3));
917
918 /* if process is 32-bit, clear upper 32 bits of EA */
919 if ((regs->msr & MSR_64BIT) == 0)
920 EA &= 0xFFFFFFFF;
921
922 switch ((instword & PPC_INST_STRING_MASK)) {
923 case PPC_INST_LSWX:
924 case PPC_INST_LSWI:
925 if (get_user(val, (u8 __user *)EA))
926 return -EFAULT;
927 /* first time updating this reg,
928 * zero it out */
929 if (pos == 0)
930 regs->gpr[rT] = 0;
931 regs->gpr[rT] |= val << shift;
932 break;
933 case PPC_INST_STSWI:
934 case PPC_INST_STSWX:
935 val = regs->gpr[rT] >> shift;
936 if (put_user(val, (u8 __user *)EA))
937 return -EFAULT;
938 break;
939 }
940 /* move EA to next address */
941 EA += 1;
942 num_bytes--;
943
944 /* manage our position within the register */
945 if (++pos == 4) {
946 pos = 0;
947 if (++rT == 32)
948 rT = 0;
949 }
950 }
951
952 return 0;
953 }
954
955 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
956 {
957 u32 ra,rs;
958 unsigned long tmp;
959
960 ra = (instword >> 16) & 0x1f;
961 rs = (instword >> 21) & 0x1f;
962
963 tmp = regs->gpr[rs];
964 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
965 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
966 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
967 regs->gpr[ra] = tmp;
968
969 return 0;
970 }
971
972 static int emulate_isel(struct pt_regs *regs, u32 instword)
973 {
974 u8 rT = (instword >> 21) & 0x1f;
975 u8 rA = (instword >> 16) & 0x1f;
976 u8 rB = (instword >> 11) & 0x1f;
977 u8 BC = (instword >> 6) & 0x1f;
978 u8 bit;
979 unsigned long tmp;
980
981 tmp = (rA == 0) ? 0 : regs->gpr[rA];
982 bit = (regs->ccr >> (31 - BC)) & 0x1;
983
984 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
985
986 return 0;
987 }
988
989 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
990 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
991 {
992 /* If we're emulating a load/store in an active transaction, we cannot
993 * emulate it as the kernel operates in transaction suspended context.
994 * We need to abort the transaction. This creates a persistent TM
995 * abort so tell the user what caused it with a new code.
996 */
997 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
998 tm_enable();
999 tm_abort(cause);
1000 return true;
1001 }
1002 return false;
1003 }
1004 #else
1005 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1006 {
1007 return false;
1008 }
1009 #endif
1010
1011 static int emulate_instruction(struct pt_regs *regs)
1012 {
1013 u32 instword;
1014 u32 rd;
1015
1016 if (!user_mode(regs))
1017 return -EINVAL;
1018 CHECK_FULL_REGS(regs);
1019
1020 if (get_user(instword, (u32 __user *)(regs->nip)))
1021 return -EFAULT;
1022
1023 /* Emulate the mfspr rD, PVR. */
1024 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1025 PPC_WARN_EMULATED(mfpvr, regs);
1026 rd = (instword >> 21) & 0x1f;
1027 regs->gpr[rd] = mfspr(SPRN_PVR);
1028 return 0;
1029 }
1030
1031 /* Emulating the dcba insn is just a no-op. */
1032 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1033 PPC_WARN_EMULATED(dcba, regs);
1034 return 0;
1035 }
1036
1037 /* Emulate the mcrxr insn. */
1038 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1039 int shift = (instword >> 21) & 0x1c;
1040 unsigned long msk = 0xf0000000UL >> shift;
1041
1042 PPC_WARN_EMULATED(mcrxr, regs);
1043 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1044 regs->xer &= ~0xf0000000UL;
1045 return 0;
1046 }
1047
1048 /* Emulate load/store string insn. */
1049 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1050 if (tm_abort_check(regs,
1051 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1052 return -EINVAL;
1053 PPC_WARN_EMULATED(string, regs);
1054 return emulate_string_inst(regs, instword);
1055 }
1056
1057 /* Emulate the popcntb (Population Count Bytes) instruction. */
1058 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1059 PPC_WARN_EMULATED(popcntb, regs);
1060 return emulate_popcntb_inst(regs, instword);
1061 }
1062
1063 /* Emulate isel (Integer Select) instruction */
1064 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1065 PPC_WARN_EMULATED(isel, regs);
1066 return emulate_isel(regs, instword);
1067 }
1068
1069 /* Emulate sync instruction variants */
1070 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1071 PPC_WARN_EMULATED(sync, regs);
1072 asm volatile("sync");
1073 return 0;
1074 }
1075
1076 #ifdef CONFIG_PPC64
1077 /* Emulate the mfspr rD, DSCR. */
1078 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1079 PPC_INST_MFSPR_DSCR_USER) ||
1080 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1081 PPC_INST_MFSPR_DSCR)) &&
1082 cpu_has_feature(CPU_FTR_DSCR)) {
1083 PPC_WARN_EMULATED(mfdscr, regs);
1084 rd = (instword >> 21) & 0x1f;
1085 regs->gpr[rd] = mfspr(SPRN_DSCR);
1086 return 0;
1087 }
1088 /* Emulate the mtspr DSCR, rD. */
1089 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1090 PPC_INST_MTSPR_DSCR_USER) ||
1091 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1092 PPC_INST_MTSPR_DSCR)) &&
1093 cpu_has_feature(CPU_FTR_DSCR)) {
1094 PPC_WARN_EMULATED(mtdscr, regs);
1095 rd = (instword >> 21) & 0x1f;
1096 current->thread.dscr = regs->gpr[rd];
1097 current->thread.dscr_inherit = 1;
1098 mtspr(SPRN_DSCR, current->thread.dscr);
1099 return 0;
1100 }
1101 #endif
1102
1103 return -EINVAL;
1104 }
1105
1106 int is_valid_bugaddr(unsigned long addr)
1107 {
1108 return is_kernel_addr(addr);
1109 }
1110
1111 #ifdef CONFIG_MATH_EMULATION
1112 static int emulate_math(struct pt_regs *regs)
1113 {
1114 int ret;
1115 extern int do_mathemu(struct pt_regs *regs);
1116
1117 ret = do_mathemu(regs);
1118 if (ret >= 0)
1119 PPC_WARN_EMULATED(math, regs);
1120
1121 switch (ret) {
1122 case 0:
1123 emulate_single_step(regs);
1124 return 0;
1125 case 1: {
1126 int code = 0;
1127 code = __parse_fpscr(current->thread.fp_state.fpscr);
1128 _exception(SIGFPE, regs, code, regs->nip);
1129 return 0;
1130 }
1131 case -EFAULT:
1132 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1133 return 0;
1134 }
1135
1136 return -1;
1137 }
1138 #else
1139 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1140 #endif
1141
1142 void __kprobes program_check_exception(struct pt_regs *regs)
1143 {
1144 enum ctx_state prev_state = exception_enter();
1145 unsigned int reason = get_reason(regs);
1146
1147 /* We can now get here via a FP Unavailable exception if the core
1148 * has no FPU, in that case the reason flags will be 0 */
1149
1150 if (reason & REASON_FP) {
1151 /* IEEE FP exception */
1152 parse_fpe(regs);
1153 goto bail;
1154 }
1155 if (reason & REASON_TRAP) {
1156 unsigned long bugaddr;
1157 /* Debugger is first in line to stop recursive faults in
1158 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1159 if (debugger_bpt(regs))
1160 goto bail;
1161
1162 /* trap exception */
1163 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1164 == NOTIFY_STOP)
1165 goto bail;
1166
1167 bugaddr = regs->nip;
1168 /*
1169 * Fixup bugaddr for BUG_ON() in real mode
1170 */
1171 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1172 bugaddr += PAGE_OFFSET;
1173
1174 if (!(regs->msr & MSR_PR) && /* not user-mode */
1175 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1176 regs->nip += 4;
1177 goto bail;
1178 }
1179 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1180 goto bail;
1181 }
1182 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1183 if (reason & REASON_TM) {
1184 /* This is a TM "Bad Thing Exception" program check.
1185 * This occurs when:
1186 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1187 * transition in TM states.
1188 * - A trechkpt is attempted when transactional.
1189 * - A treclaim is attempted when non transactional.
1190 * - A tend is illegally attempted.
1191 * - writing a TM SPR when transactional.
1192 */
1193 if (!user_mode(regs) &&
1194 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1195 regs->nip += 4;
1196 goto bail;
1197 }
1198 /* If usermode caused this, it's done something illegal and
1199 * gets a SIGILL slap on the wrist. We call it an illegal
1200 * operand to distinguish from the instruction just being bad
1201 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1202 * illegal /placement/ of a valid instruction.
1203 */
1204 if (user_mode(regs)) {
1205 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1206 goto bail;
1207 } else {
1208 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1209 "at %lx (msr 0x%x)\n", regs->nip, reason);
1210 die("Unrecoverable exception", regs, SIGABRT);
1211 }
1212 }
1213 #endif
1214
1215 /*
1216 * If we took the program check in the kernel skip down to sending a
1217 * SIGILL. The subsequent cases all relate to emulating instructions
1218 * which we should only do for userspace. We also do not want to enable
1219 * interrupts for kernel faults because that might lead to further
1220 * faults, and loose the context of the original exception.
1221 */
1222 if (!user_mode(regs))
1223 goto sigill;
1224
1225 /* We restore the interrupt state now */
1226 if (!arch_irq_disabled_regs(regs))
1227 local_irq_enable();
1228
1229 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1230 * but there seems to be a hardware bug on the 405GP (RevD)
1231 * that means ESR is sometimes set incorrectly - either to
1232 * ESR_DST (!?) or 0. In the process of chasing this with the
1233 * hardware people - not sure if it can happen on any illegal
1234 * instruction or only on FP instructions, whether there is a
1235 * pattern to occurrences etc. -dgibson 31/Mar/2003
1236 */
1237 if (!emulate_math(regs))
1238 goto bail;
1239
1240 /* Try to emulate it if we should. */
1241 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1242 switch (emulate_instruction(regs)) {
1243 case 0:
1244 regs->nip += 4;
1245 emulate_single_step(regs);
1246 goto bail;
1247 case -EFAULT:
1248 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1249 goto bail;
1250 }
1251 }
1252
1253 sigill:
1254 if (reason & REASON_PRIVILEGED)
1255 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1256 else
1257 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1258
1259 bail:
1260 exception_exit(prev_state);
1261 }
1262
1263 /*
1264 * This occurs when running in hypervisor mode on POWER6 or later
1265 * and an illegal instruction is encountered.
1266 */
1267 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1268 {
1269 regs->msr |= REASON_ILLEGAL;
1270 program_check_exception(regs);
1271 }
1272
1273 void alignment_exception(struct pt_regs *regs)
1274 {
1275 enum ctx_state prev_state = exception_enter();
1276 int sig, code, fixed = 0;
1277
1278 /* We restore the interrupt state now */
1279 if (!arch_irq_disabled_regs(regs))
1280 local_irq_enable();
1281
1282 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1283 goto bail;
1284
1285 /* we don't implement logging of alignment exceptions */
1286 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1287 fixed = fix_alignment(regs);
1288
1289 if (fixed == 1) {
1290 regs->nip += 4; /* skip over emulated instruction */
1291 emulate_single_step(regs);
1292 goto bail;
1293 }
1294
1295 /* Operand address was bad */
1296 if (fixed == -EFAULT) {
1297 sig = SIGSEGV;
1298 code = SEGV_ACCERR;
1299 } else {
1300 sig = SIGBUS;
1301 code = BUS_ADRALN;
1302 }
1303 if (user_mode(regs))
1304 _exception(sig, regs, code, regs->dar);
1305 else
1306 bad_page_fault(regs, regs->dar, sig);
1307
1308 bail:
1309 exception_exit(prev_state);
1310 }
1311
1312 void StackOverflow(struct pt_regs *regs)
1313 {
1314 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1315 current, regs->gpr[1]);
1316 debugger(regs);
1317 show_regs(regs);
1318 panic("kernel stack overflow");
1319 }
1320
1321 void nonrecoverable_exception(struct pt_regs *regs)
1322 {
1323 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1324 regs->nip, regs->msr);
1325 debugger(regs);
1326 die("nonrecoverable exception", regs, SIGKILL);
1327 }
1328
1329 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1330 {
1331 enum ctx_state prev_state = exception_enter();
1332
1333 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1334 "%lx at %lx\n", regs->trap, regs->nip);
1335 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1336
1337 exception_exit(prev_state);
1338 }
1339
1340 void altivec_unavailable_exception(struct pt_regs *regs)
1341 {
1342 enum ctx_state prev_state = exception_enter();
1343
1344 if (user_mode(regs)) {
1345 /* A user program has executed an altivec instruction,
1346 but this kernel doesn't support altivec. */
1347 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1348 goto bail;
1349 }
1350
1351 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1352 "%lx at %lx\n", regs->trap, regs->nip);
1353 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1354
1355 bail:
1356 exception_exit(prev_state);
1357 }
1358
1359 void vsx_unavailable_exception(struct pt_regs *regs)
1360 {
1361 if (user_mode(regs)) {
1362 /* A user program has executed an vsx instruction,
1363 but this kernel doesn't support vsx. */
1364 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1365 return;
1366 }
1367
1368 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1369 "%lx at %lx\n", regs->trap, regs->nip);
1370 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1371 }
1372
1373 #ifdef CONFIG_PPC64
1374 void facility_unavailable_exception(struct pt_regs *regs)
1375 {
1376 static char *facility_strings[] = {
1377 [FSCR_FP_LG] = "FPU",
1378 [FSCR_VECVSX_LG] = "VMX/VSX",
1379 [FSCR_DSCR_LG] = "DSCR",
1380 [FSCR_PM_LG] = "PMU SPRs",
1381 [FSCR_BHRB_LG] = "BHRB",
1382 [FSCR_TM_LG] = "TM",
1383 [FSCR_EBB_LG] = "EBB",
1384 [FSCR_TAR_LG] = "TAR",
1385 [FSCR_LM_LG] = "LM",
1386 };
1387 char *facility = "unknown";
1388 u64 value;
1389 u32 instword, rd;
1390 u8 status;
1391 bool hv;
1392
1393 hv = (regs->trap == 0xf80);
1394 if (hv)
1395 value = mfspr(SPRN_HFSCR);
1396 else
1397 value = mfspr(SPRN_FSCR);
1398
1399 status = value >> 56;
1400 if (status == FSCR_DSCR_LG) {
1401 /*
1402 * User is accessing the DSCR register using the problem
1403 * state only SPR number (0x03) either through a mfspr or
1404 * a mtspr instruction. If it is a write attempt through
1405 * a mtspr, then we set the inherit bit. This also allows
1406 * the user to write or read the register directly in the
1407 * future by setting via the FSCR DSCR bit. But in case it
1408 * is a read DSCR attempt through a mfspr instruction, we
1409 * just emulate the instruction instead. This code path will
1410 * always emulate all the mfspr instructions till the user
1411 * has attempted at least one mtspr instruction. This way it
1412 * preserves the same behaviour when the user is accessing
1413 * the DSCR through privilege level only SPR number (0x11)
1414 * which is emulated through illegal instruction exception.
1415 * We always leave HFSCR DSCR set.
1416 */
1417 if (get_user(instword, (u32 __user *)(regs->nip))) {
1418 pr_err("Failed to fetch the user instruction\n");
1419 return;
1420 }
1421
1422 /* Write into DSCR (mtspr 0x03, RS) */
1423 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1424 == PPC_INST_MTSPR_DSCR_USER) {
1425 rd = (instword >> 21) & 0x1f;
1426 current->thread.dscr = regs->gpr[rd];
1427 current->thread.dscr_inherit = 1;
1428 current->thread.fscr |= FSCR_DSCR;
1429 mtspr(SPRN_FSCR, current->thread.fscr);
1430 }
1431
1432 /* Read from DSCR (mfspr RT, 0x03) */
1433 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1434 == PPC_INST_MFSPR_DSCR_USER) {
1435 if (emulate_instruction(regs)) {
1436 pr_err("DSCR based mfspr emulation failed\n");
1437 return;
1438 }
1439 regs->nip += 4;
1440 emulate_single_step(regs);
1441 }
1442 return;
1443 } else if ((status == FSCR_LM_LG) && cpu_has_feature(CPU_FTR_ARCH_300)) {
1444 /*
1445 * This process has touched LM, so turn it on forever
1446 * for this process
1447 */
1448 current->thread.fscr |= FSCR_LM;
1449 mtspr(SPRN_FSCR, current->thread.fscr);
1450 return;
1451 }
1452
1453 if ((status < ARRAY_SIZE(facility_strings)) &&
1454 facility_strings[status])
1455 facility = facility_strings[status];
1456
1457 /* We restore the interrupt state now */
1458 if (!arch_irq_disabled_regs(regs))
1459 local_irq_enable();
1460
1461 pr_err_ratelimited(
1462 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1463 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1464
1465 if (user_mode(regs)) {
1466 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1467 return;
1468 }
1469
1470 die("Unexpected facility unavailable exception", regs, SIGABRT);
1471 }
1472 #endif
1473
1474 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1475
1476 void fp_unavailable_tm(struct pt_regs *regs)
1477 {
1478 /* Note: This does not handle any kind of FP laziness. */
1479
1480 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1481 regs->nip, regs->msr);
1482
1483 /* We can only have got here if the task started using FP after
1484 * beginning the transaction. So, the transactional regs are just a
1485 * copy of the checkpointed ones. But, we still need to recheckpoint
1486 * as we're enabling FP for the process; it will return, abort the
1487 * transaction, and probably retry but now with FP enabled. So the
1488 * checkpointed FP registers need to be loaded.
1489 */
1490 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1491 /* Reclaim didn't save out any FPRs to transact_fprs. */
1492
1493 /* Enable FP for the task: */
1494 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1495
1496 /* This loads and recheckpoints the FP registers from
1497 * thread.fpr[]. They will remain in registers after the
1498 * checkpoint so we don't need to reload them after.
1499 * If VMX is in use, the VRs now hold checkpointed values,
1500 * so we don't want to load the VRs from the thread_struct.
1501 */
1502 tm_recheckpoint(&current->thread, MSR_FP);
1503
1504 /* If VMX is in use, get the transactional values back */
1505 if (regs->msr & MSR_VEC) {
1506 do_load_up_transact_altivec(&current->thread);
1507 /* At this point all the VSX state is loaded, so enable it */
1508 regs->msr |= MSR_VSX;
1509 }
1510 }
1511
1512 void altivec_unavailable_tm(struct pt_regs *regs)
1513 {
1514 /* See the comments in fp_unavailable_tm(). This function operates
1515 * the same way.
1516 */
1517
1518 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1519 "MSR=%lx\n",
1520 regs->nip, regs->msr);
1521 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1522 regs->msr |= MSR_VEC;
1523 tm_recheckpoint(&current->thread, MSR_VEC);
1524 current->thread.used_vr = 1;
1525
1526 if (regs->msr & MSR_FP) {
1527 do_load_up_transact_fpu(&current->thread);
1528 regs->msr |= MSR_VSX;
1529 }
1530 }
1531
1532 void vsx_unavailable_tm(struct pt_regs *regs)
1533 {
1534 unsigned long orig_msr = regs->msr;
1535
1536 /* See the comments in fp_unavailable_tm(). This works similarly,
1537 * though we're loading both FP and VEC registers in here.
1538 *
1539 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1540 * regs. Either way, set MSR_VSX.
1541 */
1542
1543 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1544 "MSR=%lx\n",
1545 regs->nip, regs->msr);
1546
1547 current->thread.used_vsr = 1;
1548
1549 /* If FP and VMX are already loaded, we have all the state we need */
1550 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1551 regs->msr |= MSR_VSX;
1552 return;
1553 }
1554
1555 /* This reclaims FP and/or VR regs if they're already enabled */
1556 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1557
1558 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1559 MSR_VSX;
1560
1561 /* This loads & recheckpoints FP and VRs; but we have
1562 * to be sure not to overwrite previously-valid state.
1563 */
1564 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1565
1566 if (orig_msr & MSR_FP)
1567 do_load_up_transact_fpu(&current->thread);
1568 if (orig_msr & MSR_VEC)
1569 do_load_up_transact_altivec(&current->thread);
1570 }
1571 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1572
1573 void performance_monitor_exception(struct pt_regs *regs)
1574 {
1575 __this_cpu_inc(irq_stat.pmu_irqs);
1576
1577 perf_irq(regs);
1578 }
1579
1580 #ifdef CONFIG_8xx
1581 void SoftwareEmulation(struct pt_regs *regs)
1582 {
1583 CHECK_FULL_REGS(regs);
1584
1585 if (!user_mode(regs)) {
1586 debugger(regs);
1587 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1588 regs, SIGFPE);
1589 }
1590
1591 if (!emulate_math(regs))
1592 return;
1593
1594 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1595 }
1596 #endif /* CONFIG_8xx */
1597
1598 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1599 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1600 {
1601 int changed = 0;
1602 /*
1603 * Determine the cause of the debug event, clear the
1604 * event flags and send a trap to the handler. Torez
1605 */
1606 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1607 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1608 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1609 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1610 #endif
1611 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1612 5);
1613 changed |= 0x01;
1614 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1615 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1616 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1617 6);
1618 changed |= 0x01;
1619 } else if (debug_status & DBSR_IAC1) {
1620 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1621 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1622 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1623 1);
1624 changed |= 0x01;
1625 } else if (debug_status & DBSR_IAC2) {
1626 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1627 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1628 2);
1629 changed |= 0x01;
1630 } else if (debug_status & DBSR_IAC3) {
1631 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1632 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1633 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1634 3);
1635 changed |= 0x01;
1636 } else if (debug_status & DBSR_IAC4) {
1637 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1638 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1639 4);
1640 changed |= 0x01;
1641 }
1642 /*
1643 * At the point this routine was called, the MSR(DE) was turned off.
1644 * Check all other debug flags and see if that bit needs to be turned
1645 * back on or not.
1646 */
1647 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1648 current->thread.debug.dbcr1))
1649 regs->msr |= MSR_DE;
1650 else
1651 /* Make sure the IDM flag is off */
1652 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1653
1654 if (changed & 0x01)
1655 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1656 }
1657
1658 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1659 {
1660 current->thread.debug.dbsr = debug_status;
1661
1662 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1663 * on server, it stops on the target of the branch. In order to simulate
1664 * the server behaviour, we thus restart right away with a single step
1665 * instead of stopping here when hitting a BT
1666 */
1667 if (debug_status & DBSR_BT) {
1668 regs->msr &= ~MSR_DE;
1669
1670 /* Disable BT */
1671 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1672 /* Clear the BT event */
1673 mtspr(SPRN_DBSR, DBSR_BT);
1674
1675 /* Do the single step trick only when coming from userspace */
1676 if (user_mode(regs)) {
1677 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1678 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1679 regs->msr |= MSR_DE;
1680 return;
1681 }
1682
1683 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1684 5, SIGTRAP) == NOTIFY_STOP) {
1685 return;
1686 }
1687 if (debugger_sstep(regs))
1688 return;
1689 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1690 regs->msr &= ~MSR_DE;
1691
1692 /* Disable instruction completion */
1693 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1694 /* Clear the instruction completion event */
1695 mtspr(SPRN_DBSR, DBSR_IC);
1696
1697 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1698 5, SIGTRAP) == NOTIFY_STOP) {
1699 return;
1700 }
1701
1702 if (debugger_sstep(regs))
1703 return;
1704
1705 if (user_mode(regs)) {
1706 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1707 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1708 current->thread.debug.dbcr1))
1709 regs->msr |= MSR_DE;
1710 else
1711 /* Make sure the IDM bit is off */
1712 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1713 }
1714
1715 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1716 } else
1717 handle_debug(regs, debug_status);
1718 }
1719 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1720
1721 #if !defined(CONFIG_TAU_INT)
1722 void TAUException(struct pt_regs *regs)
1723 {
1724 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1725 regs->nip, regs->msr, regs->trap, print_tainted());
1726 }
1727 #endif /* CONFIG_INT_TAU */
1728
1729 #ifdef CONFIG_ALTIVEC
1730 void altivec_assist_exception(struct pt_regs *regs)
1731 {
1732 int err;
1733
1734 if (!user_mode(regs)) {
1735 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1736 " at %lx\n", regs->nip);
1737 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1738 }
1739
1740 flush_altivec_to_thread(current);
1741
1742 PPC_WARN_EMULATED(altivec, regs);
1743 err = emulate_altivec(regs);
1744 if (err == 0) {
1745 regs->nip += 4; /* skip emulated instruction */
1746 emulate_single_step(regs);
1747 return;
1748 }
1749
1750 if (err == -EFAULT) {
1751 /* got an error reading the instruction */
1752 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1753 } else {
1754 /* didn't recognize the instruction */
1755 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1756 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1757 "in %s at %lx\n", current->comm, regs->nip);
1758 current->thread.vr_state.vscr.u[3] |= 0x10000;
1759 }
1760 }
1761 #endif /* CONFIG_ALTIVEC */
1762
1763 #ifdef CONFIG_FSL_BOOKE
1764 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1765 unsigned long error_code)
1766 {
1767 /* We treat cache locking instructions from the user
1768 * as priv ops, in the future we could try to do
1769 * something smarter
1770 */
1771 if (error_code & (ESR_DLK|ESR_ILK))
1772 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1773 return;
1774 }
1775 #endif /* CONFIG_FSL_BOOKE */
1776
1777 #ifdef CONFIG_SPE
1778 void SPEFloatingPointException(struct pt_regs *regs)
1779 {
1780 extern int do_spe_mathemu(struct pt_regs *regs);
1781 unsigned long spefscr;
1782 int fpexc_mode;
1783 int code = 0;
1784 int err;
1785
1786 flush_spe_to_thread(current);
1787
1788 spefscr = current->thread.spefscr;
1789 fpexc_mode = current->thread.fpexc_mode;
1790
1791 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1792 code = FPE_FLTOVF;
1793 }
1794 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1795 code = FPE_FLTUND;
1796 }
1797 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1798 code = FPE_FLTDIV;
1799 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1800 code = FPE_FLTINV;
1801 }
1802 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1803 code = FPE_FLTRES;
1804
1805 err = do_spe_mathemu(regs);
1806 if (err == 0) {
1807 regs->nip += 4; /* skip emulated instruction */
1808 emulate_single_step(regs);
1809 return;
1810 }
1811
1812 if (err == -EFAULT) {
1813 /* got an error reading the instruction */
1814 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1815 } else if (err == -EINVAL) {
1816 /* didn't recognize the instruction */
1817 printk(KERN_ERR "unrecognized spe instruction "
1818 "in %s at %lx\n", current->comm, regs->nip);
1819 } else {
1820 _exception(SIGFPE, regs, code, regs->nip);
1821 }
1822
1823 return;
1824 }
1825
1826 void SPEFloatingPointRoundException(struct pt_regs *regs)
1827 {
1828 extern int speround_handler(struct pt_regs *regs);
1829 int err;
1830
1831 preempt_disable();
1832 if (regs->msr & MSR_SPE)
1833 giveup_spe(current);
1834 preempt_enable();
1835
1836 regs->nip -= 4;
1837 err = speround_handler(regs);
1838 if (err == 0) {
1839 regs->nip += 4; /* skip emulated instruction */
1840 emulate_single_step(regs);
1841 return;
1842 }
1843
1844 if (err == -EFAULT) {
1845 /* got an error reading the instruction */
1846 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1847 } else if (err == -EINVAL) {
1848 /* didn't recognize the instruction */
1849 printk(KERN_ERR "unrecognized spe instruction "
1850 "in %s at %lx\n", current->comm, regs->nip);
1851 } else {
1852 _exception(SIGFPE, regs, 0, regs->nip);
1853 return;
1854 }
1855 }
1856 #endif
1857
1858 /*
1859 * We enter here if we get an unrecoverable exception, that is, one
1860 * that happened at a point where the RI (recoverable interrupt) bit
1861 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1862 * we therefore lost state by taking this exception.
1863 */
1864 void unrecoverable_exception(struct pt_regs *regs)
1865 {
1866 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1867 regs->trap, regs->nip);
1868 die("Unrecoverable exception", regs, SIGABRT);
1869 }
1870
1871 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1872 /*
1873 * Default handler for a Watchdog exception,
1874 * spins until a reboot occurs
1875 */
1876 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1877 {
1878 /* Generic WatchdogHandler, implement your own */
1879 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1880 return;
1881 }
1882
1883 void WatchdogException(struct pt_regs *regs)
1884 {
1885 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1886 WatchdogHandler(regs);
1887 }
1888 #endif
1889
1890 /*
1891 * We enter here if we discover during exception entry that we are
1892 * running in supervisor mode with a userspace value in the stack pointer.
1893 */
1894 void kernel_bad_stack(struct pt_regs *regs)
1895 {
1896 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1897 regs->gpr[1], regs->nip);
1898 die("Bad kernel stack pointer", regs, SIGABRT);
1899 }
1900
1901 void __init trap_init(void)
1902 {
1903 }
1904
1905
1906 #ifdef CONFIG_PPC_EMULATED_STATS
1907
1908 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1909
1910 struct ppc_emulated ppc_emulated = {
1911 #ifdef CONFIG_ALTIVEC
1912 WARN_EMULATED_SETUP(altivec),
1913 #endif
1914 WARN_EMULATED_SETUP(dcba),
1915 WARN_EMULATED_SETUP(dcbz),
1916 WARN_EMULATED_SETUP(fp_pair),
1917 WARN_EMULATED_SETUP(isel),
1918 WARN_EMULATED_SETUP(mcrxr),
1919 WARN_EMULATED_SETUP(mfpvr),
1920 WARN_EMULATED_SETUP(multiple),
1921 WARN_EMULATED_SETUP(popcntb),
1922 WARN_EMULATED_SETUP(spe),
1923 WARN_EMULATED_SETUP(string),
1924 WARN_EMULATED_SETUP(sync),
1925 WARN_EMULATED_SETUP(unaligned),
1926 #ifdef CONFIG_MATH_EMULATION
1927 WARN_EMULATED_SETUP(math),
1928 #endif
1929 #ifdef CONFIG_VSX
1930 WARN_EMULATED_SETUP(vsx),
1931 #endif
1932 #ifdef CONFIG_PPC64
1933 WARN_EMULATED_SETUP(mfdscr),
1934 WARN_EMULATED_SETUP(mtdscr),
1935 WARN_EMULATED_SETUP(lq_stq),
1936 #endif
1937 };
1938
1939 u32 ppc_warn_emulated;
1940
1941 void ppc_warn_emulated_print(const char *type)
1942 {
1943 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1944 type);
1945 }
1946
1947 static int __init ppc_warn_emulated_init(void)
1948 {
1949 struct dentry *dir, *d;
1950 unsigned int i;
1951 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1952
1953 if (!powerpc_debugfs_root)
1954 return -ENODEV;
1955
1956 dir = debugfs_create_dir("emulated_instructions",
1957 powerpc_debugfs_root);
1958 if (!dir)
1959 return -ENOMEM;
1960
1961 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1962 &ppc_warn_emulated);
1963 if (!d)
1964 goto fail;
1965
1966 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1967 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1968 (u32 *)&entries[i].val.counter);
1969 if (!d)
1970 goto fail;
1971 }
1972
1973 return 0;
1974
1975 fail:
1976 debugfs_remove_recursive(dir);
1977 return -ENOMEM;
1978 }
1979
1980 device_initcall(ppc_warn_emulated_init);
1981
1982 #endif /* CONFIG_PPC_EMULATED_STATS */